Method of forming a building panel or surface element and such a building panel and surface element

Information

  • Patent Grant
  • 11313123
  • Patent Number
    11,313,123
  • Date Filed
    Wednesday, June 15, 2016
    7 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
Abstract
A method of forming a building panel or a surface element, including providing a substrate, applying a sub-layer on the substrate, applying a mesh structure on the sub-layer, and applying heat and pressure to the mesh structure such that the sub-layer at least partially fills meshes of the mesh structure. Also, to such a building panel and a surface element.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of Swedish Application No. 1550827-8, filed on Jun. 16, 2015. The entire contents of Swedish Application No. 1550827-8 are hereby incorporated herein by reference in their entirety.


TECHNICAL FIELD

The present disclosure relates to a method of forming a building panel or a surface element comprising a mesh structure, and such a building panel and surface element.


TECHNICAL BACKGROUND

A new type of floors has recently been developed with a solid surface comprising a substantially homogenous mix of wood particles, a binder and wear resistant particles. Such floor and building panels are marketed under the trademark NADURA®.


The panels are produced according to a production method, which is described in WO 2009/065769, wherein the mix comprising wood fibres, binder and wear resistant particles is applied in powder form on a core. Lignocellulosic wood material may be used. The wood fibres are generally refined, mechanically worked, and of the same type as used in HDF and particleboard, i.e., treated in a way that the lignin content is essentially unchanged. The wear resistant particles are preferably aluminium oxide particles. The surface layer comprises preferably also colour pigments and/or other decorative materials or additives. Processed fibres such as cellulosic fibres may also be used. The processed fibres may be at least partially bleached wood fibres. The binder is preferably melamine formaldehyde resin.


The mix is scattered in dry powder form on a wood based core, such as for example HDF. The mix is cured under heat and pressure to a 0.1-1.0 mm thick decorative surface layer.


Powder technology is very suitable to produce a decorative surface layer, which is a copy of stone and ceramics mainly comprising one colour or a mix of two colours. In the past it was more difficult to create advanced multi colour designs such as for example wood decors. However, recently digital powder printing has been developed and it is possible to create very advanced designs of any type by injecting ink into the powder prior to pressing. The surface structure is made in the same way as for laminate flooring by embossed press plates, steal belts or embossed matrix papers that are pressed against the powder surface during lamination.


U.S. Pat. No. 3,392,082 describes that decorative sheet of paper or various textile materials such as cotton, glass or nylon may be impregnated with melamine-formaldehyde resins and used as the outer layer of a laminate to produce normally rigid laminates which are postformable when heated to forming temperatures. Such laminates contain a core consisting of a plurality of paper plies bonded with thermosetting resin, such as the phenolic resins. Lamination of impregnated textile materials and papers is a difficult and costly production method.


WO 2009/065769 further discloses a thin surface layer such as a wood veneer layer, which is applied on a sub-layer comprising, for example, cork or wood fibres mixed with a binder. The sub-layer is applied on a wood fibre based core and serves as a bonding and reinforcement layer for the veneer. Wood veneer combined with a powder-based sub-layer may provide more advanced wood decors than a digitally printed and embossed powder layer. WO 2009/065769 further discloses separate materials such as flakes of wood, metal, plastics, etc. can be used to give the surface improved and more realistic decorative properties that cannot be obtained by, for example, digital printing These separate materials can be pressed into the basic wood fibre surface.


It would be an advantage if a powder based surface layer may be combined with separate additional materials in a simple and cost efficient way in order to improve the properties of the powder based surface.


SUMMARY

It is an object of at least embodiments of the present invention to provide an improvement over the above described techniques and known art.


A further object of at least embodiments of the present invention is to provide a building panel or surface element having improved decorative properties related to design and surface structure.


A further object of at least embodiments of the present invention is to provide a building panel or surface element having improved anti-slip properties.


A further object of at least embodiments of the present invention is to provide a building panel or surface element having improved wear resistance.


A further object of at least embodiments of the present invention is to provide a building panel or surface element having improved impact resistance.


A further object of at least embodiments of the present invention is to provide a building panel or surface element having improved stain resistance.


A further object of at least embodiments of the present invention is to provide a building panel or surface element having improved water resistance.


A further object of at least embodiments of the present invention is to improve wear resistance of certain materials otherwise not suitable as surface material for building panels or surface elements.


At least some of these and other objects and advantages that will be apparent from the description have been achieved by a method of forming a building panel or a surface element according to a first aspect of the invention. The method may comprise:

    • providing a substrate,
    • applying a sub-layer on a first surface of the substrate,
    • applying a mesh structure on the sub-layer, and
    • applying pressure, and preferably also heat, to said mesh structure such that the sub-layer at least partially fills meshes of the said mesh structure.


At least a portion of the sub-layer may permeate at least partly through the meshes of the mesh structure. At least a portion of the sub-layer may permeate completely through meshes of the mesh structure.


Preferably, a vapour permeability of the mesh structure layer may exceed 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm.


An advantage of at least embodiments of the present invention is that the mesh structure is reinforced by the sub-layer. The mesh structure may be a material having limited wear resistance, such as a textile, leather, suede, etc. The mesh structure, for example, a textile, provides decorative properties to the building panel or surface element. The mesh structure is reinforced by the sub-layer such that the mesh structure may form part of a building panel or surface element and provide wear resistance properties thanks to the sub-layer. Thereby, a material such as a textile, which otherwise would not provide sufficient wear resistance, may form the surface of the building panel or surface element or surface element, and the decorative properties of such materials can be used for a building panel or surface element subjected to wear.


Furthermore, the sub-layer may also provide water-resistance to a material, which otherwise would not provide sufficient water resistant properties, for example by impregnating the material of the mesh structure.


The mesh structure forms part of a decorative surface of the building panel or surface element. The mesh structure, and in certain embodiments together with the sub-layer, provides the decorative surface of the building panel or surface element.


The mesh structure may be impregnated by the sub-layer during pressing. As an example, a mesh structure in form of a textile material may be impregnated by a binder present in the sub-layer during pressing.


The mesh structure may provide the building panel or surface element with slip resistance. The mesh structure may provide the building panel or surface element with a structure that may protrude from the sub-layer. The protruding parts may form a slip resistant pattern of the building panel or surface element.


The mesh structure may also provide conductivity, for example, electrical conductivity, to the building panel or surface element.


The mesh structure may also increase, or decrease, the heat conductivity of the building panel or surface element.


Furthermore, the mesh structure allows that under pressing, a condensation reaction product, for example, water, may escape through meshes of the mesh structure.


By applying heat and pressure, the mesh structure is attached to the sub-layer such that a building panel or surface element is formed by at least the mesh structure and the sub-layer. The mesh structure may be mechanically and/or chemically connected to the sub-layer.


The substrate may form part of the building panel after pressing. In such embodiments, the substrate may be a pre-fabricated substrate. The substrate may be a wood-based board, for example, a wood-fibre based board such as MDF or HDF, or plywood. The substrate may be a Wood Plastic Composite (WPC). The substrate may be a mineral composite board. The substrate may be a fibre cement board. The substrate may be magnesium oxide cement board. The substrate may be a ceramic board. The substrate may be a plastic board such as a thermoplastic board. The substrate may be a sheet such as paper sheet. The substrate may be a thermoplastic foil.


In other embodiments, the substrate may be a conveyor belt and/or a temporary carrier. In such embodiments, the mesh structure and the sub-layer may be removed from the substrate such that a surface element formed of the sub-layer and the mesh structure is provided. In this embodiment, the surface element comprising the mesh structure and the sub-layer may form a part of a building panel, such as being configured to form a surface layer of a building panel, and may be attached to a substrate in a subsequent step for forming a building panel. The surface element comprising the mesh structure and the sub-layer may also be used as it is without being adhered to a substrate.


The building panel may be a floor panel, a ceiling panel, a wall panel, a door panel, a worktop, skirting boards, mouldings, edging profiles, furniture component, etc.


The mesh structure may have a substantially uniform vapour permeability in a plane parallel to the first surface of the substrate. Meshes of the mesh structure may have a substantially uniform size. Thereby, the permeation of the sub-layer through the mesh structure is substantially uniform.


The mesh structure is preferably at least semi-permeable, such as having a vapour permeability of at least 57 SI Perm, wherein 1 SI Perm equals 1 ng/s*m2*PA. The mesh structure may be permeable such as having a vapour permeability of at least 570 SI Perm.


The method may include controlling permeation of the sub-layer through the meshes of the mesh structure, and thereby also to the extent the meshes are filled by material from the sub-layer. By controlling permeation of the sub-layer through meshes of the mesh structure, a design of the building panel or surface element may be controlled. Preferably, controlling a design of the building panel or surface element is performed by determining a level of permeation of the sub-layer through the mesh structure. Determining a level of permeation may involve selecting or adjusting the permeation. This may involve selecting or adjusting a fluid pressure of the sub-layer when applying pressure.


By controlling is meant determining, selecting and/or adjusting. By determining is, for example, meant determining by visual impression of the design of the building panel or surface element.


Controlling the fluid pressure of the sub-layer during pressing may include adjusting one or more of the following parameters:

    • concentration of a binder in the sub-layer;
    • type of binder in the sub-layer;
    • formulation of the binder in the sub-layer;
    • moisture content of the sub-layer;
    • the pressure applied;
    • a gas pressure in the sub-layer;
    • concentration of fillers in the sub-layer; and
    • vapour permeability of the mesh structure.


Adjusting the formulation of the binder in the sub-layer may, for example, comprise optimizing the molar ratio and/or selection of additives in an amino resin, polyol selections in polyesters and urethanes, and/or molecular weight and distribution of thermoplastics.


The step of applying heat and pressure may comprise curing the sub-layer and thereby attaching the mesh structure to the sub-layer. The sub-layer may comprise a thermosetting binder. During condensation reaction of the thermosetting binder when heat and pressure is applied, the mesh structure, and the permeability of the mesh structure, allows that any condensation reaction product such as water may evaporate through the mesh structure, primary through the meshes of the mesh structure. Some binder may also impregnate the material of the mesh structure. Further, the mesh structure, and the permeability of the mesh structure, allows that moisture from the fibres, such as wood fibres or wood particles, which may be included in the sub-layer, can evaporate through the mesh structure.


The sub-layer may be applied as a powder. The sub-layer may comprise a binder and fillers. The binder is preferably applied in powder form.


The mesh structure may be at least partially visible after heat and pressure have been applied. Thereby, the mesh structure may contribute to the decorative properties of the building panel or surface element.


The sub-layer may at least partially encapsulate the mesh structure after pressing. Material from the sub-layer may at least partly permeate through the meshes of the mesh structure such that the sub-layer at least partially encapsulates the mesh structure.


A material forming the mesh structure facing the sub-layer may have a surface roughness exceeding Ra 6.3, wherein Ra defines mean surface deviation measured in μm. By the material forming the mesh structure having a surface roughness exceeding Ra 6.3, the mesh structure is fixed to the sub-layer even if the sub-layer does not encapsulate the mesh structure.


The sub-layer may comprise a thermosetting binder. The permeability of the mesh structure allows transportation of condensation reaction products through the mesh structure, primary through the meshes of the mesh structure during pressing.


The mesh structure may be formed of a metal material. The mesh structure may be an expanded metal.


The mesh structure may be formed of a textile material. The textile material may be a non-woven or a woven structure. The textile material may be cloth, fabric, etc.


The textile material may comprise weaved cotton fibres. The textile material in form of the weaved cotton fibres may have a mesh size and a mesh width exceeding 0.1 mm.


The textile material may be bonded to the sub-layer by a cured thermosetting binder, preferably melamine formaldehyde resin, when applying heat and pressure.


The textile material may be chemically impregnated by the sub-layer by a cured thermosetting binder, preferably melamine formaldehyde resin, when applying heat and pressure.


A melamine formaldehyde resin powder may be applied on the textile material prior to applying heat and pressure.


The textile material may be impregnated with a thermosetting binder, preferably melamine formaldehyde resin, prior to applying heat and pressure.


The mesh structure may be formed of plastic material. Plastic material may be used to form a mesh structure similar to expanded metal.


The mesh structure may be formed of a perforated foil. The perforated foil may be a perforated metal foil or perforated plastic foil.


The mesh structure may comprise any one of the following material: metal, textile such as non-woven or woven, plastic, rubber, fibreglass weave, carbon fibres weave, leather, artificial leather, suede, artificial suede, or a combination thereof.


The mesh structure may have a mesh size exceeding 0.1 mm, more preferably exceeding 0.5 mm. The mesh size of the mesh structure may be 0.1-100 mm. The meshes may have a uniform shape, or different meshes may be differently shaped.


The step of applying heat and pressure may comprise heating to a temperature of 150° C.-180° C. and applying a pressure of 20-60 bar on the mesh structure.


According to a second aspect of the present invention, a building panel is provided. The building panel comprises:

    • a substrate,
    • a sub-layer arranged on a first surface of the substrate, and
    • a mesh structure arranged on the sub-layer, wherein meshes of the mesh structure are at least partly filled with material from the sub-layer.


At least a portion of the sub-layer may permeate at least partly through meshes the mesh structure. At least a portion of the sub-layer may permeate completely through meshes of the mesh structure.


Preferably, a vapour permeability of the mesh structure layer may exceed 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm.


