Information
-
Patent Grant
-
6453714
-
Patent Number
6,453,714
-
Date Filed
Tuesday, March 27, 200123 years ago
-
Date Issued
Tuesday, September 24, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 072 295
- 072 296
- 072 297
- 072 37004
- 072 37006
- 072 37008
- 072 3701
-
International Classifications
-
Abstract
In forming a fuel inlet pipe FP, (1) a portion of a base pipe is expanded by use of an expander punch to form a processed pipe comprising a neck portion, of which the diameter is the same as that of the base pipe, a tapering portion, and an expanded portion, all of these portions being connected in coaxial relation to one another (coaxially expanding process); and (2) a central axis of the neck portion and a central axis of the expanded portion are decentered relative to each other, and the expanded portion of the processed pipe is further expanded by use of an expander punch having a diameter larger than that of the expander punch used in the coaxially expanding process, thereby forming the fuel inlet pipe FP (eccentrically expanding process). The coaxially expanding process is performed one time or a plurality of times, while the eccentrically expanding process is performed only one time.
Description
FIELD OF THE INVENTION
The present invention relates to a method of forming an eccentrically expanded pipe and an eccentrically pipe-expanding device suitable for use in the method.
BACKGROUND OF THE INVENTION
As shown in
FIG. 6
, a fuel inlet pipe FP comprises a large-diameter portion FPa, a gradually changing portion FPb, and a small-diameter portion FPc, in which a central axis of the large-diameter portion FPa and that of the small-diameter portion FPc are in eccentric relation to each other. In the fuel inlet pipe FP, the diameter of the large-diameter portion FPa is 1.9 or more times greater than that of the small-diameter portion FPc. Moreover, as mentioned above, the central axis of the small-diameter portion FPc is in eccentric relation to that of the large-diameter portion FPa. For these reasons, it has been difficult to produce the fuel inlet pipe FP by a pipe-expanding method, and it has been usual to produce it by welding three parts, i.e., the large-diameter portion FPa, gradually changing portion FPb, and small-diameter portion FPc.
Now, in order to integrally form such a fuel inlet pipe FP by use of the pipe-expanding method, the following procedure is undertaken.
In general, if a pipe is expanded to such an extent that a limit of expandability of its material is exceeded, an expanded portion of the pipe is cracked or a base pipe portion (non-expanded portion) of the pipe is buckled and, therefore, it is impossible to highly expand the pipe in one process. Accordingly, a fuel inlet pipe to be expanded at a high expansion ratio, such as the fuel inlet pipe FP as shown in
FIG. 6
, is gradually expanded through a plurality of pipe-expanding operations. Also, in order to place the large-diameter portion FPa and the small-diameter portion FPc in eccentric relation, the small-diameter portion FPc is decentered little by little relative to the large-diameter portion FPa, while the pipe is expanded in stages.
However, in cases where a pipe is eccentrically expanded, the pipe is partially expanded in a large degree because of decentering, and an expansion ratio becomes substantially high in such a portion where the pipe is highly expanded. As a result, even if the pipe is eccentrically expanded little by little in stages, there is still a strong possibility that the pipe is cracked in the portion where it is highly expanded.
SUMMARY OF THE INVENTION
The present invention was made to solve the aforementioned problem. More specifically, an object of the invention is to provide a method of eccentrically expanding a pipe in which formation of cracks or the like is prevented even if a desired expansion ratio is high, and in which an eccentrically expansion pipe can be integrally formed. Also, another object of the invention is to provide an eccentrically pipe-expanding device which is suitable for use in the method.
In order to attain the aforementioned objects, there is provided a method for forming an eccentrically expanded pipe, the method comprising a coaxially expanding process in which a portion of a base pipe is expanded by use of an expander punch to form a processed pipe having a neck portion, of which the diameter is the same as that of the base pipe, a tapering portion, and an expanded portion, all of these portions being connected in coaxial relation to one another; and an eccentrically expanding process in which a central axis of the neck portion and a central axis of the expanded portion are decentered relative to each other, and the expanded portion of the processed pipe is further expanded by use of an expander punch having a diameter larger than that of the expander punch used in the coaxially expanding process, thereby forming an eccentrically expanded pipe. In this method, the coaxially expanding process is performed one time or a plurality of times, while the eccentrically expanding process is performed only one time.
