This invention relates generally to a wraparound shipping box blank and the system and method of wrapping the shipping box blank around a pattern of product packages to form a shipping case by automatic case packaging equipment.
Many boxes of various styles and features have been developed, each attempting to meet the requirements of packing, storing, displaying and/or shipping any of a variety of items.
Wraparound blanks have been developed that are used in automated and semi-automated packing systems. In such systems, the automatic case packing equipment (or “case packer”) generally feeds the wraparound blanks, receives the product packages, collates the product packages into product patterns, folds the box blank around the product pattern to create the form-fitted case, and then seals the form-fitted case with hot-melt glue. However, one problem with these systems is that the usage of the automatic case packaging equipment places significant restrictions on the size, material and type of box blank that can be employed. Though a blank made of a heavier material might more efficiently protect the product, the blank material must be thin and light enough to allow the standard automatic case packer to fold the sides of the blank to form the case.
A second problem involves stacking of conventional form-fitted cases created from wraparound blanks that have been automatically folded around product packages. These are commonly shipped in standardized steel shipping containers meeting the standards for size, shape and construction set by the International Organization for Standardization (ISO). The uniform design of the ISO shipping containers is strong, theft-resistant, stackable and easy to load, unload, truck, ship and store. However, to minimize shipping costs, it is advantageous to fully utilize the entirety of the ISO shipping container interior space. Currently available cases formed from wraparound blanks are not sufficiently strong to be stacked to a height fully utilizing this cargo space, thus increasing the cost of shipping the product. Typically, currently available cases can only be stacked four cases high.
Accordingly, there is a need for a wraparound blank and an efficient method of creating a form-fitted case around the product packages by utilizing automatic case packer equipment that produces a form-fitted shipping case that is stronger to better protect product, and that can be stacked higher to utilize the cargo space within a standard ISO shipping container more efficiently.
The present invention is directed to a corrugated paperboard wraparound blank and a method of creating a case form-fitted around a pattern of product packages by utilizing automatic or semi-automatic case packer equipment. The present invention includes an innovative wraparound blank to be used with the case packer, a modification to the case packer, and a method of forming the form-fitted case around the product packages using the case packer. The inventive wraparound blank is designed with upwardly-projecting stacking tabs, and is formed of a heavier material than the standard wraparound blank that is designed to be used by conventional case packers. For example, the heavier material preferably used for forming the inventive box blank may be single wall, mid-heavy, c-flute, corrugated fiberboard paper with a minimum burst resistance test of at least 250 pounds per square inch. However, a blank made of heavier material with the upwardly-projecting stacking tabs cannot be folded by a conventional case packer. To enable the case packer to be able to fold this heavier material, the fold lines of the wraparound blank comprise creases formed by pressure, preferably with the addition of spaced perforations or scoring, and the case packer itself may be modified, if needed, to avoid interference with, or disturbance of, the stacking tabs.
The preferred embodiment of the wraparound blank includes: (1) five wall panels (to form the case's front, base, back and top, with an additional lapping panel); (2) end flaps hingedly connected to the opposing lateral borders of the four main wall panels to form the case ends; (3) at least two sets of stacking tabs; (4) at least two sets of receiving slots; and (5) at least one set of channel slots. The two sets of receiving slots at the lower fold lines of an upper case receive the upwardly-projecting stacking tabs of a lower case.
The five wall panels are folded, generally by automatic packaging equipment, around a grouping of tightly positioned product packages, with the smaller lapping-wall panel glued to the front-wall panel to form the basic wraparound case, including the front, back, top and bottom sides of the case. Each of the first set of stacking tabs extends upwardly from the front-wall panel through channel slots (at the intersection of the lapping-wall panel and the upper-wall panel) and continues upwardly above the plane of the upper-wall panel at the front of the case. Each of the second set of stacking tabs is disposed on the opposing top side of the wraparound case and extends upwardly from the back-wall panel above the plane of the upper-wall panel.
