The present disclosure is directed to a method of forming coating and, more particularly, to a method of forming a thermal barrier coating.
Thermal barrier coatings (TBC) are materials that are used to protect other materials from potentially damaging effects of exposure to high temperatures. By reducing the effects of prolonged exposure to high temperatures, the coated devices can be used in higher operating temperature applications for longer periods of time. Thermal barrier coatings are commonly applied to components of devices that produce and/or are exposed to high temperatures, such as turbine components (e.g., turbine blades), engine components, exhaust aftertreatment components, etc. In order to effectively protect coated components, thermal barrier coatings generally have good insulating properties and low thermal conductivities (κ).
Some materials used in thermal barrier coatings that also have high electrical conductivity (σ) have been used as thermoelectric (TE) materials in processes for producing electrical power. Thermoelectric materials are materials that generate an electrical voltage when exposed to a temperature gradient. Generally, the efficiency of a thermoelectric material increases as its electrical conductivity σ increases and its thermal conductivity κ decreases. Several known materials have been used in thermoelectric generator systems, such as semiconductors, bismuth telluride, silicides, oxides, and others. Recently, it has been discovered that nano-structured materials can be manufactured to have lower thermal conductivities than previously known materials. As a result, these nano-structured materials have garnered significant interest as both thermoelectric materials and as thermal barrier coatings.
Although nano-structuring has proven to be a somewhat effective way of reducing the thermal conductivity κ of materials, it may not be optimum. For example, known extrinsic mechanisms of nano-structuring, such as superlattices, nano-grains, crystallographic textures, quantum dots, etc., are fabricated using an atomic layer based deposition process that, is costly and may limit the use of such nano-structured materials in commercial applications. Further, known materials may require doping with electrically conductive materials in order to improve their ability to generate thermoelectric power, which can add cost and complexity to coating formation.
The disclosed method addresses one or more of the problems discussed above and/or other problems of the prior art.
In one aspect, the present disclosure is directed to a method of forming a thermal barrier coating. The method may include providing a solution containing strontium and niobium and applying the solution to a substrate via a chemical solution deposition process to form a first film layer on the substrate. The method may further include pyrolyzing the first film layer and annealing the first film in an air atmosphere to form a strontium niobate coating.
In another aspect, the present disclosure is directed to a thermal barrier coating deposited on a substrate. The thermal barrier coating may include a strontium niobate coating deposited on the substrate. The strontium niobate coating may be formed by a process that includes providing a coating solution containing strontium and niobium and applying the coating solution to a substrate via a chemical solution deposition process to form a first film on the substrate. The process may further include pyrolyzing the first film layer and annealing the first film in an air atmosphere to form a strontium niobate coating.
In another aspect, the present disclosure is directed to a thermoelectric power generator. The thermoelectric power generator may include a thermoelectric material and a thermal barrier coating deposited on the thermoelectric material. The thermal barrier coating may include a strontium niobate coating. The strontium niobate coating may be formed by a process that includes providing a coating solution containing strontium and niobium and applying the coating solution to the thermoelectric material via a chemical solution deposition process to form a first film on the thermoelectric material. The process may further include pyrolyzing the first film layer and annealing the first film in an air atmosphere to form the strontium niobate coating.
The high pressure exhaust gases generated by combustor 26 may be continually forced through output end 18 of turbine system 10 to rotationally drive high-pressure turbine 28. High-pressure turbine 28 may have a plurality of blades 12 configured to engage the high-pressure exhaust gases and convert thermal energy stored in the high-pressure exhaust gases into rotational energy of high-pressure turbine 28. As the temperature of the high-pressure exhaust gases increases, greater rotational energy may be imparted on high-pressure turbine 28, which may lead to a greater mechanical output of turbine system 10. In some situations, turbine system 10 may be operated to generate high-pressure exhaust gases at relatively high temperatures (e.g., ≧1600° K), which can have deleterious effects on certain materials that may be used to form blades 12 of high-pressure turbine 28.