An advantage of at least embodiments of the second aspect of the invention is that the mesh structure is reinforced by the sub-layer. The mesh structure may be a material having limited wear resistance, such as a textile, leather, suede, etc. The mesh structure, for example, a textile, provides decorative properties to the building panel. The mesh structure is reinforced by the sub-layer such that the mesh structure may form part of a building panel and provide wear resistance properties thanks to the sub-layer. Thereby, a material such as a textile, which otherwise would not provide sufficient wear resistance, may form the surface of the building panel, and the decorative properties of such materials can be used for a building panel subjected to wear.


Furthermore, the sub-layer may also provide water-resistance to a material, which otherwise would not provide sufficient water resistant properties, for example by impregnating the material of the mesh structure.


The mesh structure may form part of a decorative surface of the building panel. The mesh structure, in certain embodiments together with the sub-layer, provides the decorative surface of the building panel.


The mesh structure may be impregnated by the sub-layer as the sub-layer permeates through the mesh structure. As an example, a mesh structure in form of a textile material may be impregnated by a binder present in the sub-layer during pressing.


The mesh structure may provide the building panel with slip resistance. The mesh structure may provide the building panel with a structure that may protrude from the sub-layer. The protruding parts may form a slip resistant pattern of the building panel.


The mesh structure may also provide conductivity, for example, electrical conductivity, to the building panel.


The mesh structure may also increase, or decrease, the heat conductivity of the building panel.


Furthermore, the mesh structure allows that under pressing, a condensation reaction product, for example, water may escape through the mesh structure.


The mesh structure is attached to the sub-layer such that a building panel is formed by at least the mesh structure and the sub-layer.


The substrate may be a pre-fabricated substrate. The substrate may be a wood-based board, for example, a wood-fibre based board such as MDF or HDF, or plywood. The substrate may be a Wood Plastic Composite (WPC). The substrate may be a mineral composite board. The substrate may be a fibre cement board. The substrate may be magnesium oxide cement board. The substrate may be a ceramic board. The substrate may be a plastic board such as a thermoplastic board. The substrate may be a sheet such as paper sheet. The substrate may be a thermoplastic foil.


The building panel may be a floor panel, a ceiling panel, a wall panel, a door panel, a worktop, skirting boards, mouldings, edging profiles, furniture component, etc.


The mesh structure may have a substantially uniform permeability in a plane parallel to the first surface of the substrate. Meshes of the mesh structure may have a substantially uniform size. Thereby, the permeation of the sub-layer through the mesh structure is substantially uniform.


The mesh structure may be at least partially visible. Thereby, the mesh structure may contribute to the decorative properties of the building panel.


The sub-layer may at least partially encapsulate the mesh structure. Material from the sub-layer may at least partly permeate through the meshes of the mesh structure such that the sub-layer at least partially encapsulates the mesh structure.


A material forming the mesh structure facing the sub-layer may have a surface roughness exceeding Ra 6.3. By the material forming the mesh structure having a surface roughness exceeding Ra 6.3, the mesh structure is fixed to the sub-layer even if the sub-layer does not encapsulate the mesh structure.


The sub-layer may comprise a thermosetting binder. The permeability of the mesh structure allows transportation of condensation reaction products through the mesh structure, primary through the meshes of the mesh structure, during pressing.


The mesh structure may be formed of a metal material. The mesh structure may be an expanded metal.


The mesh structure may be formed of a textile material. The textile material may be a non-woven or a woven structure. The textile material may be cloth, fabric, etc.


The mesh structure may be formed of plastic material. Plastic material may be used to form a mesh structure similar to expanded metal.


The mesh structure may be formed of a perforated foil. The perforated foil may be a perforated metal foil or perforated plastic foil.


The mesh structure may comprise any one of the following material: metal, textile such as non-woven or woven, plastic, rubber, fibreglass weave, carbon fibres weave, leather, artificial leather, suede, artificial suede, or a combination thereof.


The mesh structure may have a mesh size exceeding 0.1 mm, more preferably exceeding 0.5 mm. The mesh size of the mesh structure may be 0.1-100 mm. The meshes may have a uniform shape or different shapes.


The textile material may comprise weaved cotton fibres. The textile material in form of the weaved cotton fibres may have a mesh size and a mesh width of the textile material comprising weaved cotton fibres exceeds 0.1 mm.


The textile material may be bonded to the sub-layer by a cured thermosetting binder, preferably melamine formaldehyde resin.


The textile material may be chemically impregnated by the sub-layer by a cured thermosetting binder, preferably melamine formaldehyde resin.


A protective layer may be arranged on the mesh structure. The protective layer may be formed of a layer of melamine formaldehyde resin powder arranged on the textile material.


The textile material may be impregnated by a thermosetting binder, preferably melamine formaldehyde resin.


The sub-layer may comprise wood fibres and thermosetting resins. The substrate may comprise a wood-based board comprising several layers, wherein at least a first layer comprises thermoplastic material mixed with wood fibres and wherein at least a second layer comprises thermoplastic material mixed with mineral particles.


The building panel may comprise a locking system comprising a tongue at a first edge and a tongue groove at a second edge opposite the first edge, wherein an upper part of the tongue and an upper part of the tongue groove comprise the mineral particles.


According to a third aspect of the invention, a surface element is provided. The surface element comprises a sub-layer and a mesh structure arranged on the sub-layer, wherein meshes of the mesh structure are at least partly filled with material from the sub-layer.


The surface element may be adapted to form part of a building panel.


The third aspect of the invention incorporates all aspect of the first and second aspect of the invention; thereby the previous description is applicable also for the surface element.


Preferably, a vapour permeability of the mesh structure exceeds 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm.


The mesh structure may be formed of a textile material. The textile material may be a non-woven or a woven structure. The textile material may be cloth, fabric, etc.


The surface element may further comprise a protective layer arranged on the mesh structure.


The sub-layer may comprise a thermoplastic foil.


The protective layer may comprise a thermoplastic foil.


The mesh structure may have a substantially uniform permeability in a plane parallel to the first surface of the substrate.


The mesh structure may be at least partially visible.


The sub-layer may at least partially encapsulate the mesh structure.


A material forming the mesh structure facing the sub-layer may have a surface roughness exceeding Ra 6.3.


The sub-layer may comprise a thermosetting binder.


The mesh structure may be formed of a metal material. The mesh structure may be an expanded metal.


The mesh structure may be formed of plastic material.


The mesh structure may be formed of a perforated foil.


The mesh structure may comprise any one of the following material: metal, textile such as non-woven or woven, plastic, rubber, fibreglass weave, carbon fibres weave, leather, artificial leather, suede, artificial suede, or a combination thereof.


The mesh structure may have a mesh size exceeding 0.1 mm, more preferably exceeding 0.5 mm. The mesh size of the mesh structure may be 0.1-100 mm. The meshes may have a uniform shape or different shapes.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will by way of example be described in more detail with reference to the appended schematic drawings, which show embodiments of the present invention.



FIGS. 1A-B illustrate a method of forming a building panel according to an embodiment.



FIG. 1c illustrates a mesh structure in more detail.



FIG. 2A illustrates an embodiment of a building panel.



FIG. 2B illustrates the building panel shown in FIG. 2A in cross section.



FIG. 3 illustrates an embodiment of a building panel.



FIG. 4 illustrates an embodiment of a building panel.



FIG. 5 illustrates an embodiment of a surface element, for example, adapted to form part of a building panel.



FIG. 6 illustrates an embodiment of a surface element, for example, adapted to form part of a building panel.



FIG. 7 illustrates a cross-section of an embodiment of a building panel.





DETAILED DESCRIPTION


FIGS. 1A-B show a method of producing a building panel 10 or surface element. The building panel 10 or surface element may be, or configured to form part of, a furniture component, a floor panel, a ceiling panel, a wall panel, a door panel, a worktop, skirting boards, mouldings, edging profiles, etc. The method comprises providing a substrate 1. The substrate 1 is preferably a pre-fabricated substrate, manufactured prior to the method of producing the building panel 10. The substrate 1 may be a board, for example, a wood-based board as shown in the embodiment shown in FIGS. 1-4. The wood-based board may be a wood fibre based board such as MDF, HDF, particleboard, or a plywood board. In other embodiments, the substrate may be a Wood Plastic Composite (WPC). The substrate 1 may be a mineral composite board. The substrate 1 may be a fibre cement board. The substrate 1 may be magnesium oxide cement board. The substrate 1 may be a ceramic board. The substrate 1 may be a plastic board such as a thermoplastic board. In another embodiment, the substrate 1 may be a carrier such as sheet of paper or non-woven, or a conveyor. The substrate 1 may be a thermoplastic foil, such as a polyurethane (PU) or polyvinyl chloride (PVC) foil. When the method is used to produce a surface element 11, the conveyor may form the substrate.


A sub-layer 2 is applied on a first surface 4 of the substrate 1. In the embodiment shown in FIG. 1A, the sub-layer 2 is applied in powder form. The powder 21 configured to form the sub-layer 2 is applied by scattering, preferably by a scattering device 20 comprising a roller, as shown in FIG. 1A. The sub-layer 2 may also be applied as granules. In other embodiments, the sub-layer 2 may be applied as a liquid, as a paste, a sheet, as pellets, as agglomerates, etc. The sub-layer 2 may be applied by roller coating, spraying, etc.


In the embodiment wherein the conveyor forms the substrate, the sub-layer 2 is applied directly on the conveyor.


The sub-layer 2 comprises a binder. The binder may be a thermosetting binder, a thermoplastic binder, or a combination thereof. The binder may be wood mastic, wood filler or any other type of putty-like paste. The thermosetting binder may be an amino resin such as melamine formaldehyde resin, phenol formaldehyde resin, urea formaldehyde resin, or a combination thereof. Urea formaldehyde resin may be used, alone or in combination with melamine formaldehyde resin, to reduce tension formed by the sub-layer 2 during curing, compared to when melamine formaldehyde resin is used only. The thermosetting binder may be a polyester, a polyurethane, an epoxy or an acrylic resin. The thermoplastic binder may be polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polyurethane (PU), polyvinyl alcohol (PVOH), polyvinyl butyral (PVB), polyvinyl acetate (PVAc), and/or thermoplastic elastomer (TPE), or a combination thereof. The binder may be a two component binder, such as diol-diisocyanate.


The binder may be in powder form when applied. The binder may be in liquid form when applied. The binder may be applied as pellets, agglomerates or as a sheet.


The sub-layer 2 may be formed of a mix comprising a binder of the above described type and fillers. The mix may further comprise pigments. The mix may further comprise additives. The mix may further comprise wear and/or scratch resistant particles. As an alternative to a mix, the binder, fillers, pigments, additives and any other component may be applied separately on the substrate 1.


The fillers may be particles or fibres, for example wood fibres or particles, or mineral particles or fibres. The wood particles may be lignocellulosic particles and/or cellulosic particles. The wood particles may be at least partially bleached. The fillers may be rice, straw, corn, jute, linen, flax, cotton, hemp, bamboo, bagasse or sisal particles or fibres. The sub-layer may comprise starch such as maize starch, potato starch, etc.


The fillers may be fillers having sound-absorbing properties such as cork particles and/or barium sulphate (BaSO4). Alternatively, a sound-absorbing layer, for example a cork layer or cork veneer layer, may be arranged as an intermediate layer. The sub-layer is applied on the sound-absorbing layer. The sound-absorbing layer may be arranged on the substrate, or on a sub-layer arranged on the substrate.


The pigments may include white pigments such as TiO2. A pigment such as TiO2 can be combined with at least partially bleached wood particles to obtain a white staining of the sub-layer. In one embodiment, a pre-mix is formed by white pigments such as TiO2 and wood particles, preferably at least partially bleached wood particles. The pre-mix is then mixed with remaining wood particles, binder, additives, etc.


The sub-layer 2 may have a uniform colour, different shades, or different portions of the sub-layer may have different colours.


In one embodiment, a digital print may be printed in the sub-layer 2, preferably by an ink jet printer. The colouring and/or pattern of the sub-layer 2 may also be obtained by a binder and print technique (BAP), for example as described in WO 2014/017972.


The additives may be wetting agents, anti-static agents such as carbon black, and heat-conducting additives such as aluminium. Other possible additives are magnetic substances.


The sub-layer 2 may also comprise a foil or a sheet. The sub-layer 2 may be a thermoplastic foil, such as a polyurethane (PU) or polyvinyl chloride (PVC) foil. The sub-layer may be a sheet impregnated with a thermosetting resin, such as a resin impregnated paper.


Additives such as blowing agents may be included in the sub-layer. The blowing agents may be physical foaming agents such as EXPANCEL® and/or chemical blowing agents such as AIBN (azoisobutyronitrile) or ADC (azodicarbonamide).


The wear and/or scratch resistant particles may be aluminium oxide particles and/or silica particles.


In one embodiment, the sub-layer 2 consists essentially of the binder and optionally additives, meaning that at least 90% of the sub-layer 2 is the binder and optional additive(s). In one embodiment, the sub-layer 2 is free from any fibres and/or fillers.


The sub-layer 2 may be applied in an amount of 200-600 g/m2, preferably 300-500 g/m2 such as about 400 g/m2. The amount of binder applied for the sub-layer 2 may be 100-300 g/m2, preferably 150-250 g/m2 such as about 200 g/m2. The sub-layer 2 may comprise the binder in an amount of 30-80 wt %, preferably in an amount of 40-60 wt % such as about 50 wt %.