In addition to sealing the smaller lapping-wall panel to the front-wall panel, the four end flaps on the right end and the four end flaps on the left end are folded inwardly to form the opposing end walls of the shipping case.
When stacked, the front right and front left stacking tabs of a first lower case (which are extending upwardly from the front-wall panel and through the right and left channel slots of the upper-wall panel and lapping-wall panel of the first case) are received by the front right and front left receiving slots of an upper second case. Also, the back right and back left stacking tabs (extending upwardly from the back-wall panel of the first, lower case) are received by the back right and back left receiving slots within the back-wall panel of an upper second case. The stacking tabs serve to align the cases when stacked to maintain the load on the vertical walls of the cases.
The shipping blank is suitable for forming an outer protective shipping case around a grouping of inner boxes, cartons, bottles or other product packages. It is particularly suitable for containing cartons or paper bottles of liquids, because the case provides improved protection for the cap and neck of boxed product packages while reducing transportation cost, as the number of cases that can be safely stacked is increased. The ability to stack the cases of product to the full height of the ISO shipping container maximizes the usage of the entire cargo volume of the shipping container.
An object of the present invention is to provide a wraparound blank for a shipping case that can be folded around a grouping of product packages by automatic equipment.
An additional object is to provide a wraparound blank for a shipping case that allows the number of cases that can be vertically stacked without harm to the interior product packages to be increased compared to conventional shipping boxes, thus reducing transportation costs.
These and other objects, features and advantages of the present invention will become more readily apparent from the attached drawings and from the detailed description of the preferred embodiments which follow.
The preferred embodiments of the invention will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the invention, where like designations denote like elements.
Like reference numerals refer to like parts throughout the several views of the drawings.
Shown throughout the figures, the present invention is directed toward a corrugated paperboard wraparound blank that can be partially folded for receiving inner boxes, cartons, bottles, or other inner product packages, then wrapped around the inner packages and formed into an outer shipping case, shown generally as reference number 10. The shipping case 10 formed from the wraparound blank 10A (
The wraparound blank 10A of the present invention is preferably formed of a heavier cardboard than is used in conventional shipping boxes and includes stacking tabs 21, 41 on lower cases 10 that correspond to receiving slots 29, 49 on upper cases 10. The heavier cardboard may be, for example, single wall, mid-heavy, c-flute, corrugated fiberboard paper. The use of this heavier fiberboard paper protects the interior product packages 11 while allowing shipping cases 10 to be stacked to a greater vertical stacking height to maximize the usage of the entire cargo volume of ISO shipping containers. Yet, the wraparound blank 10A can be formed by the case packer due to the configuration of the specialized, easy-folding, preferably perforated creases of the fold lines used to form the folds when forming the case 10. The stacking tabs 21, 41 also aid in allowing a greater stacking height, as they cause the shipping cases 10 to align appropriately and to maintain the load on their outer vertical walls.
Referring now to
As shown in
The fold lines 35, 45, 55, 65, 26, 27, 36, 37, 46, 47, 56, 57 are creases that provide easier folding of the case blank 10A. Preferably the fold lines 35, 45, 55, 65, 26, 27, 36, 37, 46, 47, 56, 57 are creases combined with perforations or thin slits that are aligned with the creases. The creases or creases with perforations are formed with a conventional box blank forming machine (not shown). As a typical example, feed rollers of the box blank forming machine may direct a standard sheet or web of material to a punch and die mechanism that removes pieces of the material to form the blank 10A, and additionally uses upper and/or lower creasers to form the fold lines 35, 45, 55, 65, 26, 27, 36, 37, 46, 47, 56, 57. Alternatively, part or all of the creases may be created by a separate creaser machine used in combination with a punch and die machine. The creaser blades may create only indentations without any perforations, which may be suitable for some applications. Preferably the creaser blades or another perforation-forming mechanism create not only an indentation but also create perforations, both of which facilitate subsequent folding. Preferably, the slits of the perforations measure 2 mm to 20 mm in length with un-perforated spaces disposed between each perforation of between 3 mm and 20 mm in length. Most preferably, the perforations are 5 mm to 7 mm with interposed un-perforated spaces of 5 mm to 7 mm.
