The invention relates to a method of forming a tubular ring comprising expanding the bore of a flat blank using a tubular shaft shaped line contact spinning roller.
Spinning is a manufacturing process where a part is formed by being subjected to forming stresses applied by a roller (or rollers) many times over very small areas. Each element of metal is brought into the plastic region for a very short period of time during which it is formed. The process repeats as many times as required.
Known processes for manufacturing tubular rings include making a tube and cutting it into rings, deep drawing a cup and removing the face of the cup, expanding a blank in ring rolling, forging, casting, or welding a strip to make a ring. All of these processes are feasible, but variable cost and quality can present problems. Welded hoops can have problems in the weld area when the ring is flow formed further to make certain products such as gears, pulleys, splined rings and so on. Cut seamless tubes are expensive and making a cup in a press and removing the face creates excessive waste.
Representative of the art is U.S. Pat. No. 6,298,702 which discloses a method for forming seamless tubular workpieces, such as vehicular wheel rim components. In the method, a flat circular blank having a central aperture is expanded into the interior of a hollow mandrel using a mushroom-shaped spinning roller. In this expansion operation, the blank is caused to take on a tubular shape having an exterior contour which conforms to the interior contour of the hollow mandrel.
What is needed is a method of forming a tubular ring comprising expanding the bore of a flat blank using a tubular shaft shaped line contact spinning roller. The present invention meets this need.
The primary aspect of the invention is to provide a method of forming a tubular ring comprising expanding the bore of a flat blank using a tubular shaft shaped line contact spinning roller.
Other aspects of the invention will be pointed out or made obvious by the following description of the invention and the accompanying drawings.
The invention comprises a method of forming a tubular ring comprising spinning a flat blank having a bore, expanding the bore using a tubular shaft shaped spinning roller by initially engaging the tubular shaft shaped spinning roller with the flat blank bore at an angle (α) to the spinning axis, forming the flat blank into a tubular ring by rotating the tubular shaft shaped spinning roller about a center of rotation (B) such that the tubular shaft shaped spinning roller becomes substantially parallel to the spinning axis, and forming a contour on an outer surface of the tubular ring.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate preferred embodiments of the present invention, and together with a description, serve to explain the principles of the invention.
a) and 3(b) are a cross-section of an alternate tool and mandrel.
a) through
This invention comprises a method of flow forming a flat blank by spinning into a ring. The ring can be used in making gears, pulleys, sprockets, bearing races, one-way clutch races and similar products.
The loaded blank in the beginning of the process does not need any clamping, as the first contact of the roller with the blank forces the outer edge of the blank to the tooling and locks it in place. However, for very thin materials, or under any other requirements, a segmented upper ring (not shown) could be made to engage the top of tooling 10 that moves radially inwards with segments after loading the blank 100, thereby locking the edge 103 of the blank between the shoulder 12 and the segmented ring. At the end of the cycle, the segmented ring will open, allowing the ejection of the part.
Tooling 10 is mounted to a rotating mandrel 13. Tooling 10 and blank 100 rotate during the forming process. An inner surface 14 of tooling 10 defines a surface profile. For example, the surface profile may comprise splines, ribs, grooves, flat or any other shape that is desired. The inner surface 14 need not be configured to accommodate a spinning process since the metal can be flow formed into any desired surface profile. The surface profile defines the outer surface of the tubular ring formed using the disclosed method. In case of having any shape other than flat, a second roller (not shown) with a point contact may be used (round in X-Z plane, as well as round in X-Y plane). The second roller moves from one end of the inside of the ring back and forth to the other end while turning, thereby forcing the metal into the cavities in the surface 14 of the tooling 10. The second roller may also be used on the flat OD rings to make the outside diameter net-shaped and very accurate.
Roller 200 comprises an elongate tubular shaft member having a substantially constant diameter along its metal contacting length L. Roller 200 may or may not have one or two shoulders 12 to contain the blank 100, if needed. Roller 200 can be point contact type or line contact type and may also have differing diameters, see
During the rolling process, roller 200 is brought into contact with an inner edge 102 of blank 100 at an angle (α) to the centerline A-A, approximately 45°. Engaging at an angle to the spinning axis centerline allows control of the flow direction of the blank material as the bore is expanded. The range for angle (α) is in the range of approximately 30° to 60°.
Roller 200 is moveable in direction x, y and z. After entering the bore 101, roller 200 starts rotating from its steep initial angle to smaller angels gradually, namely, by rotating the roller about a center of rotation (B) such that the roller 200 is substantially parallel to the spinning axis A-A as the spinning process is completed. As roller 200 moves radially outward, blank 100 is flow formed radially outward. The radially outward movement of the material of blank 100 is a function of the radial position of roller 200 with respect to spinning axis A-A. Roller 200 moves in the x and y directions simultaneously in order to form a ring 100′ from blank 100. Finished ring 100′ has a tubular form aligned with a major axis A-A.
For thicker and harder material, roller 200 will oscillate back and forth along side its centerline axis to make the forming easier. Once the roller reaches the zero degree angle (parallel to the axis A-A of the ring, see 200′
The spinning operation can control the change in the thickness of the blank material throughout the process. The finished ring 100′ can be the same thickness as original blank 100, or be thicker or thinner. Thickening is done by using shoulders on the tooling 10 and/or roller 203 to limit the material flow, while thinning is done by stretching the material.
The spinner for this process does not need a tailstock but will require that the roller holder 201 have an angular movement capability, at least for the first roller holder 201. Other roller holders may or may not have the angular motion capability. The number of roller holders 201 can be as many as desired and the architecture of the equipment can handle. Roller holders can be attached to the spinner table or to an upper moving plate.
a) and 3(b) are a cross-section of an alternate tool and mandrel. Roller 203 comprises a protruding rim 202. Protruding rim 202 forms blank 100 into what is a substantially “L” shaped form comprising a radially extending portion 100″. Shoulder 13 of tooling 10 limits the extent to which blank material may flow while being formed by roller 203.
The second step of forming ring 100 is shown in
a) through
However, a single step can be also used to expand bore 101 and then the same step can be used again to expand the hole further as many times as needed until the ring is made.
During the forming process, both the stepped roller (208) and single roller (200, 203, 204, 205) may oscillate in the x and y directions to make the blank metal material flow more efficiently.
It is also possible using this process to make a ring having an extended length which is then cut into two, three, four, or more rings afterwards to save time and reduce the cost.
The advantages of this invention are a reduction of the steps needed to make a ring, and reduction of the offal of process.
The inventive process can be used for manufacturing metallic automotive and non-automotive products for use in engines, transmissions, bearings, one-way clutches, gears, splines and various other products.
Although a form of the invention has been described herein, it will be obvious to those skilled in the art that variations may be made in the construction and relation of parts without departing from the spirit and scope of the invention described herein.