The sub-layer 2 may be pre-pressed prior to applying a mesh structure 3.


In FIG. 1B, a mesh structure 3 has been arranged on the sub-layer 2. The mesh structure 3 comprises several meshes 5 as shown in FIG. 1c in more detail. By meshes 5 are meant openings or holes of the mesh structure 3. The meshes 5 are defined by mesh material 6 of the mesh structure 3 circumscribing the meshes 5. The mesh material 6 has a material width MW. By mesh size MS is meant the distance between mesh material 6. The mesh structure 3 may be formed of a metal material. The mesh structure 3 may be an expanded metal. In another embodiment, the mesh structure 3 may be formed of a plastic material. The mesh structure 3 may be formed of a plastic material, preferably a thermoplastic material, formed as an expanded metal. In another embodiment, the mesh structure 3 may be formed of a perforated foil. The perforated foil may be a perforated metal foil or perforated plastic foil.


In FIG. 1C, the meshes have a quadratic shape. However, the meshes may have any other shape such as rectangular, pentagonal, circular, and elliptical. The meshes may have an aperture dimension long way being different from an aperture dimension short way, i.e., the mesh size MS is different in different directions.


In other embodiments, the mesh structure 3 may be formed of or comprise a textile material. The textile material may be a non-woven or a woven structure. In a woven structure, two distinct sets of threads of mesh material, warp 6a and weft 6b, are interlaced at right angles to form a fabric or cloth as shown in FIG. 1c. The warp runs longitudinally and the weft crosses it. Both warp and weft can be visible in the final product.


The meshes 5 are formed by the spaces between the threads of woven structure.


The mesh structure 3 may comprise any one of the following material: metal, textile such as non-woven or woven, plastic, rubber, fiberglass weave, carbon fibres weave, leather, artificial leather, suede, artificial suede, or a combination thereof. The mesh structure 3 may have an average mesh size, in at least one dimension, exceeding 0.1 mm, more preferably exceeding 0.3 mm. The average area of the meshes may exceed 0.01 mm2, more preferably exceed 1 mm2. The average mesh size of the mesh structure may be 0.1-100 mm. The average area of the meshes may be 0.01-10,000 mm2. The meshes 5 may have a uniform shape. In another embodiment, different meshes 5 may be differently shaped.


The mesh material 6 may have an average mesh width MW exceeding 0.1 mm, preferably exceeding 0.3 mm.


The relation between the average mesh size MS to average mesh width MW is preferably exceeding 1:1 in order to facilitate permeation of the sub-layer 2 through the mesh structure 3.


The mesh structure 3 may be bonded to the sub-layer 2 mechanically when the cured sub-layer 2 grips around at least a part of the mesh material 6. Such bonding takes place for example when the mesh structure 3 comprises metal, and when, for example, a thermosetting binder of the sub-layer 2 cannot penetrate into the mesh structure 3. The mesh material 6 of the mesh structure 3 may also be bonded chemically, for example, when a mesh structure 3 comprises a textile material such as, for example, cotton, that allows a thermosetting binder to penetrate into the fibres during heating and pressing.


The mesh structure 3 may have a substantially uniform vapour permeability in a plane parallel to the first surface of the substrate. Meshes 5 of the mesh structure 3 may have a substantially uniform size. A vapour permeability of the mesh structure 3 may exceed 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm.


As shown in FIG. 1B, pressure and preferably also heat is applied to the mesh structure 3, the sub-layer 2, and/or the substrate 1. Pressure may be applied in a continuous press 30 as shown in FIG. 1B, or in a static press (not shown). After pressing, the mesh structure 3 is attached to the sub-layer 2. Preferably, the sub-layer 2 comprises a thermosetting binder, and the sub-layer 2 is cured by applying heat and pressure. After pressing, the sub-layer 2 is cured and the mesh structure 3 is fixed to the cured sub-layer 2. During pressing, the meshes 5 of the mesh structure 3 allow any condensation reaction products, such as water, to be transported away from the substrate 1. During pressing, material from the sub-layer 2 at least partly fills the meshes 5 of the mesh structure 3. The sub-layer 2, or at least portions of the sub-layer, may permeate, partly or completely, through the meshes 5 of the mesh structure 3. Preferably, at least portions of the mesh structure 3 are still visible after pressing.


A protective layer (not shown) may be arranged on the mesh structure 3 prior or after pressing. The protective layer is preferably transparent. The protective layer may be a coating such as one or several lacquer layers. The coating may be an acrylate or methacrylate coating such as polyurethane coating. The coating may comprise wear and/or scratch resistant particles. The protective layer may be an overlay paper comprising wear resistant particles. The protective layer may be a powder overlay, as described in WO 2011/129755, comprising processed wood fibres, a binder and wear resistant particles applied as mix on the veneer surface. The protective layer may be a thermoplastic foil, such as polyurethane (PU) foil or polyvinyl chloride foil (PVC).


By pressing the mesh structure 3, the sub-layer 2, and/or the substrate 1 together, a building panel 10 or surface element 11 is formed. In embodiment wherein the substrate is formed of, for example, the conveyor, the building panel 10 or surface element 11 being formed of the sub-layer 2 and the mesh structure 3 is removed from the substrate 1.


By controlling the degree of permeation of the sub-layer 2 through the mesh structure 3, and thereby filling the meshes by material from the sub-layer 2, the design of the building panel 10 or surface element 11 can be controlled. The design of the building panel 10 or surface element can be changed by the degree of permeation of the sub-layer 2 through mesh structure 3 and thus being visible at the surface of the building panel 10 or surface element.


For some designs, a large degree of permeation may be desired, and for other designs, less, or varying, permeation may be desired.


Controlling the permeation of the sub-layer 2 can be made in several ways. The design of the building panel or surface element 10 may be controlled by controlling the permeation of the sub-layer 2. The fluid pressure may be controlled and adjusted. The fluid pressure may be varying over the surface of the building panel or surface element 10. The fluid pressure can be increased if a large degree of permeation of the sub-layer 2 is desired. The fluid pressure can be decreased if less permeation of the sub-layer 2 is desired.


The fluid pressure can be controlled in several ways. The fluid pressure can be controlled by controlling the pressure applied to the substrate 2 and/or mesh structure 3. The temperature applied may have influence on the permeation, for example, by changing the viscosity of the sub-layer 2.


The fluid pressure may also be controlled by generating a gas pressure in the sub-layer 2. By generating a gas pressure inside the sub-layer 2, the fluid pressure increases. The gas pressure may be generated by including chemical and/or physical blowing agents in the sub-layer. The chemical and/or physical blowing agents increase the fluid pressure when activated.


The fluid pressure of the sub-layer 2 may also be controlled by adjusting the concentration of binder in the sub-layer 2. By increasing the concentration of the binder of the sub-layer 2, the more material of the sub-layer 2 may permeate through the mesh structure 3. The part of the sub-layer 2 that flows when heat and pressure is applied increases, and thereby a larger part of the sub-layer 2 may permeate through the mesh structure 3. Furthermore, the type of binder may be adjusted. By increasing the amount of a thermosetting binder in the sub-layer 2, the part of the sub-layer 2 being flowable when heat and pressure is applied increases, and thereby the fluid pressure.


The fluid pressure of the sub-layer 2 may also be controlled by adjusting the type of binder in the sub-layer 2. By using different type of binders, the fluid pressure of the sub-layer 2 and thereby the permeation can be altered. A rapidly curing binder forms less permeation of the sub-layer 2 through the mesh structure 3.


The fluid pressure may also be controlled by adjusting the moisture content of the sub-layer. The higher moisture content of the sub-layer, the more steam is formed when applying heat and pressure, thereby increasing the fluid pressure, and consequently, permeation of the sub-layer 2 through the mesh structure 3. Contrary, by decreasing the moisture content of the sub-layer 2 before pressing, for example, by drying the sub-layer 2, the less steam is formed during pressing.


Permeation of the sub-layer 2 through the mesh structure 3 may also be controlled by including fillers in the sub-layer. The fillers reduce permeation of the sub-layer by reducing the flowing of the binder. Some fillers, such as wood particles and other organic fillers, absorb the binder to some extent such that the remaining binder that is free to permeate through the mesh structure 3 is reduced. The fluid pressure is thereby also reduced.


Permeation of the sub-layer 2 through the mesh structure 3 may also be controlled by adjusting the thickness of the sub-layer 2, for example, by adjusting the amount of sub-layer applied. If the sub-layer 2 is applied as a powder, the amount of powder applied can be adjusted in order to achieve the desired permeation of the sub-layer 2 through the mesh structure 3. The thicker sub-layer, i.e. the larger amount of sub-layer applied, the more the sub-layer 2 permeates through the mesh structure 3.


Permeation of the sub-layer 2 through the mesh structure 3 may also be controlled by the size of the meshes 5 of the mesh structure 3. By larger mesh size, the sub-layer 2 permeates easily through the mesh structure 3. Controlling permeation of the sub-layer 2 through the mesh structure 3 may be performed by controlling the mesh size of the mesh structure 3.


By adjusting and controlling these parameters, permeation of the sub-layer 2 through the mesh structure 3 can be controlled such that a desired look of the building panel or surface element is obtained. For example, by controlling the permeation of the sub-layer 2, the degree of encapsulating and/or impregnation of the mesh structure 5 by the sub-layer 2 can be controlled.


The mesh structure 3 may be fixed to the sub-layer 2 by the sub-layer 2 at least partly encapsulating the mesh structure 3. This is shown in more detail in FIG. 2B.


Alternatively, or as a complement, the mesh structure 3 may be fixed to the sub-layer 2 by the material forming the mesh structure 3 having a certain surface roughness. The surface roughness of the material of the mesh structure 3 may exceed Ra 6.3. The sub-layer 2 may grip into unevenness of the mesh structure 3.



FIG. 2A shows an exemplary building panel 10 produced according to the method described with reference to FIGS. 1A-B. The building panel 10 may be a furniture component, a floor panel, a ceiling panel, a wall panel, a door panel, a worktop, skirting boards, mouldings, edging profiles, etc. The substrate 1 on which the sub-layer 2 is applied may be a board, for example, a wood-based board. The wood-based board may be a wood fibre based board such as MDF, HDF, particleboard, or a plywood board. In other embodiments, the substrate 1 may be a Wood Plastic Composite (WPC). The substrate 1 may be a mineral composite board. The substrate 1 may be a fibre cement board. The substrate 1 may be magnesium oxide cement board. The substrate 1 may be a ceramic board. The substrate 1 may be a plastic board such as a thermoplastic board. In another embodiment, the substrate 1 may be a carrier such as sheet of paper or non-woven. The substrate 1 may be a thermoplastic foil, such as a polyurethane (PU) or polyvinyl chloride (PVC) foil.


The building panel 10 may also be provided with a balancing layer 9 arranged on a second surface of the substrate 1, opposite the first surface 4. The balancing layer 9 may be a powder based balancing layer being applied as a powder. The powder based balancing layer may comprise wood particles such as lignocellulosic and/or cellulosic particles and a binder, preferably a thermosetting binder such as an amino resin. The balancing layer may be a resin impregnated paper, preferably impregnated with a thermosetting binder.


In one embodiment, the balancing layer comprises a sub-layer (not shown) of the type above described and a mesh structure (not shown) of the type described above. In this embodiment, a sub-layer of the above described type is applied also on the second surface of the substrate, and the mesh structure of the above described type is arranged on the sub-layer. The mesh structure of the balancing layer increases friction between the building panel and an underlying surface when the building panel is arranged on the surface, for example, a sub-floor when the building panel is used as floor panel.


The sub-layer 2 comprises a binder of above described type. Preferably, the binder is a thermosetting binder, more preferably an amino resin. The thermosetting binder is cured. The mesh structure 3 of the above described type is fixed to the sub-layer 2. In the embodiment shown in FIGS. 2A-B, the mesh structure 3 is an expanded metal. The metal may be stainless steel, aluminium, copper, brass, or combinations thereof. In embodiments, the mesh structure 3 is formed of a plastic, preferably, thermoplastic material formed as an expanded metal. At least portions of the mesh structure 3 are visible in FIG. 2A. The average mesh size of the expanded metal may be 1-100 mm, and the average area of the meshes may be 1-10,000 mm2. The mesh structure 3 may have a vapour permeability of at least 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm. The mesh structure 3 shown in FIGS. 2A-B has a substantially uniform mesh shape. In other embodiments, the mesh structure 3 may have a varying mesh shape.


As shown in more detail in the cross section shown in FIG. 2B, meshes 5 of the mesh structure are at least partly filled with material of sub-layer 2. The sub-layer 2 may have permeated at least partly through the meshes 5 of the mesh structure 3. The material of the sub-layer 2 permeating through the mesh structure 3 may be one or several of the components of the sub-layer 2. For example, the binder of the sub-layer 2 may permeate through the mesh structure. As described above with reference to FIGS. 1A-B, the sub-layer 2 may comprise one component, such as substantially only a binder, or several components, such as fibres, pigments, additives, etc.


As seen in FIG. 2B, at least portions of the mesh structure 3 are at least partly encapsulated by the sub-layer 2. Thereby, the mesh structure 3 is fixed to the sub-layer 2. Preferably, at least portions of the mesh structure 3 are still visible from the top surface of the building panel 10.