Each of the front-wall panel 20, base-wall panel 30, back-wall panel 40, upper-wall panel 50, and lapping-wall panel 60 have two opposing longitudinal sides and two opposing right and left sides. The wall panels 20, 30, 40, 50, 60 are connected to each other and to the lateral end flaps 22, 24, 32, 34, 42, 44, 52, 54 by folds 35, 45, 55, 65, 26, 27, 36, 37, 46, 47, 56, 57. The folds 35, 45, 55, 65, 26, 27, 36, 37, 46, 47, 56, 57 permit a degree of flexion or rotation between the joined portions. The front-wall panel 20 includes a first longitudinal edge defined by cut edge 25 (
The first longitudinal side of front-wall panel 20 is a cut edge 25 of the wraparound blank 10A, while the second longitudinal side meets the base-wall panel 30 at fold 35. The two opposing first end flaps 22, 24 are connected at folds 26, 27, respectively, at the right and left sides (as depicted in
The base-wall panel 30 is configured with two opposing right and left second end flaps 32, 34 that are connected at folds 36, 37 to the right and left sides of the base-wall panel 30.
The back-wall panel 40 is configured with two opposing right and left third end flaps 42, 44 that are connected at folds 46, 47 to the right and left sides of the back-wall panel 40.
The first longitudinal side of front-wall panel 20 is configured with extending front right and front left stacking tabs 21 extending outwardly (extending downwardly in
The stacking tabs 21, 41 may vary in shape as may be dictated by considerations of aesthetics, economics, or function; for example, stacking tabs 21, 41 may be generally rectangular, triangular, or even have a decorative shape to add interest. Stacking tabs 21, 41 cut into a decorative shape, such as the shape of a tulip, duck or car, might be used to create a shipping case 10 specialized for a particular product or industry and might be combined with a distinctive printing or overlay.
A preferred shape of the stacking tabs 21, 41, as illustrated in
Though the fold line 55 generally separates the back-wall panel 40 from the upper-wall panel 50, the vertical and horizontal portions of the tab shape are formed by cutting (along cutout opening edge 43) a portion from the corrugated paperboard of the panel 50 side of fold line 55. Both of the stacking tabs 41, when plateau-shaped, are formed by a cut with the first vertical cut beginning at fold line 55 then extending upwardly into the bottom of the upper-wall panel 50, then extending horizontally, and then extending downwardly to end at fold line 55, as shown in
The cut edge 25 of front-wall panel 20 defines the horizontal lower (as oriented in
Upon folding the blank 10A into the shipping case 10, all four of the stacking tabs 21, 41 will extend upwardly above the plane of upper-wall panel 50 to interlock with the four receiving slots 29, 49 of an upper case 10 (as shown in
Each of the two receiving slots 29 are formed by cutout opening edges 28, 33, which together define the exterior edges of each receiving slot 29. In
Similarly, the back-wall panel 40 is configured with two back-wall cutout opening edges 48 that, in combination with second base-wall cutout opening edges 38, define back right and back left receiving slots 49. Back-wall cutout opening edges 48 define the upper portion; second base-wall cutout opening edges 38 define the lower portion. The back right and back left receiving slots 49 correspond generally to the shape of the back right and left tabs 41, though the second receiving slots 49 are preferably slightly larger than the second tabs 41 to easily accommodate the second tabs 41 of a lower case 10.
The upper-wall panel 50 is configured with two opposing right and left fourth end flaps 52, 54 that are hingedly connected at folds 56, 57 at the right and left sides of the upper-wall panel 50. The upper-wall panel 50 is configured with first upper cutout opening edges 43 along the longitudinal side at fold 55 to allow the material of back right and left tabs 41 of the back-wall panel 40 to be removed from the upper-wall panel 50, as described above.