As shown in
Topcoat 38 may be a composite layer containing one or more mixtures and/or discrete layers of materials that cooperate to reduce the deleterious effects on blades 12 of prolonged exposure to high temperatures (i.e., topcoat 38 may be a thermal barrier coating) and/or to promote the generation of thermoelectric power. For example, topcoat 38 may include a thermoelectric material that is configured to generate an electrical current when exposed to a temperature gradient. The thermoelectric material of topcoat 38 may be configured to generate an electrical current during operation of turbine system 10 when blades 12 are exposed to the high-temperature exhaust gases on one side and to the cool air on the other (i.e., topcoat 38 may be part of a thermoelectric power generator 32). That is, a temperature difference between the exhaust gases and cool air may create a temperature gradient ΔT across topcoat 38, thereby promoting the generation of thermoelectric power via topcoat 38.
Topcoat 38 may include one or more thermoelectric materials that promote the generation of thermoelectric power by the Seebeck effect. The abilities of such materials to promote the generation of thermoelectric power are sometimes compared according to the Thermoelectric Figure of Merit (ZT). ZT may be defined according to EQ1 below:
where S is the Seebeck Coefficient, and T is absolute temperature. As shown in EQ1, ZT, and hence the thermoelectric performance, of thermoelectric materials increases as electrical conductivity σ increases and thermal conductivity κ decreases. Topcoat 38 may include thermoelectric materials such as, for example, semiconductors, oxides, bismuth telluride, silicon-germanium alloys, nanoparticles, and/or superlattices. It is understood that other types of materials may be used.
Topcoat 38 may also include a thermal barrier coating material that is configured to protect blades 12 from the deleterious effects of prolonged exposure to high temperatures while also reducing the thermal conductivity κ of topcoat 38. The thermal barrier coating material may be applied as layers onto topcoat 38, onto thermally grown oxide 36, onto bond coat 34, or onto blades 12. The thermal barrier coating material may, in one example, include one or more layers containing strontium and niobium, such as (0k0)-oriented fiber-textured strontium niobate and/or lanthanum-doped strontium niobate films.
In one embodiment, the layers of a thermal barrier coating may be fabricated by a process that includes, for example, providing a solution containing strontium and niobium, applying the solution to a substrate (i.e., blades 12) via a chemical solution deposition process to form a film on the substrate, and annealing the film in an air atmosphere to form a first strontium niobate coating layer. The process may further include applying the solution to the first strontium niobate coating layer via the chemical solution deposition process to form a subsequent film, and annealing the subsequent film in an air atmosphere to form a subsequent strontium niobate coating layer.
In embodiments where the solution contains lanthanum, the solution may contain, for example, 0-5% lanthanum. Other amounts of lanthanum may be used, if desired. When the solution contains lanthanum, the process of fabricating the layers of the thermal barrier coating material may further include pyrolyzing one or more of the first and subsequent films. The process of applying subsequent layers may be repeated a number of times until a desired density is achieved. After a final layer has been pyrolyzed and annealed, the process of fabricating the thermal barrier coating material may further include post-annealing the thermal barrier coating material. Post-annealing may include annealing in the presence of a forming gas comprising H2/N2.
A product of the above described process may include one or more (0k0)-oriented, such as (010)-oriented, layers of Sr2Nb2O2 and/or Sr1.9La0.1Nb2O7-δ. And as a result of the above described process, these layers may exhibit lower thermal conductivity κ, thereby improving insulating properties and increasing the ZT of topcoat 38. In this way, addition of the thermal barrier coating material to topcoat 38 may improve the performance of topcoat 38 as a thermoelectric material.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed method. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed method. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the claims included with this specification and their equivalents
The exemplary disclosed method may be applicable in the formation of thermal barrier coatings to reduce the thermal conductivity κ of the coating and improve its overall ability to protect coated materials from prolonged exposure to high temperatures. The exemplary disclosed method may also be applicable to the formation of thermoelectric materials where it is desirable to supplement materials having high electrical conductivity σ with the addition of materials having lower thermal conductivity κ, thereby increasing the ZT of the thermoelectric material. The exemplary disclosed method may also reduce the cost to produce thermal harrier coatings as well as improved thermoelectric materials by permitting fabrication using chemical solution deposition methods in an air environment. The exemplary disclosed method will now be described with reference to
The exemplary disclosed method 300 of fabricating a thermal barrier coating may be initiated by providing a strontium acetate solution (Step 302). The method may further include providing a niobium precursor solution (Step 304). The strontium acetate solution and the niobium precursor solution may then be combined to form a coating solution (Step 306). It is noted that Steps 302 and 304 may be performed simultaneously or in the opposite order, if desired. In some embodiments, the coating solution may be doped with lanthanum, such as in the form of lanthanum acetate, before proceeding.