In other embodiments, the surface roughness of the material forming the mesh structure 3 provides for the connection between the mesh structure 3 and the sub-layer 2. The surface roughness of the mesh structure 3 may be exceeding Ra 6.3.



FIG. 3 shows an exemplary building panel 10 produced according to the method described with reference to FIGS. 1A-B. The building panel 10 may be a furniture component, a floor panel, a ceiling panel, a wall panel, a door panel, a worktop, skirting boards, mouldings, edging profiles, etc. The substrate 1 on which the sub-layer 2 is applied may be a board, for example, a wood-based board. The wood-based board may be a wood fibre based board such as MDF, HDF, particleboard, or a plywood board. In other embodiments, the substrate 1 may be a Wood Plastic Composite (WPC). The substrate 1 may be a mineral composite board. The substrate 1 may be a fibre cement board. The substrate 1 may be magnesium oxide cement board. The substrate 1 may be a ceramic board. The substrate 1 may be a plastic board such as a thermoplastic board. In another embodiment, the substrate 1 may be a carrier such as sheet of paper or non-woven, or a conveyor. The substrate 1 may be a thermoplastic foil, such as a polyurethane (PU) or polyvinyl chloride (PVC) foil.


The building panel 10 may also be provided with a balancing layer 9 arranged on a second surface of the substrate 1, opposite the first surface 4. The balancing layer 9 may be a powder based balancing layer being applied as a powder. The powder based balancing layer may comprise wood particles such as lignocellulosic and/or cellulosic particles and a binder, preferably a thermosetting binder such as an amino resin. The balancing layer may be a resin impregnated paper, preferably impregnated with a thermosetting binder.


The sub-layer 2 comprises a binder of above described type. Preferably, the binder is a thermosetting binder, more preferably an amino resin. The thermosetting binder is cured. The mesh structure 3 of the above described type is fixed to the sub-layer 2. In the embodiment shown in FIG. 3, the mesh structure 3 is a wire netting. The wire netting may be a metal wire netting. The metal may be stainless steel, aluminium, copper, brass, or combinations thereof. In other embodiments, the wire netting is formed of a plastic material, preferably, thermoplastic material. At least portions of the mesh structure 3 are visible in the top surface of the building panel 10 as shown in FIG. 3. The average mesh size of the wire netting may be 1-100 mm. The mesh structure 3 may have a vapour permeability of at least 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm. The mesh structure 3 shown in FIGS. 2A-B has a substantially uniform mesh shape. In other embodiments, the mesh structure 3 may have a varying mesh shape.


The meshes 5 of the mesh structure 3 are at least partly filled with material from the sub-layer 2. The sub-layer 2 may have permeated at least partly through the meshes 5 of the mesh structure 3. The material of the sub-layer 2 permeating through the mesh structure 3 may be one or several of the components of the sub-layer 2. For example, the binder of the sub-layer 2 may permeate through the mesh structure 3. As described above with reference to FIGS. 1A-B, the sub-layer may comprise one component, such as substantially only a binder, or several components, such as fibres, pigments, additives, etc.


The mesh structure 3 is fixed to the sub-layer 2 by at least portions of the mesh structure are at least partly encapsulated by the sub-layer 2. As an alternative or complement, the surface roughness of the material forming the mesh structure 3 provides for the connection between the mesh structure 3 and the sub-layer 2. The surface roughness of the mesh structure 3 may be exceeding Ra 6.3. Preferably, at least portions of the mesh structure 3 are still visible from the top surface of the building panel 10.


A protective layer (not shown) of the type described above with reference to FIGS. 1A-C may be applied on the mesh structure 3.



FIG. 4 shows an exemplary building panel 10 produced according to the method described with reference to FIGS. 1A-B, wherein the mesh structure 3 comprises a textile. In this embodiment, the textile is a printed fabric. The building panel 10 may be a furniture component, a floor panel, a ceiling panel, a wall panel, a door panel, a worktop, skirting boards, mouldings, edging profiles, etc. The substrate 1 on which the sub-layer 2 is applied may be a board, for example, a wood-based board. The wood-based board may be a wood fibre based board such as MDF, HDF, particleboard, or a plywood board. In other embodiments, the substrate may be a Wood Plastic Composite (WPC). The substrate 1 may be a mineral composite board. The substrate 1 may be a fibre cement board. The substrate 1 may be magnesium oxide cement board. The substrate may be a ceramic board. The substrate 1 may be a plastic board such as a thermoplastic board. The substrate 1 may comprise a thermoplastic foil such as a polyurethane (PU) or polyvinyl chloride (PVC) foil.


The building panel 10 may also be provided with a balancing layer 9 arranged on a second surface of the substrate 1, opposite the first surface 4. The balancing layer 9 may be a powder based balancing layer being applied as a powder. The powder based balancing layer may comprise wood particles such as lignocellulosic and/or cellulosic particles and a binder, preferably a thermosetting binder such as an amino resin. The balancing layer may be a resin impregnated paper, preferably impregnated with a thermosetting binder.


The sub-layer 2 comprises a binder of above described type. The binder is a thermosetting binder, more preferably an amino resin, of the type described above with reference to FIG. 1-c. The thermosetting binder is cured. The mesh structure 3 of the above described type is fixed to the sub-layer. The binder may be a thermosetting binder as described with reference to FIG. 1-c.


In the embodiment shown in FIG. 4, the mesh structure 3 comprises a textile. The textile may be woven or non-woven. The textile may comprise natural or synthetic fibres. The threads of the textile form a mesh structure 3. The average mesh size of the textile may be 0.1-10 mm, preferably 0.5-5 mm. The average area of the meshes of the textile may be 0.01-100 mm2, preferably 0.25-25 mm2. In a non-woven, spaces between the fibres form meshes 5 of a mesh structure 3. Preferably, the textile has a vapour permeability exceeding 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm.


The textile may be printed, for example, with a decorative design. The print may be a digital print, or may be printed by other means, for example, rotogravure. The print may be printed before the textile is applied on the sub-layer 2. The textile may also be printed, preferably with a digital print, when the textile applied on the sub-layer 2 before pressing. By printing on the textile before pressing, when the textile is arranged on the sub-layer 2, the print may also reach the sub-layer 2, such that the sub-layer 2 also is printed and that the sub-layer 2 does not influence the design of textile in a disadvantageous manner after pressing. As an alternative or complement, the textile may be printed after pressing.


The print of the textile is preferably a digital print. The print may be printed by a Piezo print head. The ink may be an aqueous ink. The ink may be pigment-based or dye-based. The digital print may also be of the BAP type (Binder and Print), for example, as described in WO 2014/017972 and/or in WO 2014/109699.


During pressing, material from the sub-layer 2 has permeated through the mesh structure 3 and at least partly filled meshes 5 or the mesh structure. The mesh structure 3 has been fixed to the sub-layer 2. The material of the sub-layer 2 permeating through the mesh structure 3 may be one or several of the components of the sub-layer 2. For example, the binder of the sub-layer 2 may permeate through the mesh structure. As described above with reference to FIGS. 1A-B, the sub-layer 2 may comprise one component, such as substantially only a binder, or several components, such as fibres, pigments, additives, etc.


The sub-layer 2 may at least partly encapsulate the textile. Preferably, the sub-layer 2 becomes or remains transparent after pressing such that the sub-layer 2 does not affect the design of the textile. The sub-layer 2 reinforces the textile. Thereby, a textile surface may be used for surfaces otherwise not suitable for textile material.


A protective layer (not shown) of the type described above with reference to FIGS. 1A-C may be applied on the mesh structure 3.


In one embodiment, thermosetting binders such as melamine formaldehyde binders are used in the sub-layer 2 when the mesh structure 3 comprises a textile material. A particularly suitable mesh structure 3 is a woven material comprising cotton fibres that will be impregnated by liquid melamine formaldehyde resin during the initial step of pressing and heating when the dry melamine formaldehyde resin is converted from dry to liquid state and will be chemically bonded to the sub-layer 2 when the melamine formaldehyde resin in the sub-layer 2 and in the cotton fibres cures during the final pressing and heating step. Preferable press parameters are a temperature of 150° C.-180° C. and a pressure of 20-60 bars. When the building panel 10 is to be used as a floor panel, it is important that the cotton fibres are sufficiently filled with resins in order to prevent water and dirt to penetrate into the fibres from the surface and especially from the edges where the fibres are cut when a floor panel is produced. It may be that the resins of sub-layer 2 that penetrates into the meshes are not sufficient to provide a sufficient resin content in the cotton fibres that is needed to obtain a water resistant surface. Additional resins may be applied on the textile material prior to pressing, for example, melamine formaldehyde powder. As an alternative, the mesh structure 3 may be impregnated with a thermosetting binder such as a liquid melamine formaldehyde resin and dried prior to pressing.


A very realistic surface structure may be formed if a press matrix of a similar mesh structure is used, especially if the mesh structure 3 comprises a textile material. It is preferred to use a foil or a release paper to provide a basic gloss level or microstructure. According to this embodiment, the upper part of the building panel 10 may prior to pressing comprise a sub-layer, a mesh structure 3 of a first textile material, an aluminium foil and a second textile material. The aluminium foil and the second textile material are removed after pressing. It is also possible to use a flexible press cushion as an alternative to the second textile material such that the structure of the first textile material is partly visible after pressing. Similar technologies may also be used to create an embossed structure on building panels comprising other mesh materials of the type described in this application.



FIG. 5 shows an exemplary surface element 11. The surface element 11 is produced as described above with reference to FIGS. 1A-B, wherein the substrate is formed by the conveyor and wherein the sub-layer 2 has been applied directly on a conveyor. A mesh structure 3 of any type described above with reference to FIGS. 1-4 is arranged on the sub-layer 2. In the embodiment shown in FIG. 5, the mesh structure 3 comprises a wire netting of the type described above with reference to FIG. 3. After pressing, the surface element 11 has been removed from the conveyor.


The meshes 5 of the mesh structure 3 are at least partly filled with material from the sub-layer 2. The sub-layer 2 may have permeated at least partly through the meshes 5 of the mesh structure 3. The material of the sub-layer 2 permeating through the mesh structure 3 may be one or several of the components of the sub-layer 2. For example, the binder of the sub-layer 2 may permeate through the mesh structure. As described above with reference to FIGS. 1A-B, the sub-layer 2 may comprise one component, such as substantially only a binder, or several components, such as fibres, pigments, additives, etc.


The mesh structure 3 is fixed to the sub-layer 2 by at least portions of the mesh structure 3 being at least partly encapsulated by the sub-layer 2. As an alternative or complement, the surface roughness of the material forming the mesh structure 3 provides for the connection between the mesh structure 3 and the sub-layer 2. The surface roughness of the mesh structure 3 may be exceeding Ra 6.3. Preferably, at least portions of the mesh structure 3 are still visible from the top surface of the building panel 10.


A protective layer (not shown) of the type described above with reference to FIGS. 1A-C may be applied on the mesh structure 3.


The mesh structure 3 is fixed to the sub-layer 2 such that a surface element 11 is formed. The surface element 11 may be adapted to form part of a building panel 10. The surface layer may be attached to a substrate of the above described type in a subsequent step. The surface element 11 may be used as it is without being adhered to a substrate.



FIG. 6 shows an exemplary surface element 11. The surface element 11 is produced as described above with reference to FIGS. 1A-B, wherein the substrate is formed by the conveyor and wherein the sub-layer 2 has been applied directly on a conveyor during production when manufactured as described above with reference to FIGS. 1A-B. After pressing, the surface element 11 is removed from the conveyor.


In the embodiment shown in FIG. 6, the mesh structure 3 comprises a textile of the type described above with reference to FIG. 4. The textile may be woven or non-woven. The textile may comprise natural or synthetic fibres. The threads of the textile form a mesh structure 3. The mesh size of the textile may be 0.1-10 mm, preferably 0.5-5 mm. In a non-woven, spaces between the fibres form meshes 5 of a mesh structure 3. Preferably, the textile has a vapour permeability exceeding 100 SI Perm, preferably exceeds 200 SI Perm, and more preferably exceeds 500 SI Perm.


The textile may be printed, for example, with a decorative design. The print may be a digital print, or may be printed by other means, for example, rotogravure.


The print of the textile is preferably a digital print. The print may be printed by a Piezo print head. The ink may be an aqueous ink. The ink may be pigment-based or dye-based. The digital print may also be of the BAP type (Binder and Print), for example, as described in WO 2014/017972 and/or in WO 2014/109699.


The sub-layer 2 may be of any type as described above with reference to FIGS. 1A-C and FIG. 4. In one embodiment, the sub-layer 2 may comprise a thermoplastic binder. The binder of the sub-layer 2 may comprise polyurethane (PU) or polyvinyl chloride (PVC). The binder may be applied in powder form. The sub-layer 2 may comprise a thermoplastic foil, such as polyurethane (PU) foil or polyvinyl chloride foil (PVC).


A protective layer (not shown) may be provided on the mesh structure 3. The protective layer may be arranged on the mesh structure 3 prior to pressing. The protective layer of the type described above with reference to FIGS. 1A-C may be applied on the mesh structure 3. In one embodiment, the protective layer comprises a thermoplastic foil, such as polyurethane (PU) foil or polyvinyl chloride foil (PVC).