The opposing end flaps 22, 24, 32, 34, 42, 44, 52, 54 of the first four wall panels 20, 30, 40, 50 are typically rectangular or somewhat trapezoidal in shape, but may also be created in different shapes that may be dictated by considerations of function, economy, or aesthetics, such as different geometric shapes or irregular shapes. In the design illustrated, the inward portions at the fold lines are substantially of equal width (A2, A3, A4, A5 of
In contrast to the first four wall panels 20, 30, 40, 50, the lapping-wall panel 60 has no end flaps. However, the lapping-wall panel 60 is configured with at least two lapping cutout opening edges 68 that, in combination with the second upper cutout opening edges 53 of upper-wall panel 50, define right and left channel slots 69. The lapping Cutout opening edges 68 define the upper portion and the second upper cutout opening edges 53 define the lower portion of the channel slots 69. The cutout opening edges 68, 53 are configured to allow the front right and front left stacking tabs 21 of the first shipping case 10 to extend upwardly from front-wall panel 20 through the right and left channel slots 69 of the first shipping case 10, in position to interlock with the front right and left receiving slots of a second shipping case 10. The cutout opening edges 68, 53 may be formed in various shapes, but are preferably trapezoidal or rectangular in shape.
Thus a small portion of the bottoms of 29, 49, 69 is removed from the border of the wall panel adjacent the main portion of the receiving slots 29, 49 and channel slots 69. The bottoms of the slots 29, 49, 69 are defined by cutout opening edges 33, 38, 53 cut from the longitudinal borders of wall panels 30 and 50, as shown in
In general, the length (B5,
An exemplary case 10 formed from the shipping box blank 10A designed to hold 24 beverage containers of 1000 ml, may be between 410 mm and 520 mm in length B1, B2 (preferably 440 to 480 mm), between 280 mm and 350 mm in width A2, A4 (preferably 300 to 330 mm), and between 180 mm and 240 mm in height A3, A5 (preferably 200-220 mm). The width A1 of lapping-wall panel 60 may be between 30 mm and 100 mm (preferably 35-55 mm).
An exemplary case 10 formed from the shipping box blank 10A designed to hold 12 beverage containers of 330 ml, may be between 200 mm and 315 mm in length B1, B2 (preferably 245 to 270 mm), between 100 mm and 190 mm in width A2, A4 (preferably 130 to 160 mm), and between 90 mm and 180 mm in height A3, A5 (preferably 120-150 mm).
In both the exemplary case 10 for 12 beverage containers of 330 ml and the exemplary case 10 for 24 beverage containers of 1000 ml, the width A1 of lapping-wall panel 60 may be between 30 mm and 100 mm (preferably 35-55 mm); the length B5 of the stacking tabs 21, 41 may be from 40-200 mm (preferably 40-60 mm); the width A6, A7 of the stacking tabs 21, 41 may be from 10-200 mm (preferably 10-30 mm). The stacking tabs 21, 41 are inset from the edge of their respective panels from 35-200 mm (preferably 50-70 mm). The length B3 of the receiving slots 29, 49 is slightly larger than the length of the corresponding stacking tabs, and the width A7 of receiving slots 29, 49 is slightly larger than the width of the corresponding stacking tabs. The length B9 of the channel slots 69 is slightly longer than the length of the stacking tabs 21. The width of the channel slots 69 is sufficient to allow the stacking tabs 21 to protrude through the channel slots 69. The length B6 of the end flaps 22, 24, 32, 34, 42, 44, 52, 54 may be from 20 mm to 180 mm, but is preferably 60-80 mm. The receiving slots 29, 49 and channel slots 69 are inset a distance B10 from the edge of their respective panels which corresponds to the distance the stacking tabs 21, 41 are inset.