Upon formation of the coating solution, the coating may be applied to a substrate via a chemical solution deposition (CSD) process to form a film layer (Step 308). For example, a spin cast chemical solution deposition process may be used to apply the coating solution. In one example, spin casting may be performed at 3000 RPM for about 30 seconds. Other rotational speeds and time periods may be used, if desired.
The film layer may then be pyrolyzed at about 300° C. for about 5 minutes (Step 310). Pyrolysis may, for example, be performed on a hot plate under an air atmosphere. After pyrolysis, the coating solution may be re-applied using by the chemical solution deposition process of Step 308 to apply a subsequent film and increase the density of strontium and niobium on the substrate. Steps 308 and 310 may be repeated a number of times, if desired, until a number of subsequent films have been applied and a desired density of material has been deposited on the substrate.
The deposited as-pyrolyzed films may then be annealed at about 1000° C. for about 5 minutes in an air atmosphere to crystalize the as-pyrolyzed films (Step 312). When only a first film layer is deposited, the first film may be annealed to form a strontium niobate coating. When multiple film layers are deposited, the first and subsequent film layers may be annealed to form the strontium niobate coating. In one embodiment, annealing may be performed by placing the products of pyrolysis into an oven in an air atmosphere. The results of annealing may include one or more (0k0)-oriented, such as (010)-oriented, layers of Sr2Nb2O7 and/or Sr1.9La0.1Nb2O7-δ. And as a result of the above described process, these layers may exhibit lower thermal conductivity κ, thereby improving its insulating properties and increasing the ZT of topcoat 38. In this way, addition of the thermal barrier coating material to topcoat 38 may improve its performance as a thermoelectric material.
When the coating solution contains lanthanum, the method may further include post-annealing the strontium niobate coating (Step 314). Post-annealing the strontium niobate coating when the coating solution contains lanthanum may promote solubility of the lanthanum and activate electronic carriers for thermoelectric applications.
In an exemplary experiment, (0k0)-oriented fiber-textured strontium niobate and lanthanum-doped strontium niobate films were prepared on SrTi03 substrates. A chelate-based chemical solution deposition approach was used where strontium or strontium and lanthanum acetates were dissolved in propionic acid and niobium butoxide was chelated with six molar equivalents of acetic acid. An appropriate amount of the dissolved acetates was added to the niobium precursor, as measured by constituent masses, and the solutions were diluted to 0.15M with anhydrous ethanol. Solutions were spin cast onto (001)-oriented SrTiO3 single crystalline substrates at 3000 RPM for about 30 seconds and pyrolyzed on a hot plate in air at about 300° C. for five minutes. Sr2Nb2O7 and Sr1.9La0.1Nb2O7-δ films were formed by annealing the as-pyrolyzed films to about 1000° C. in an air atmosphere for about 5 minutes by directly inserting the samples into a preheated furnace. After the final deposition and crystallization anneal, the La-containing films were post-annealed in a dry 3% H2/N2 atmosphere to promote solubility of the lanthanum and to activate electronic carriers for thermoelectric applications. The coating/pyrolysis/crystallization process was repeated to increase film thickness to an as-crystallized individual layer thickness of 27 nm.