During pressing, the sub-layer 2 has permeated through the mesh structure 3 and at least partly filled meshes 5 or the mesh structure. The mesh structure 3 has been fixed to the sub-layer 2. The material of the sub-layer 2 permeating through the mesh structure 3 may be one or several of the components of the sub-layer 2. For example, the binder of the sub-layer 2 may permeate through the mesh structure. As described above with reference to FIGS. 1A-B, the sub-layer 2 may comprise one component, such as substantially only a binder, or several components, such as fibres, pigments, additives, etc.


The sub-layer 2 may at least partly encapsulate the textile. Preferably, the sub-layer 2 becomes or remains transparent after pressing such that the sub-layer 2 does not affect the design of the textile. The sub-layer 2 reinforces the textile. Thereby, a textile surface may be used for surfaces otherwise not suitable for textile material.


The surface element 11 shown in FIGS. 5 and 6 may be used as it is, or may be adhered to a substrate in a subsequent step, for example, for forming a building panel of the above described type.


It is also contemplated that a protective layer (not shown) may be applied on the mesh structure 3 in all embodiments. The protective layer is preferably transparent. The protective layer may be a coating such as one or several lacquer layers. The coating may be an acrylate or methacrylate coating such as polyurethane coating. The coating may comprise wear and/or scratch resistant particles. The protective layer may be an overlay paper comprising wear resistant particles. The protective layer may be a powder overlay, as described in WO 2011/129755, comprising processed wood fibres, a binder and wear resistant particles applied as mix on the mesh structure. If the protective layer comprises or is an overlay paper or a powder overlay, the protective layer is preferably applied before the step of applying heat and pressure. Thereby, the protective layer is cured and attached to the mesh structure 5 and the sub-layer 2 in the same step as attaching the mesh structure 5 to the sub-layer and to the substrate.


A thermoplastic protective layer may also be applied on the mesh structure 3 prior or after pressing. The protective layer may be thermoplastic foil such as PU or PVC foil.


It is further contemplated that the sub-layer of the above described type may in some embodiments be applied on the mesh structure when forming the building panel or surface element as a complement or alternative to applying the sub-layer on the substrate as described above with reference to FIGS. 1A-B.


All embodiments of the building panel 10 may be provided with a mechanical locking system for joining with an adjacent building panel such as an adjacent floor or wall panel. If the building panel 10 is a furniture component for a drawer, shelf or other furniture, the furniture may be provided with a mechanical locking system for joining with another part of the drawer, shelf or furniture component.



FIG. 7 shows an embodiment of a building panel 10 such as a floor panel having such a mechanical locking system. The mechanical locking system may comprise a tongue 12 at a first edge and a tongue groove 13 at a second edge opposite the first edge for vertical locking. The mechanical locking system further comprises a locking strip 14 provided with a locking element 16 at the second edge adapted to cooperate with a locking grove 15 at the first edge for horizontal locking. A mesh structure 3 of the above described type is applied on a sub-layer 2 of the above described type. The building panel further comprises a core 17. It is preferable that the sub-layer 2 and the mesh structure 3 have a rather similar moisture movement when relative humidity (RH) varies from 20-80%. Some mesh materials such as metal are very moisture stable while wood based materials such as HDF have a high moisture movement and this may cause warping and/or delamination. Such problems may be eliminated or at least reduced with a core material that is adapted to a specific mesh material. A core with low swelling and low moisture movement may comprise an upper layer 17a and lower layer 17c each comprising thermoplastic materials and wood fibres. The upper and lower layers 17a, 17c may be produced by a dry blend of such materials. This makes it possible to form a first surface 4 that comprises open wood fibres allowing lamination to a sub-layer 2 comprising thermosetting resins. An intermediate layer 17b of the core 17 may comprise thermoplastic material mixed with mineral particles such as, for example, limestone. The composition, thickness and position of the core layers 17a, 17b, 17c may be adapted to meet the material properties of the sub-layer 2 and the mesh structure in order to form a stable and flat building panel 10. The intermediate layer 17b comprising thermoplastic particles and mineral filler may be softer and more flexible than the upper layer 17a. The intermediate layer 17b may be located such that it forms an upper part of the tongue 12 and the tongue groove 13. Such joint geometry may be used to seal against water penetration in all embodiments of the invention.


The joint geometry may also be used in other application with any type of surface layer, i.e. without a mesh structure, to seal against water penetration. A very watertight joint may be formed especially if the tongue and the tongue groove are connected with a vertical pretension that causes a small compression of the upper part of the tongue and the tongue groove.


The mesh structure may also be adapted to the moisture movement of the substrate by choosing a mesh structure having a flexibility, which allows the mesh structure to expand and/or be compressed together with the movements of the substrate.


It is contemplated that there are numerous modifications of the embodiments described herein, which are still within the scope of the invention as defined by the appended claims.


EXAMPLES
Example 1

625 g/m2 of a powder mixture, comprising 30.41 wt % wood fibres, 8.8 wt % aluminium oxide (Alodur ZWSK 180-ST), 52.5 wt % melamine formaldehyde resin (Kauramin 773) and 8.29 wt % of pigments was scattered on a 10.0 mm HDF board for forming a sub-layer. A textile fabric was positioned on the sub-layer prior to pressing the assembly in a short cycle press for 35 seconds at 40 kg/cm2 with a press plate temperature of 140° C. During pressing, the sub-layer has permeated through the fabric. The resulting product was a building panel with a surface layer of textile being impregnated by the sub-layer during pressing.


Example 2

600 g/m2 of a powder mixture, comprising 33 wt % wood fibres, 10 wt % aluminium oxide (Alodur ZWSK 180-ST), 47 wt % melamine formaldehyde resin (Kauramin 773) and 10 wt % BaSo4 (BB 30 EX) was scattered on a 10.0 mm HDF board for forming a sub-layer. A denim fabric was applied on the sub-layer. An overlay comprising a resin impregnated paper (Liquilay, AC3-N) was applied on the denim fabric. Two backing papers of 140 g/m2 each were applied to the rear side of the HDF board. The assembly was pressed in a short cycle press during 50 seconds at 40 bar with a press plate temperature of 160° C. During the pressing, the sub-layer has permeated through the fabric. The resulting product was a building panel with a surface layer of a denim fabric being impregnated by the sub-layer during pressing.


Example 3

625 g/m2 of a powder mixture, comprising 30.41 wt % wood fibres, 8.8 wt % aluminium oxide (Alodur ZWSK 180-ST), 52.5 wt % melamine formaldehyde resin (Kauramin 773) and 8.29 wt % of pigments was scattered on a 10.0 mm HDF board for forming a sub-layer. An expanded metal sheet of aluminium, having an aperture dimension long way of 5.9 mm, an aperture dimension short way of 3.4 mm and a width of 0.8 mm was positioned on the sub-layer prior to pressing the assembly in a short cycle press for 35 seconds at 40 kg/cm2 with a press plate temperature of 140° C. During pressing, the sub-layer has at least partly filled the meshes of the expanded metal sheet. The resulting product was a building panel with a surface layer of expanded metal being at least partly encapsulated by the sub-layer after pressing.


Example 4

625 g/m2 of a powder mixture, comprising 30.41 wt % wood fibres, 8.8 wt % aluminium oxide (Alodur ZWSK 180-ST), 52.5 wt % melamine formaldehyde resin (Kauramin 773) and 8.29 wt % of pigments was scattered on a 10.0 mm HDF board for forming a sub-layer. A perforated aluminium foil was applied on the sub-layer prior to pressing the assembly in a short cycle press for 35 seconds at 40 kg/cm2 with a press plate temperature of 140° C. During pressing, the sub-layer has permeated through the openings of the perforated foil. The resulting product was a building panel with a surface layer of a perforated aluminium foil being at least partly encapsulated by the sub-layer after pressing.


Example 5

A digitally printed textile material was arranged on a thermoplastic polyurethane foil having a thickness of 0.05 mm for forming a sub-layer. A protective layer in form of a thermoplastic polyurethane foil having a thickness of 0.05 m was arranged on the textile material. The sub-layer, the textile material, and the protective layer were pressed together such that material from the sub-layer permeates into the meshes of the textile material. A decorative surface element is formed, which may be used as it is, or may be adhered to a substrate in a subsequent step.


EMBODIMENTS

1. A method of forming a building panel (10) or a surface element (11), comprising

    • providing a substrate (1),
    • applying a sub-layer (2) on a first surface (4) of the substrate (1),
    • applying a mesh structure (3) on the sub-layer (2), wherein a vapour permeability of the mesh structure (3) exceeds 100 SI Perm, and
    • applying heat and pressure to said mesh structure (3) such that the sub-layer (2) at least partially fills meshes (5) of the said mesh structure (3).


2. The method according to claim 1, wherein the mesh structure (3) has a substantially uniform vapour permeability in a plane parallel to the first surface (4) of the substrate (1).


3. The method according to embodiment 1 or 2, wherein the vapour permeability of the mesh structure (3) exceeds 200 SI Perm, preferably exceeds 500 SI Perm.


4. The method according to any one of embodiments 1-3, wherein applying heat and pressure comprises curing the sub-layer (2) and thereby fixing the mesh structure (3) to the sub-layer (2).


5. The method according to any one of embodiments 1-4, wherein the mesh structure (3) is at least partially visible after heat and pressure have been applied.


6. The method according to any one of embodiments 1-5, wherein the sub-layer (2) at least partially encapsulates the mesh structure (3).


7. The method according to any one of embodiments 1-6, wherein a material forming the mesh structure (3) facing the sub-layer (2) has a surface roughness exceeding Ra 6.3.


8. The method according to any one of embodiments 1-7, wherein the sub-layer (2) comprises a thermosetting binder.


9. The method according to any one of embodiments 1-8, wherein the mesh structure (3) is formed of a metal material.


10. The method according to any one of embodiments 1-8, wherein the mesh structure (3) is formed of a plastic material.


11. The method according to any one of embodiments 1-10, wherein the mesh structure (3) is formed of a perforated foil.


12. The method according to any one of embodiments 1-8, wherein the mesh structure (3) is formed of a textile material.


13. The method according to embodiment 12, wherein the textile material comprises weaved cotton fibres.


14. The method according to embodiment 12 or 13, wherein a mesh size (MS) and mesh width (MW) of the textile material exceeds 0.1 mm.


15. The method according to any one of embodiments 12-14, wherein the textile material is bonded to the sub-layer (2) by a cured thermosetting binder, preferably melamine formaldehyde resin, when applying heat and pressure.


16. The method according to any one of embodiments 12-15, wherein the textile material is chemically impregnated by the sub-layer (2) by a cured thermosetting binder, preferably melamine formaldehyde resin, when applying heat and pressure.


17. The method according to any one of embodiments 12-16, wherein a melamine formaldehyde resin powder is applied on the textile material prior to applying heat and pressure.


18. The method according to any one of embodiments 12-17, wherein the textile material is impregnated with a thermosetting binder, preferably melamine formaldehyde resin, prior to applying heat and pressure.


19. The method according to any one of embodiments 1-18, wherein the substrate (1) comprises a wood-based board.


20. The method according to any one embodiments 1-19, wherein a temperature of 150° C.-180° C. and a pressure of 20-60 bar is applied on the mesh structure (3) when applying heat and pressure.


21. A building panel (10), comprising

    • a substrate (1),
    • a sub-layer (2) arranged on a first surface (4) of the substrate (1), and
    • a mesh structure (3) arranged on the sub-layer (2), wherein meshes (5) of the mesh structure (3) are at least partly filled with material from the sub-layer (2),
    • wherein a vapour permeability of the mesh structure (3) exceeds 100 SI Perm.


22. The building panel according to embodiment 21, wherein the mesh structure (3) has a substantially uniform vapour permeability in a plane parallel to the first surface (4) of the substrate (1).


23. The building panel according to embodiment 21 or 22, wherein a vapour permeability of the mesh structure (3) 200 SI Perm, preferably exceeds 500 SI Perm.


24. The building panel according to any one of embodiments 21-23, wherein the mesh structure (3) is at least partially visible.


25. The building panel according to any one of embodiments 21-24, wherein the sub-layer (2) at least partially encapsulates the mesh structure (3).


26. The building panel according to any one of embodiments 21-25, wherein a material forming the mesh structure (3) facing the sub-layer (2) has a surface roughness exceeding Ra 6.3.


27. The building panel according to any one of embodiments 21-26, wherein the sub-layer (2) comprises a thermosetting binder.


28. The building panel according to any one of embodiments 21-27, wherein the mesh structure (3) is formed of a metal material.


29. The building panel according to any one of embodiments 21-27, wherein the mesh structure (3) is formed of a plastic material.


30. The building panel according to any one of embodiments 21-29, wherein the mesh structure (3) is formed of a perforated foil.


31. The building panel according to any one of embodiments 21-27, wherein the mesh structure (3) is formed of a textile material.


32. The building panel according to any one of embodiments 21-31, wherein the substrate (1) comprises a wood-based board.


33. The building panel according to any one of embodiments 21-32, wherein the sub-layer (2) comprises wood fibres and thermosetting resins, and wherein the substrate (1) comprises a wood-based board comprising several layers (17a, 17b, 17c), wherein at least a first layer (17a, 17c) comprises thermoplastic material mixed with wood fibres and wherein at least a second layer (17b) comprises thermoplastic material mixed with mineral particles.