A preferred material for forming the five-panel wraparound blank 10A is Kraft® paper single wall, mid-heavy corrugated fiberboard paper with c-flutes having a minimum burst resistance test of 250 pounds per square inch (preferably 275 pounds per square inch). C-flutes, which offer good crush resistance and good stacking strength, are fluted paper (or other medium) sandwiched between the inner and outer liner boards and generally range from 39 to 43 flutes per foot with a typical thickness of 3/16 inch. Other corrugated fiberboard material may alternatively be used to form the shipping box wraparound blank 10A, such as heavy paper or double wall paper. The outer surface of the corrugated fiberboard material of one or more of the five wall panels 20, 30, 40, 50 may be printed (such as by a flexographic or other process). Alternatively, a single-face laminate may be used as the outer surface of the corrugated fiberboard material forming wall panels 20, 30, 40, 50, thus allowing higher quality graphics (such as lithography print) to be applied. The corrugated fiberboard is die-cut and creased, and may additionally be scored and/or perforated at the fold lines.
Additionally, the two opposing first end flaps 22, 24, the two opposing second end flaps 32, 42, the two opposing third end flaps 42, 44, and the two opposing fourth end flaps 52, 54 are wider than the end flaps 22, 24, 32, 3442, 44, 52, 54 of the first embodiment. Therefore, the gap between the end flaps 22, 24, 32, 3442, 44, 52, 54 of the second embodiment is lessened compared to the first embodiment, causing end walls 75 to substantially close the end of the case 10.
Also provided are an additional set of opposing receiving slots 89 configured to receive the end stacking tabs 81. The receiving slots 89 are holes defined by cutout opening edges 88 (which remove a portion of opposing end flaps 32) and opposing cutout opening edges 83 (which remove a portion of the lateral border of base-wall panel 30).
Additionally,
a illustrate the environment of use of the shipping box wraparound blank 10A, including some relevant elements of the automated case packing machinery. Before using the box blank 10A in the case packer, adjustments are made to the various arms and supports, as provided for by the manufacturer and as described in the owner's manual, to adjust the case packer for the size of blank 10A that will be used. A stack of blanks 10A is placed into a blank holder section of the case packer, as shown in position A in
The partially folded case 10 is moved by a rail conveyor into position D to receive a grouping of containers 11. A portion of the automatic packaging equipment collates and closely positions the product containers 11 into the required grouping format at position C. The grouping of containers 11 (which in this instance is 24 containers 11) is pushed by a pusher 93 from position C onto the partially folded case 10 with the containers 11 terminated in their forward movement by stop 94, with end walls 22, 42 folded into their final position.
The upper-wall panel 50 is folded over with back right and back left stacking tabs 41 remaining upright. Front stacking tabs 21 extend through the right and left channel slots 69 and remain upright. The lapping-wall panel 60 is folded downward and held adjacent to the top area just below cut edge 25 of front-wall panel 20. Though the box blank 10A is formed of a heavier material than the conventional box blank 10A that is typically folded by the automatic packaging equipment, the folding mechanism is able to fold the heavier material at least partially because of the creases or indentations (or, optionally, because of the combination of creases and perforations or because of the combination of creases and scoring) of the fold lines 27, 36, 37, 46, 47, 56, 57.
When the folding is complete, pressure is applied to the glued areas of the case 10 in position F as the glue cools. A left and right end pressure plate 16 may momentarily hold the end flaps 22, 24, 32, 34, 42, 44, 52, 54 while the glue adheres. A front pressure plate 15 may momentarily hold the lapping-wall panel 60 against front-wall panel 20. Left and right top pressure plates 66, 77 hold upper-wall panel 50 in position. The glue hardens, and the case 10 formation is completed.