The phase-assemblage and orientation of the films were confirmed via X-ray diffraction (XRD) using a Philips MPD materials diffractometer equipped with monochromators for Cu-Kα radiation. Scanning transmission electron microscopy (STEM) images were generated using an FEI-Titan G2 instrument, operated at 200 keV and equipped with a high angle annular dark field (HAADF) detector. The thermal conductivities of the samples were determined using time-domain thermoreflectance (TDTR) where the experimental data was fit to a multi-layer thermal model. To provide the transducer for the optical measurements, an aluminum film was deposited on the samples by electron beam evaporation. The film was approximately 90 nm thick, as confirmed by picosecond ultrasonics. For this experiment, the pump-beam was modulated using a linearly amplified 11.39 MHz sinusoid and the ratio of the in-phase to out-of-phase signals from the probe beam was monitored using a lock-in amplifier (SRS 844). Additionally, literature values were assumed for the heat capacities of Al and Sr2Nb2O7, as well as the bulk thermal properties of SrTiO3.
Additionally,
The difference in thermal conductivity along the b-axis of the exemplary disclosed films compared with the previously mentioned hot-forged ceramics likely stems from the degree of texture present in the different sample sets. These exemplary films have significantly fewer non-0k0 peaks present in the X-ray diffraction pattern, and the intensities of non-(0k0) peaks relative to 0k0 peaks are lower than those previously reported. Given the high degree of crystallographic anisotropy present, the lower thermal conductivity κ values observed stem from a higher degree of texture owing to sampling a high concentration of 0k0-oriented material.
The thermal conductivity of two La-doped samples (x=0.1) with different film thicknesses (130 nm and 800 nm, respectively) were measured as a function of temperature from 80-500K.
To investigate the nature of thermal transport in the exemplary Sr1.9La0.1Nb2O7-δ layered structures, the minimum limit model for thermal conductivity κ was used. Assuming an isotropic Debye solid, the expression for the minimum phonon thermal conductivity is shown in EQ2 below:
where the summation is over the three acoustic phonon modes (one longitudinal, two transverse) and j denotes the particular mode, h is the reduced Planck's constant, ω is the phonon angular frequency, ωcj is the cutoff frequency, T is the temperature, vj is the phonon group velocity and τminj is the minimum scattering time. To evaluate EQ2 for the exemplary material system, vL=5192 m/s was used to calculate vT=vL√{square root over ((c55/c22))} using known literature values for the elastic constants of Sr2Nb2O7. Additionally, n=72.993 nm−3 was used for the atomic density of Sr2Nb2O7 in calculating the cutoff frequencies (ωcj=vj(6π2n)1/3).
where the first term is the scattering within the layers and the second is the scattering between layers, which is dependent on the separation distance, d. In the case of small d and weak bonding between layers (resulting in lower Debye cutoff frequencies), the difference between the modal sound speed and inter-layer velocities is maximized, resulting in scattering times that approach the inter-atomic scattering times obtained using the CWP model. The result is a reduction in the predicted minimum thermal conductivity κ due to the combined contributions of these separate scattering mechanisms. As we can see in
This work highlights several important features of the naturally-layered Sr2-xLaxNb2O7-δ material system that are relevant to a variety of application areas. First, it has been shown that both the film thickness and lanthanum doping have little to no effect on the cross-plane (b-axis) thermal conductivity of the exemplary samples, indicating that the electrical and thermal properties of these films can be tuned independently over the doping range discussed herein. This conclusion is particularly significant in the scope of using strontium niobate as a high-temperature thermoelectric material. Second, the scalable-nature of the fabrication process used to synthesize these exemplary thin films and the exceptional degree of crystallinity and crystallographic texture confirmed via X-ray diffraction and STEM is significant. It has been shown that the thermal conductivities of the disclosed chemical solution deposition-fabricated thin films (0.6 W m−1 K−1) are comparable to that of similarly layered film structures created via epitaxial growth processes. The ability to fabricate these highly insulative films through such a simple process both quickly and inexpensively on a broad variety of substrates without requiring lattice-matching epitaxy not only reinforces their potential as a commercial thermoelectric, but also as a next-generation thermal barrier coating to protect critical components in high-temperature operating environments.
This application claims benefit of priority of U.S. Provisional Patent Application No. 62/040,793, filed Aug. 22, 2014, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/046281 | 8/21/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62040793 | Aug 2014 | US |