34. The building panel according to embodiment 33, comprising a locking system comprising a tongue (12) at a first edge and a tongue groove (13) at a second edge opposite the first edge, wherein an upper part of the tongue (12) and an upper part of the tongue groove (13) comprise the mineral particles.


35. A surface element (11), comprising

    • a sub-layer (2), and
    • a mesh structure (3) arranged on the sub-layer (2), wherein meshes (5) of the mesh structure (3) are at least partly filled with material from the sub-layer (2),
    • wherein a vapour permeability of the mesh structure (3) exceeds 100 SI Perm.


36. The surface element according to embodiment 35, wherein the mesh structure (3) is formed of a textile material.


37. The surface element according to embodiment 35-36, further comprising a protective layer arranged on the mesh structure (3).


38. The surface element according to any one of embodiment 35-37, wherein the sub-layer (2) comprises a thermoplastic foil.


39. The surface layer according to embodiment 37 or 38, wherein the protective layer comprises a thermoplastic foil.

Claims
  • 1. A method of forming a building panel or a surface element, comprising providing a substrate,applying a sub-layer on a first surface of the substrate,then applying a mesh structure on the sub-layer, which has been applied on the first surface of the substrate, wherein a vapour permeability of the mesh structure exceeds 100 SI Perm, andapplying heat and pressure to said mesh structure with a pressing process, wherein the pressing process comprises a press plate that presses the mesh structure, sublayer and substrate together such that portions of the sub-layer permeate through meshes of the said mesh structure.
  • 2. The method according to claim 1, wherein the mesh structure has a substantially uniform vapour permeability in a plane parallel to the first surface of the substrate.
  • 3. The method according to claim 1, wherein the vapour permeability of the mesh structure exceeds 200 SI Perm.
  • 4. The method according to claim 1, wherein applying heat and pressure comprises curing the sub-layer and thereby fixing the mesh structure to the sub-layer.
  • 5. The method according to claim 1, wherein the mesh structure is at least partially visible after heat and pressure have been applied.
  • 6. The method according to claim 1, wherein the sub-layer at least partially encapsulates the mesh structure.
  • 7. The method according to claim 1, wherein a material forming the mesh structure facing the sub-layer has a surface roughness exceeding Ra 6.3.
  • 8. The method according to claim 1, wherein the sub-layer comprises a thermosetting binder.
  • 9. The method according to claim 1, wherein the mesh structure is formed of a metal material.
  • 10. The method according to claim 1, wherein the mesh structure is formed of a plastic material.
  • 11. The method according to claim 1, wherein the mesh structure is formed of a perforated foil.
  • 12. The method according to claim 1, wherein the mesh structure is formed of a textile material.
  • 13. The method according to claim 12, wherein the textile material comprises weaved cotton fibres.
  • 14. The method according to claim 12, wherein a mesh size and mesh width of the textile material exceeds 0.1 mm.
  • 15. The method according to claim 12, wherein the textile material is bonded to the sub-layer by a cured thermosetting binder when applying heat and pressure.
  • 16. The method according to claim 12, wherein the textile material is chemically impregnated by the sub-layer by a cured thermosetting binder when applying heat and pressure.
  • 17. The method according to claim 12, wherein a melamine formaldehyde resin powder is applied on the textile material prior to applying heat and pressure.
  • 18. The method according to claim 12, wherein the textile material is impregnated with a thermosetting binder prior to applying heat and pressure.
  • 19. The method according to claim 1, wherein the substrate comprises a wood-based board.
  • 20. The method according to claim 1, wherein a temperature of 150° C.-180° C. and a pressure of 20-60 bar is applied on the mesh structure when applying heat and pressure.
  • 21. The method according to claim 1, wherein the sublayer is applied in liquid form.
  • 22. A method of forming a building panel or a surface element, comprising providing a substrate,applying a sub-layer on a first surface of the substrate,then applying a mesh structure on the sub-layer, which has been applied on the first surface of the substrate, wherein a vapour permeability of the mesh structure exceeds 100 SI Perm, andapplying heat and pressure to said mesh structure with a pressing process, wherein the pressing process comprises a press plate that presses the mesh structure, sublayer and substrate together such that portions of the sub-layer permeate completely through meshes of the said mesh structure.
  • 23. The method according to claim 1, wherein the mesh structure is bonded to the sub-layer by a cured thermosetting binder when applying heat and pressure.
  • 24. The method according to claim 22, wherein the mesh structure is bonded to the sub-layer by a cured thermosetting binder when applying heat and pressure.
  • 25. The method of claim 1, wherein the press plate is at a temperature of 140° C. to 160° C.
  • 26. The method of claim 22, wherein the press plate is at a temperature of 140° C. to 160° C.
Priority Claims (1)
Number Date Country Kind
1550827-8 Jun 2015 SE national
US Referenced Citations (356)
Number Name Date Kind
2018712 Elmendorf Oct 1935 A
2419614 Welch Apr 1947 A
2587064 Rapson Feb 1952 A
2630395 McCullough Mar 1953 A
2634534 Brown Apr 1953 A
2695857 Lewis et al. Nov 1954 A
2720478 Hogg Oct 1955 A
2831793 Elmendorf Apr 1958 A
2831794 Elmendorf Apr 1958 A
2932596 Rayner Apr 1960 A
2962081 Dobry et al. Nov 1960 A
2992152 Chapman Jul 1961 A
3032820 Johnson May 1962 A
3135643 Michl Jun 1964 A
3286006 Annand Nov 1966 A
3308013 Bryant Mar 1967 A
3325302 Hosfeld Jun 1967 A
3342621 Point et al. Sep 1967 A
3345234 Jecker et al. Oct 1967 A
3392082 Lloyd Jul 1968 A
3426730 Lawson et al. Feb 1969 A
3463653 Letter Aug 1969 A
3486484 Bullough Dec 1969 A
3533725 Bridgeford Oct 1970 A
3540978 Ames Nov 1970 A
3565665 Stranch et al. Feb 1971 A
3578522 Rauch May 1971 A
3615279 Ward, Jr. Oct 1971 A
3673020 De Jaeger Jun 1972 A
3729368 Ingham Apr 1973 A
3844863 Forsythe Oct 1974 A
3846219 Kunz Nov 1974 A
3880687 Elmendorf et al. Apr 1975 A
3895984 Cone et al. Jul 1975 A
3897185 Beyer Jul 1975 A
3897588 Nohtomi Jul 1975 A
3914359 Bevan Oct 1975 A
3950599 Board, Jr. Apr 1976 A
3956542 Roberti May 1976 A
3961108 Rosner et al. Jun 1976 A
4052739 Wada et al. Oct 1977 A
4093766 Scher et al. Jun 1978 A
4115178 Cone et al. Sep 1978 A
4126725 Shiflet Nov 1978 A
4131705 Kubinsky Dec 1978 A
4263373 McCaskey, Jr. et al. Apr 1981 A
4277527 Duhl Jul 1981 A
4311621 Nishizawa et al. Jan 1982 A
4313857 Blount Feb 1982 A
4337290 Kelly et al. Jun 1982 A
4361612 Shaner Nov 1982 A
4420351 Lussi Dec 1983 A
4420525 Parks Dec 1983 A
4430375 Scher et al. Feb 1984 A
4430380 Honel Feb 1984 A
4474920 Kyminas et al. Oct 1984 A
4743484 Robbins May 1988 A
4863777 Callaway et al. Sep 1989 A
4872825 Ross Oct 1989 A
4890656 Ohsumi et al. Jan 1990 A
4911969 Ogata et al. Mar 1990 A
4942084 Prince Jul 1990 A
5034272 Lindgren et al. Jul 1991 A
5059472 LeBell et al. Oct 1991 A
5085930 Widmann Feb 1992 A
5147486 Hoffman Sep 1992 A
5206066 Horacek Apr 1993 A
5246765 Lussi et al. Sep 1993 A
5258216 Von Bonin et al. Nov 1993 A
5292576 Sanders Mar 1994 A
5314554 Owens May 1994 A
5354259 Scholz Oct 1994 A
5405705 Fujimoto Apr 1995 A
5422170 Iwata et al. Jun 1995 A
5447752 Cobb Sep 1995 A
5466511 O'Dell et al. Nov 1995 A
5543193 Tesch Aug 1996 A
5569424 Amour Oct 1996 A
5601930 Mehta et al. Feb 1997 A
5604025 Tesch Feb 1997 A
5609966 Perrin et al. Mar 1997 A
5755068 Ormiston May 1998 A
5766522 Daly Jun 1998 A
5827788 Miyakoshi Oct 1998 A
5855832 Clausi Jan 1999 A
5891564 Schultz et al. Apr 1999 A
5925211 Rakauskas Jul 1999 A
5925296 Leese Jul 1999 A
5942072 McKinnon Aug 1999 A
5976689 Witt et al. Nov 1999 A
5985397 Witt et al. Nov 1999 A
6036137 Myren Mar 2000 A
6089297 Shibagaki et al. Jul 2000 A
6103377 Clausi Aug 2000 A
6238750 Correll et al. May 2001 B1
6291625 Hosgood Sep 2001 B1
6468645 Clausi Oct 2002 B1
6481476 Okamoto Nov 2002 B1
6521326 Fischer et al. Feb 2003 B1
6528437 Hepfinger et al. Mar 2003 B1
6537610 Springer et al. Mar 2003 B1
6620349 Lopez Sep 2003 B1
6667108 Ellstrom Dec 2003 B2
6769217 Nelson Aug 2004 B2
6773799 Persson et al. Aug 2004 B1
6803110 Drees et al. Oct 2004 B2
6926954 Shuren et al. Aug 2005 B2
6991830 Hansson et al. Jan 2006 B1
7022756 Singer Apr 2006 B2
7485693 Matsuda et al. Feb 2009 B2
7568322 Pervan Aug 2009 B2
7678425 Oldorff Mar 2010 B2
7811489 Pervan Oct 2010 B2
7918062 Chen Apr 2011 B2
8021741 Chen Sep 2011 B2
8206534 McDuff et al. Jun 2012 B2
8245477 Pervan Aug 2012 B2
8302367 Schulte Nov 2012 B2
8349234 Ziegler et al. Jan 2013 B2
8349235 Pervan et al. Jan 2013 B2
8407963 Schulte Apr 2013 B2
8419877 Pervan et al. Apr 2013 B2
8431054 Pervan et al. Apr 2013 B2
8480841 Pervan et al. Jul 2013 B2
8481111 Ziegler et al. Jul 2013 B2
8499520 Schulte Aug 2013 B2
8617439 Pervan et al. Dec 2013 B2
8635829 Schulte Jan 2014 B2
8650738 Schulte Feb 2014 B2
8663785 Ziegler et al. Mar 2014 B2
8728564 Ziegler et al. May 2014 B2
8752352 Schulte Jun 2014 B2
8784587 Lindgren et al. Jul 2014 B2
8920874 Ziegler et al. Dec 2014 B2
8920876 Vetter et al. Dec 2014 B2
8993049 Pervan Mar 2015 B2
9085905 Persson et al. Jul 2015 B2
9109366 Schulte Aug 2015 B2
9181698 Pervan et al. Nov 2015 B2
9255405 Pervan et al. Feb 2016 B2
9296191 Pervan et al. Mar 2016 B2
9352499 Ziegler et al. May 2016 B2
9403286 Vetter et al. Aug 2016 B2
9410319 Ziegler et al. Aug 2016 B2
9556622 Pervan et al. Jan 2017 B2
9783996 Pervan et al. Oct 2017 B2
10017950 Pervan Jul 2018 B2
10100535 Pervan et al. Oct 2018 B2
10214913 Persson et al. Feb 2019 B2
10286633 Lundblad et al. May 2019 B2
10315219 Jacobsson Jun 2019 B2
10344379 Pervan et al. Jul 2019 B2