The filled case 10 is then moved on to be grouped with other filled cases 10 to fill a pallet or container in a close-packed grouping. Upper cases 10 are positioned with their receiving slots 29, 49 situated to receive the upper stacking tabs 21, 41 of the lower case 10, as seen in
The wraparound blank 10A may be utilized with a custom-designed case packer or with a conventional case packer. Conventional case packers are produced by numerous companies, some of which may be able to use the blank 10A with only a few standard adjustments made within the customary allowable parameters. However, some common models of case packers, for example Tetra® Cardboard Packer 70, may not be immediately usable with the blank 10A, but will require modifications beyond the variety of adjustments that can be made to accommodate blanks of various sizes and types. Many companies have already invested heavily in expensive automated case packers; consequently, providing a method to modify these pre-owned case packers is highly beneficial, as it will allow the many current owners to maximize their investments in packing machinery. Therefore, a method of modifying a conventional case packer will be presented as an optional first step in the method of use.
This modification of the case packer involves the left and right top pressure plates 66, 77, which must be cut in a particular area to avoid the tabs of the formed case 10. (The terms “right” and “left” refer to the positioning in the machinery of
Right pressure plate 77 has a forward area 97 that has a downward-facing flat surface that touches upper-wall panel 50 at the front right top of the formed case 10. Right pressure plate 77 has a rear area 87 that has a downward-facing flat surface that touches upper-wall panel 50 at the rear right top of the formed case 10.
Left pressure plate 66 has a forward area 96 that has a downward-facing flat surface that touches upper-wall panel 50 at the front left top of the formed case 10. Right pressure plate 77 has a rear area 86 that has a downward-facing flat surface that touches upper-wall panel 50 at the rear left top of the formed case 10. Left pressure plate 66 does not touch right pressure plate 77; instead, there is a gap between the two. Left pressure plate 66 has an inner side 73, 74 that faces the inner side 76, 98 of right pressure plate 77.
The forward areas 96, 97 of both pressure plates 66, 77 must be modified by cutting a deep U-shaped cutout defined by U-shaped edges 12, 95, respectively, as seen in
The rearward area 87, 86 of both pressure plates 77, 66 must be modified by cutting a notch defined by notch edges 85, 80, respectively, as seen in
The modification of pressure plates 66, 77 allows the case 10 to be folded with no adverse effect on the stacking tabs 21, 41.
In an exemplary use, the shipping case 10 formed from the wraparound blank 10A may be used to case cartons, carton bottles, or paper bottles of liquids, such as sold under the Tetra Pak® trademark, including Tetra Top®, Tetra Prisma®, Tetra Brik®, Tetra Pak Evero® and any other similar product packages sold under different trademarks. The high case profile prevents damage to the cap and neck areas of the liquid containers during transportation. Preferably, the case 10 is designed to protect the product packages 11 by fully bearing the weight of any upper cases 10 of product, without allowing the top of the product packages 11 to contact the upper-wall panel of the case 10. Optionally, however, the tops of the product packages 11 may contact the upper-wall panel of the case 10 with the outer walls bearing the load.
The shipping case 10 formed from wraparound blank 10A may be used to ship various types of products needing an outer protective shipping box. For example, it may be used as an outer case 10 formed around beverage bottles, bottles of liquid hair products, plastic containers of automotive oil, toiletry boxes, boxes of toys, and other types of inner boxes, cartons, and bottles. The combination of the stacking tabs and the heavier corrugated fiberboard provides a stronger and more stable box, allowing a greater stacking height without damage to the inner product or its package or box. The creases with optional perforations allow the automatic case packaging equipment to fold the blank 10A around the product packages to form the outer shipping case 10. Enabling the stacking of the shipping case 10 to the full height of standard shipping containers, such as eight to ten shipping cases high, allows the full cargo volume to be utilized, thus shipping costs can be reduced by up to half compared to shipping with conventional outer shipping cases that are not able to be stacked to the full height of the standard shipping container.