10364578 Pervan Jul 2019 B2
10392812 Pervan Aug 2019 B2
10442152 Schulte Oct 2019 B2
10442164 Schulte Oct 2019 B2
10493729 Pervan et al. Dec 2019 B2
10513094 Persson et al. Dec 2019 B2
10800186 Pervan et al. Oct 2020 B2
10828881 Bergelin et al. Nov 2020 B2
10857765 Schulte Dec 2020 B2
10899166 Pervan et al. Jan 2021 B2
10913176 Lindgren et al. Feb 2021 B2
10926509 Schulte Feb 2021 B2
10981362 Ziegler et al. Apr 2021 B2
10988941 Ziegler et al. Apr 2021 B2
11040371 Jacobsson Jun 2021 B2
11046063 Persson et al. Jun 2021 B2
11072156 Schulte Jul 2021 B2
11090972 Persson et al. Aug 2021 B2
11135814 Pervan et al. Oct 2021 B2
11167533 Ziegler et al. Nov 2021 B2
11235565 Pervan et al. Feb 2022 B2
20010006704 Chen et al. Jul 2001 A1
20010009309 Taguchi et al. Jul 2001 A1
20020031620 Yuzawa et al. Mar 2002 A1
20020054994 Dupre et al. May 2002 A1
20020100231 Miller Aug 2002 A1
20020155297 Schuren Oct 2002 A1
20030008130 Kaneko Jan 2003 A1
20030056873 Nakos et al. Mar 2003 A1
20030059639 Worsley Mar 2003 A1
20030102094 Tirri et al. Jun 2003 A1
20030108760 Haas et al. Jun 2003 A1
20030208980 Miller et al. Nov 2003 A1
20040035078 Pervan Feb 2004 A1
20040088946 Liang et al. May 2004 A1
20040123542 Grafenauer Jul 2004 A1
20040137255 Martinez et al. Jul 2004 A1
20040191547 Oldorff Sep 2004 A1
20040202857 Singer Oct 2004 A1
20040206036 Pervan Oct 2004 A1
20040237436 Zuber et al. Dec 2004 A1
20040250911 Vogel Dec 2004 A1
20040255541 Thiers Dec 2004 A1
20050003099 Quist Jan 2005 A1
20050016107 Rosenthal et al. Jan 2005 A1
20050079780 Rowe et al. Apr 2005 A1
20050136234 Hak et al. Jun 2005 A1
20050153150 Wellwood et al. Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050193677 Vogel Sep 2005 A1
20050208255 Pervan Sep 2005 A1
20050227040 Toupalik Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20060008630 Thiers et al. Jan 2006 A1
20060024465 Briere Feb 2006 A1
20060032175 Chen et al. Feb 2006 A1
20060048474 Pervan et al. Mar 2006 A1
20060070321 Au Apr 2006 A1
20060070325 Magnusson Apr 2006 A1
20060145384 Singer Jul 2006 A1
20060154015 Miller et al. Jul 2006 A1
20060156672 Meersseman et al. Jul 2006 A1
20060172118 Han et al. Aug 2006 A1
20060182938 Oldorff Aug 2006 A1
20060183853 Sczepan Aug 2006 A1
20070055012 Caldwell Mar 2007 A1
20070066176 Wenstrup et al. Mar 2007 A1
20070102108 Zheng May 2007 A1
20070125275 Bui Jun 2007 A1
20070148339 Wescott Jun 2007 A1
20070166516 Kim et al. Jul 2007 A1
20070184244 Doehring Aug 2007 A1
20070207296 Eisermann Sep 2007 A1
20070218260 Miclo et al. Sep 2007 A1
20070224438 Van Benthem et al. Sep 2007 A1
20070256804 Garcis Espino et al. Nov 2007 A1
20080000179 Pervan et al. Jan 2008 A1
20080000190 Håkansson Jan 2008 A1
20080000417 Pervan et al. Jan 2008 A1
20080032120 Braun Feb 2008 A1
20080090032 Perrin et al. Apr 2008 A1
20080093013 Muller Apr 2008 A1
20080152876 Magnusson Jun 2008 A1
20080176039 Chen et al. Jul 2008 A1
20080263985 Hasch et al. Oct 2008 A1
20090056257 Mollinger et al. Mar 2009 A1
20090124704 Jenkins May 2009 A1
20090135356 Ando May 2009 A1
20090145066 Pervan Jun 2009 A1
20090155612 Pervan et al. Jun 2009 A1
20090165946 Suzuki Jul 2009 A1
20090208646 Kreuder et al. Aug 2009 A1
20090294037 Oldorff Dec 2009 A1
20090311433 Wittmann Dec 2009 A1
20100092731 Pervan et al. Apr 2010 A1
20100136303 Kreuder Jun 2010 A1
20100196678 Vermeulen Aug 2010 A1
20100223881 Kalwa Sep 2010 A1
20100239820 Buhlmann Sep 2010 A1
20100291397 Pervan et al. Nov 2010 A1
20100300030 Pervan et al. Dec 2010 A1
20100304089 Magnusson Dec 2010 A1
20100307675 Buhlmann Dec 2010 A1
20100307677 Buhlmann Dec 2010 A1
20100311854 Thiers et al. Dec 2010 A1
20100314368 Groeke Dec 2010 A1
20100319282 Ruland Dec 2010 A1
20100323187 Kalwa Dec 2010 A1
20100330376 Trksak Dec 2010 A1
20110175251 Ziegler et al. Jul 2011 A1
20110177319 Ziegler et al. Jul 2011 A1
20110177354 Ziegler et al. Jul 2011 A1
20110189448 Lindgren et al. Aug 2011 A1
20110247748 Pervan et al. Oct 2011 A1
20110250404 Pervan et al. Oct 2011 A1
20110262720 Riebel et al. Oct 2011 A1
20110274872 Yu Nov 2011 A1
20110283642 Meirlaen et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20110287211 Bailey et al. Nov 2011 A1
20110293823 Bruderer et al. Dec 2011 A1
20110293906 Jacobsson Dec 2011 A1
20120048487 Brewster Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120263878 Ziegler et al. Oct 2012 A1
20120263965 Persson et al. Oct 2012 A1
20120264853 Ziegler et al. Oct 2012 A1
20120276348 Clausi et al. Nov 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20120288689 Hansson et al. Nov 2012 A1
20120308774 Persson et al. Dec 2012 A1
20130025216 Reichwein et al. Jan 2013 A1
20130092314 Zeigler et al. Apr 2013 A1
20130095315 Pervan et al. Apr 2013 A1
20130111845 Pervan et al. May 2013 A1
20130189534 Pervan et al. Jul 2013 A1
20130196119 Dobecz Aug 2013 A1
20130269863 Pervan et al. Oct 2013 A1
20130273244 Vetter et al. Oct 2013 A1
20130273245 Ziegler et al. Oct 2013 A1
20140027020 Klaeusler et al. Jan 2014 A1
20140044872 Pervan Feb 2014 A1
20140075874 Pervan et al. Mar 2014 A1
20140147585 Smith May 2014 A1
20140171554 Ziegler et al. Jun 2014 A1
20140178630 Pervan et al. Jun 2014 A1
20140186610 Pervan Jul 2014 A1
20140199558 Pervan et al. Jul 2014 A1
20140234531 Ziegler et al. Aug 2014 A1
20140290171 Vermeulen Oct 2014 A1
20140329064 Döhring et al. Nov 2014 A1
20150017461 Lindgren et al. Jan 2015 A1
20150072111 Rischer et al. Mar 2015 A1
20150079280 Vetter et al. Mar 2015 A1
20150093502 Ziegler et al. Apr 2015 A1
20150111055 Persson et al. Apr 2015 A1
20150118456 Carlborg et al. Apr 2015 A1
20150159382 Pervan Jun 2015 A1
20150197942 Pervan et al. Jul 2015 A1
20150197943 Ziegler et al. Jul 2015 A1
20150275526 Persson et al. Oct 2015 A1
20150298433 Kalwa Oct 2015 A1
20160031189 Pervan et al. Feb 2016 A1
20160114495 Pervan et al. Apr 2016 A1
20160186318 Pervan et al. Jun 2016 A1
20160230400 Pervan et al. Aug 2016 A9
20160297174 Kim Oct 2016 A1
20160322041 Kim Nov 2016 A1
20160326744 Döhring et al. Nov 2016 A1
20160368180 Ziegler et al. Dec 2016 A1
20160375674 Schulte Dec 2016 A1
20170120564 Schulte May 2017 A1
20170165936 Schulte Jun 2017 A1
20170190156 Lundblad et al. Jul 2017 A1
20170305119 Bergelin et al. Oct 2017 A1
20170348984 Pervan et al. Dec 2017 A1
20180002934 Pervan et al. Jan 2018 A1
20180291638 Pervan Oct 2018 A1
20180370278 Persson et al. Dec 2018 A1
20190010711 Pervan et al. Jan 2019 A1
20190202178 Ziegler Jul 2019 A1
20190210329 Ziegler et al. Jul 2019 A1
20190210330 Ziegler et al. Jul 2019 A1
20190277039 Håkansson et al. Sep 2019 A1
20190284821 Pervan Sep 2019 A1
20190292796 Pervan et al. Sep 2019 A1
20190338534 Pervan Nov 2019 A1
20200055287 Lundblad et al. Feb 2020 A1
20200078825 Jacobsson Mar 2020 A1
20200079059 Schulte Mar 2020 A1
20200094512 Schulte Mar 2020 A1
20200164622 Pervan et al. May 2020 A1
20200215799 Hedlund et al. Jul 2020 A1
20200223197 Hedlund et al. Jul 2020 A1
20210001647 Pervan et al. Jan 2021 A1
20210008863 Bergelin et al. Jan 2021 A1
20210078305 Schulte Mar 2021 A1
20210010131 Lindgren et al. Apr 2021 A1
20210197534 Ziegler et al. Jul 2021 A1
20210277670 Ziegler et al. Sep 2021 A1
20210323297 Slottemo et al. Oct 2021 A1
20220009248 Ryberg et al. Jan 2022 A1
20220024189 Ziegler et al. Jan 2022 A1
20220024195 Schulte Jan 2022 A1
Foreign Referenced Citations (233)
Number Date Country
8028475 Jun 1975 AU
2011236087 Oct 2011 AU
2 557 096 Jul 2005 CA
2 852 656 Apr 2013 CA
298894 May 1954 CH
1709717 Dec 2005 CN
102166775 Aug 2011 CN
202200608 Apr 2012 CN
104084994 Oct 2014 CN
1 815 312 Jul 1969 DE
7148789 Apr 1972 DE
29 39 828 Apr 1981 DE
33 34 921 Apr 1985 DE
36 34 885 Apr 1988 DE
42 33 050 Apr 1993 DE
42 36 266 May 1993 DE
202 14 532 Feb 2004 DE
102 45 914 Apr 2004 DE
103 00 247 Jul 2004 DE
103 31 657 Feb 2005 DE
20 2004 003 061 Jul 2005 DE
10 2004 050 278 Apr 2006 DE
20 2006 007 797 Aug 2006 DE
10 2005 046 264 Apr 2007 DE
10 2006 024 593 Dec 2007 DE
10 2006 058 244 Jun 2008 DE
10 2007 043 202 Mar 2009 DE
20 2009 008 367 Sep 2009 DE
10 2010 045 266 Mar 2012 DE
20 2013 011 776 Jul 2014 DE
20 2014 102 031 Jul 2014 DE
20 2013 012 020 Feb 2015 DE
10 2013 113 125 May 2015 DE
0 129 430 Dec 1984 EP
0 129 430 Jan 1990 EP
0 355 829 Feb 1990 EP
0 611 408 Dec 1993 EP
0 592 013 Apr 1994 EP
6 656 443 Jun 1995 EP
0 611 408 Sep 1996 EP
0 732 449 Sep 1996 EP
0 744 477 Nov 1996 EP
0 914 914 May 1999 EP
0 732 449 Aug 1999 EP
0 744 477 Jan 2000 EP
1 035 255 Sep 2000 EP
1 125 971 Aug 2001 EP
1 136 251 Sep 2001 EP
1 193 288 Apr 2002 EP
1 209 199 May 2002 EP
1 242 702 Sep 2002 EP
1 249 322 Oct 2002 EP
1 388 414 Feb 2004 EP
1 454 763 Sep 2004 EP
1 242 702 Nov 2004 EP
1 498 241 Jan 2005 EP
1 507 664 Feb 2005 EP
1 507 664 Feb 2005 EP
1 584 378 Oct 2005 EP
1 681 103 Jul 2006 EP
1 690 603 Aug 2006 EP
1 847 385 Oct 2007 EP
1 961 556 Aug 2008 EP
1 985 464 Oct 2008 EP
1 997 623 Dec 2008 EP
2 025 484 Feb 2009 EP
1 454 763 Aug 2009 EP
2 105 320 Sep 2009 EP
2 119 550 Nov 2009 EP
2 213 476 Aug 2010 EP
2 226 201 Sep 2010 EP
2 246 500 Nov 2010 EP
2 263 867 Dec 2010 EP
2 264 259 Dec 2010 EP
2 272 667 Jan 2011 EP
2 272 668 Jan 2011 EP
2 305 462 Apr 2011 EP
2 353 861 Aug 2011 EP
1 847 385 Sep 2011 EP
2 263 867 Mar 2012 EP
2 902 196 Aug 2016 EP
0 234 220 Sep 1987 ER
0 993 934 Apr 2000 ER
1 262 607 Dec 2002 ER
1 657 055 May 2006 ER
1 808 311 Jul 2007 ER
2 415 947 Feb 2012 ER
2 902 196 Jan 2014 ER
801 433 Aug 1936 FR
2 873 953 Feb 2006 FR
785008 Oct 1957 GB
984 170 Feb 1965 GB
1090450 Nov 1967 GB
1 561 820 Mar 1980 GB
2 238 983 Jun 1991 GB
2 248 246 Apr 1992 GB
2 464 541 Apr 2010 GB
51-128409 Nov 1976 JP
52-087212 Jul 1977 JP
S53-148506 Dec 1978 JP
S56-049259 May 1981 JP
S56-151564 Nov 1981 JP
S58-084761 May 1983 JP
S59-101312 Jun 1984 JP
S64-062108 Mar 1989 JP
H02-188206 Jul 1990 JP
H02-198801 Aug 1990 JP
2-229002 Sep 1990 JP
H03-030905 Feb 1991 JP
H03-211047 Sep 1991 JP
H03-267174 Nov 1991 JP
H04-107101 Apr 1992 JP
H04-247901 Sep 1992 JP
H04-269506 Sep 1992 JP
H05-077362 Mar 1993 JP
H05-237809 Sep 1993 JP
H06-312406 Nov 1994 JP
H07-060704 Mar 1995 JP
H08-207012 Aug 1996 JP
H09-164651 Jun 1997 JP
H10-002098 Jan 1998 JP
H10-18562 Jan 1998 JP
H10-86107 Apr 1998 JP
2925749 Jul 1999 JP
11-291203 Oct 1999 JP
2000-226931 Aug 2000 JP
2000-263520 Sep 2000 JP
2001-287208 Oct 2001 JP
2001-329681 Nov 2001 JP
2003-311717 Nov 2003 JP
2003-311718 Nov 2003 JP
2004-068512 Mar 2004 JP
2004-076476 Mar 2004 JP
2005-034815 Feb 2005 JP
2005-074682 Mar 2005 JP
2005-170016 Jun 2005 JP
2005-219215 Aug 2005 JP
3705482 Oct 2005 JP
2005-307582 Nov 2005 JP
2007-098755 Apr 2007 JP
2007-216692 Aug 2007 JP
2007-268843 Oct 2007 JP
2008-188826 Aug 2008 JP
2010-017963 Jan 2010 JP
2011-110768 Jun 2011 JP
10-0997149 Nov 2010 KR
10-1439066 Sep 2014 KR
225556 Feb 1992 NZ
469 326 Jun 1993 SE
WO 9206832 Apr 1992 WO
WO 9324295 Dec 1993 WO
WO 9324296 Dec 1993 WO
WO 9400280 Jan 1994 WO
WO 9506568 Mar 1995 WO
WO 0022225 Apr 2000 WO
WO 0044576 Aug 2000 WO
WO 0100409 Jan 2001 WO
WO 0148333 Jul 2001 WO
WO 0164408 Sep 2001 WO
WO 0168367 Sep 2001 WO
WO 0192037 Dec 2001 WO
WO 0242167 May 2002 WO
WO 0242373 May 2002 WO
WO 03078761 Sep 2003 WO
WO 03095202 Nov 2003 WO
WO 2004042168 May 2004 WO
WO 2004050359 Jun 2004 WO
WO 2004067874 Aug 2004 WO
WO 2005035209 Apr 2005 WO
WO 2005035209 Apr 2005 WO
WO 2005035209 Apr 2005 WO
WO 2005054599 Jun 2005 WO
WO 2005054600 Jun 2005 WO
WO 2005066431 Jul 2005 WO
WO 2005080096 Sep 2005 WO
WO 2005097874 Oct 2005 WO
WO 2005116337 Dec 2005 WO
WO 2005116361 Dec 2005 WO
WO 2006007413 Jan 2006 WO
WO 2006013469 Feb 2006 WO
WO 2006015313 Feb 2006 WO
WO 2006042651 Apr 2006 WO
WO 2006043893 Apr 2006 WO
WO 2006066776 Jun 2006 WO
WO 2006126930 Nov 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007015669 Feb 2007 WO
WO 2007042258 Apr 2007 WO
WO 2007059294 May 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008148771 Dec 2008 WO
WO 2009015682 Feb 2009 WO
WO 2009050565 Apr 2009 WO
WO 2009065768 May 2009 WO
WO 2009065769 May 2009 WO
WO 2009065769 May 2009 WO
WO 2009080772 Jul 2009 WO
WO 2009080813 Jul 2009 WO
WO 2009116926 Sep 2009 WO
WO 2009124704 Oct 2009 WO
WO 2010046698 Apr 2010 WO
WO 2010084466 Jul 2010 WO
WO 2010087752 Aug 2010 WO
WO 2010094500 Aug 2010 WO
WO 2011058233 May 2011 WO
WO 2011087422 Jul 2011 WO
WO 2011087423 Jul 2011 WO
WO 2011087424 Jul 2011 WO
WO 2011129755 Oct 2011 WO
WO 2011129757 Oct 2011 WO
WO 2011141851 Nov 2011 WO
WO 2012004699 Jan 2012 WO
WO 2012076608 Jun 2012 WO
WO 2012141647 Oct 2012 WO
WO 2012154113 Nov 2012 WO
WO 2013056745 Apr 2013 WO
WO 2013079950 Jun 2013 WO
WO 2013139460 Sep 2013 WO
WO 2013167576 Nov 2013 WO
WO 2013182191 Dec 2013 WO
WO 2013182191 Dec 2013 WO
WO 2014017972 Jan 2014 WO
WO 2014109699 Jul 2014 WO
WO 2015078434 Jun 2015 WO
WO 2015078443 Jun 2015 WO
WO 2015078444 Jun 2015 WO
WO 2015105455 Jul 2015 WO
WO 2015105456 Jul 2015 WO
WO 2015106771 Jul 2015 WO
WO 2015174909 Nov 2015 WO
WO 2016151435 Sep 2016 WO
Non-Patent Literature Citations (43)
Entry
Lstiburek, Joseph, Understanding Vapor Barriers, Apr. 15, 2011, Building Science Corporation, BSD-106, 1-18 (Year: 2011).
Lundblad, Christer, et al., U.S. Appl. No. 15/308,737, entitled “A Method of Producing a Veneered Element and Such a Veneered Element,” filed in the U.S. Patent and Trademark Office Nov. 3, 2016.
U.S. Appl. No. 14/192,169, filed Feb. 27, 2014, Darko Pervan, (Cited herein as US Patent Application Publication No. 2014/0178630 A1 of Jun. 26, 2014; Republication No. 2016/0230400 A9 of Aug. 11, 2016).
U.S. Appl. No. 14/593,458, filed Jan. 9, 2015, Göran Ziegler, (Cited herein as US Patent Application Publication No. 2015/0197943 A1 of Jul. 16, 2015).
International Search Report and Written Opinion (Forms PCT/ISA/220, PCT/ISA/210) dated Sep. 12, 2016 in PCT/SE2016/050583, ISA/SE, Patent-och registreringsverket, Stockholm, SE, 15 pages.
Parquet International, “Digital Printing is still an expensive process,” Mar. 2008, cover page/pp. 78-79, www.parkettmagazin.com.
Floor Daily, “Shaw Laminates: Green by Design,” Aug. 13, 2007, 1 pg, Dalton, GA.
BTLSR Toledo, Inc. website. http://www.btlresins.com/more.html. “Advantages to Using Powdered Resins,” May 26, 2007, 2 pages, per the Internet Archive WayBackMachine.
Nimz, H.H., “Wood,” Ullmann's Encyclopedia of Industrial Chemistry, published online Jun. 15, 2000, pp. 453-505, vol. 39, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, DE.
Le Fur, X., et al., “Recycling melamine-impregnated paper waste as board adhesives,” published online Oct. 26, 2004, pp. 419-423, vol. 62, Springer-Verlag, DE.
Odian, George, “Principles of Polymerization,” 1991, 3rd Edition, 5 pages incl. pp. 122-123, John Wiley & Sons, Inc., New York, NY, USA.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “Fibre Based Panels With a Wear Resistance Surface,” Nov. 17, 2008, IP.com No. IPCOM000176590D, IP.com PriorArtDatabase, 76 pages.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “WFF Embossing,” May 15, 2009, IP.com No. IPCOM000183105D, IP.com PriorArtDatabase, 36 pages.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “VA063 VA064 Scattering and Powder Backing,” Nov. 11, 2011, IP.com No. IPCOM000212422D, IP.com PriorArtDatabase, 34 pages.
Bergelin, Marcus, et al., U.S. Appl. No. 15/495,357, entitled “A Veneered Element and Method of Producing Such a Veneered Element,” filed in the U.S. Patent and Trademark Office on Apr. 25, 2017.
Schulte, Guido, U.S. Appl. No. 16/556,289 entitled “Floorboard,” filed in the U.S. Patent and Trademark Office on Aug. 30, 2019.
Schulte, Guido, U.S. Appl. No. 16/571,547 entitled “Floor, Wall, or Ceiling Panel and Method for Producing Same,” filed in the U.S. Patent and Trademark Office on Sep. 16, 2019.
U.S. Appl. No. 15/039,638, filed May 26, 2016, Guido Schulte, (Cited herein as US Patent Application Publication No. 2017/0120564 A1 of May 4, 2017).
U.S. Appl. No. 15/039,748, filed May 26, 2016, Guido Schulte, (Cited herein as US Patent Application Publication No. 2016/0375674 A1 of Dec. 29, 2016).
U.S. Appl. No. 15/039,504, filed May 26, 2016, Guido Schulte, (Cited herein as US Patent Application Publication No. 2017/0165936 A1 of Jun. 15, 2017).
U.S. Appl. No. 16/132,977, filed Sep. 17, 2018, Darko Pervan.
Extended European Search Report issued in EP 16812046.7, dated Jan. 14, 2019, 8 pages, European Patent Office, Munich, DE.
Mercene Labs, official home page, retrieved Feb. 23, 2017, retrieved from the Internet: http://www.mercenelabs.com/technology/, according to the Internet Archive WayBack Machine this page was available on Jan. 22, 2013.
Ziegler, Göran, U.S. Appl. No. 16/325,543 entitled “A Method to Coat a Building Panel and Such a Coated Building Panel,” filed in the U.S. Patent and Trademark Office on Feb. 14, 2019.
Pervan, Darko, et al., U.S. Appl. No. 16/132,977 entitled “Wood Fibre Based Panel With a Surface Layer,” filed in the U.S. Patent and Trademark Office on Sep. 17, 2018.
Ziegler, Göran, U.S. Appl. No. 16/223,708 entitled “A Method to Produce a Veneered Element and a Veneered Element,” filed in the U.S. Patent and Trademark Office on Dec. 18, 2018.
Ziegler, Göran, U.S. Appl. No. 16/223,833 entitled “A Method to Produce a Veneered Element and a Veneered Element,” filed in the U.S. Patent and Trademark Office on Dec. 18, 2018.
Lundblad, Christer, et al., U.S. Appl. No. 16/365,764 entitled “A Method of Producing a Veneered Element and Such a Veneered Element,” filed in the U.S. Patent and Trademark Office on Mar. 27, 2019.
Fang, Chang-Hua, et al., “Densification of wood veneers by compression combined with heat and steam,” Eur. J. Wood Prod., 2012, pp. 155-163, vol. 70, Springer-Verlag, Germany (available online Feb. 1, 2011).
Hedlund, Anette, et al., U.S. Appl. No. 16/738,334 entitled “Method to Produce a Veneer Element and a Veneer Element,” filed in the U.S. Patent and Trademark Office on Jan. 9, 2020.
Mercene Labs, “Technology,” retrieved Mar. 28, 2020, 2 pages, retrieved from the Internet https://web.archive.org/web/20160324064537/http://www.mercenelabs.com/technology/ according to the Internet Archive WayBack Machine this page was available on Mar. 24, 2016 (XP055674254).
Mercene Labs, “Technology,” retrieved Mar. 28, 2020, 2 pages, retrieved from the Internet https://web.archive.org/web/20150204025422/http://www.mercenelabs.com:80/technology/ according to the Internet Archive WayBack Machine this page was available on Feb. 4, 2015 (XP055674258).
Mercene Labs, “Industrial coatings,” retrieved Mar. 28, 2020, 2 pages, retrieved from the Internet https://web.archive.org/web/20140825055945/http://www.mercenelabs.com/products/coating-of-difficult-substrates/ according to the Internet Archive WayBack Machine this page was available on Aug. 25, 2014 (XP055674250).
Bergelin, Marcus, et al., U.S. Appl. No. 17/038,567 entitled “Veneered Element and Method of Producing Such a Veneered Element,” filed in the U.S. Patent and Trademark Office Sep. 30, 2020.
Schulte, Guido, U.S. Appl. No. 17/090,511 entitled “Floor, Wall, or Ceiling Panel and Method for Producing Same,” filed in the U.S. Patent and Trademark Office Nov. 5, 2020.
Ziegler, Göran, et al., U.S. Appl. No. 17/202,836 entitled “Method to Produce a Veneered Element and a Veneered Element,” filed in the U.S. Patent and Trademark Office Mar. 16, 2021.
Ziegler, Göran, et al., U.S. Appl. No. 17/205,469 entitled “Method of Producing a Veneered Element,” filed in the U.S. Patent and Trademark Office Mar. 18, 2021.
Slottemo, Andreas, et al., U.S. Appl. No. 17/232,687 entitled “Method for Producing a Building Element, a Pressing Device and a Method of Embossing a Wooden Surface,” filed in the U.S. Patent and Trademark Office on Apr. 16, 2021.
Schulte, Guido, U.S. Appl. No. 17/352,942 entitled “Method for Producing a Floorboard,” filed in the U.S. Patent and Trademark Office on Jun. 21, 2021.
U.S. Appl. No. 17/496,441, Göran Ziegler, filed Ovt. 7, 2021.
Ziegler, Göran, et al., U.S. Appl. No. 17/496,411 entitled “Method to Produce a Veneered Element and a Veneered Element,” filed in U.S. Patent and Trademark office on Oct. 7, 2021.
U.S. Appl. No. 17/543,962, Magnus Nilsson, filed Dec. 7, 2021.
Nilsson, Magnus, et al., U.S. Appl. No. 17/543,962 entitled “Method to Produce a Veneered Element and a Veneered Element,” filed in the U.S. Patent and Trademark Office Dec. 7, 2021.
Related Publications (1)
Number Date Country
20160369507 A1 Dec 2016 US