Since many modifications, variations, and changes in detail can be made to the described preferred embodiments of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
This nonprovisional application claims the benefit of U.S. patent application Ser. No. 14/311,294 (U.S. Pat. No. 9,896,234) filed on Jun. 21, 2014, of U.S. Provisional Patent Application No. 61/838,131 filed on Jun. 21, 2013, and of U.S. Provisional Patent Application No. 61/861,947 filed on Aug. 2, 2013, which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1498673 | Reynolds | Jun 1924 | A |
2721689 | Nye | Oct 1955 | A |
2843307 | Goltz | Jul 1958 | A |
2913162 | Goltz | Nov 1959 | A |
3015431 | Mulcoy | Jan 1962 | A |
3163344 | Tunick | Dec 1964 | A |
3412924 | Krzyzanowski | Nov 1968 | A |
3543469 | Ullman | Dec 1970 | A |
3820706 | Gibson | Jun 1974 | A |
3851439 | Pillon | Dec 1974 | A |
3986319 | Puskarz et al. | Oct 1976 | A |
4058249 | Buck | Nov 1977 | A |
4134533 | Heavner | Jan 1979 | A |
4175691 | Cornell et al. | Nov 1979 | A |
4194679 | Lohrbach et al. | Mar 1980 | A |
4245773 | Stollberg | Jan 1981 | A |
4304353 | Stollberg | Dec 1981 | A |
4349147 | Jensen | Sep 1982 | A |
4436243 | Mason | Mar 1984 | A |
4497408 | Jes | Feb 1985 | A |
4567996 | Muise | Feb 1986 | A |
4572423 | Spencer | Feb 1986 | A |
4770339 | Weimer | Sep 1988 | A |
5002224 | Muise | Mar 1991 | A |
5203494 | Blomfield | Apr 1993 | A |
5501395 | McElroy | Mar 1996 | A |
5662508 | Smith | Sep 1997 | A |
6098873 | Sheffer | Aug 2000 | A |
6247593 | Ruble | Jun 2001 | B1 |
6427907 | Espinoza | Aug 2002 | B1 |
6502698 | McKenna et al. | Jan 2003 | B1 |
D651076 | Van Berlo | Dec 2011 | S |
20020179481 | Noland | Dec 2002 | A1 |
20030098256 | Lu | May 2003 | A1 |
20030159964 | McLeod et al. | Aug 2003 | A1 |
20070090172 | Lyon | Apr 2007 | A1 |
20080155945 | Mougin | Jul 2008 | A1 |
20090101701 | McLeod | Apr 2009 | A1 |
20090139946 | McLeod et al. | Jun 2009 | A1 |
20100219232 | Smith | Sep 2010 | A1 |
20110204131 | Brundage et al. | Aug 2011 | A1 |
20110281705 | Aganovic et al. | Nov 2011 | A1 |
20140345237 | Tale et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
548910 | May 1974 | CH |
2319610 | Nov 1974 | DE |
1593653 | Jul 1981 | GB |
Entry |
---|
China Patent Certificate for Invention No. 3144061, Patent No. ZL 201480046156.1, Nov. 9, 2018. |
Macau Patent Application No. J/3574 published in Official Gazette No. 23 of Jun. 5, 2019. |
Examination Report from Intellectual Property India dated Jul. 31, 2019. |
PolyPack, Wrap Around Case Packer, WR Series. |
Second Office Action from China Patent Office, dated Nov. 25, 2017 with translation of pertinent portions. |
EU Supplementary Search Report from European Patent Office, dated Feb. 15, 2017. |
Intention to Grant Patent from European Patent Office, dated Nov. 16, 2017. |
Examination Report No. 1 from Australia Patent Office, dated Jul. 10, 2018. |
International Search Report dated Oct. 31, 2014, PCT Application No. PCT/US2014/043541. |
Written Opinion of the International Search Authority dated Oct. 31, 2014, PCT Application No. PCT/US2014/043541. |
China Patent Certificate for Invention No. 3144061, Patent No. ZL 201480046156.1, Nov. 9, 2019. |
Number | Date | Country | |
---|---|---|---|
20180170607 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
61838131 | Jun 2013 | US | |
61861947 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14311294 | Jun 2014 | US |
Child | 15899327 | US |