In the coaxially expanding process according to the invention, the pipe is coaxially expanded by use of the expander punch, and decentering is not performed in this process. It is preferable to expand the portion of the base pipe in a plurality of stages by use of expander punches of various diameters, in other words, to perform this coaxially expanding process a plurality of times, depending on a desired expansion ratio. As an example, the pipe is preferably expanded at a low expansion ratio (for example, 30 to 55%; specifically, 35 to 50%) in a first coaxially expanding process, and then expanded at a high expansion ratio (for example, 65 to 85%; specifically, 70 to 80%) in a second coaxially expanding process. By expanding the pipe in stages in this manner, the pipe can be safely expanded without being cracked even in cases where the desired expansion ratio is high. According to the Japanese Industrial Standards (JIS), the expansion ratio is represented by the following formula; and in the invention, the expansion ratio is calculated using the diameter of the base pipe as “D” in the following formula.
D: Outside Diameter of Pipe Before Pipe Expansion
D
1
: Outside Diameter of Pipe After Pipe Expansion
It is preferable that, in the coaxially expanding process, 80% or more of pipe expansion is performed relative to a desired expansion ratio (that is, an expansion ratio of the expanded portion of the eccentrically expanded pipe). For example, if the desired expansion ratio is 90%, an expansion ratio of the expanded portion of the processed pipe is preferably 70% or more after the coaxially expanding process.
Now, in the eccentrically expanding process according to the invention, the central axis of the neck portion and that of the expanded portion are decentered relative to each other, and the expanded portion of the processed pipe after the coaxially expanding process is further expanded, thereby forming the eccentrically expanded pipe. This eccentrically expanding process is performed only one time, without being divided into a plurality of stages. As mentioned above, the coaxial expansion of the pipe can be achieved in one stage or in a plurality of stages with little possibility of formation of cracks or the like. On the other hand, if the eccentric expansion of the pipe is achieved in a plurality of stages, there is a possibility that cracks may be formed on the pipe since an expansion ratio of a portion of the pipe, which is highly expanded at the time of decentering, becomes substantially high. For this reason, the eccentrically expanding process is performed only one time.
As aforementioned, according to the invention, the multistage eccentric expansion of the pipe is never performed, and instead, the coaxial expansion of the pipe is performed in one stage or in a plurality of stages, and subsequently, the eccentric expansion is accomplished in one stage. As a result, the eccentrically expanded pipe can be formed without any cracks or the like formed thereon.
The method of the invention for forming an eccentrically expanded pipe is suitable, particularly, for making a pipe expanded at a high expansion ratio of 90% or more in its expanded portion. In this case, the pipe is expanded by a plurality of coaxially expanding operations such that the expansion ratio of the expanded portion of the processed pipe becomes 70 to 80% after the coaxially expanding process. And then, the pipe is further expanded such that the expansion ratio of the expanded portion of the eccentrically expanded pipe becomes 90% or more after the eccentrically expanding process. This is a preferable procedure to surely prevent the formation of cracks. In this manner, the present invention makes it possible to integrally form an eccentrically expanded pipe, without forming any cracks or the like thereon, even in cases where the expanded portion of the eccentrically expanded pipe is desired to be expanded at a high expansion ratio such as 90% or more.
The method of the invention for forming an eccentrically expanded pipe is suitable, particularly, for making a fuel inlet pipe. In recent years, a type of fuel inlet pipe called one-inch eccentrically expanded fuel inlet has been developed. The one-inch eccentrically expanded fuel inlet has an expansion ratio of over 90% in its large-diameter portion, and moreover, its small-diameter portion and large-diameter portion are in eccentric relation to each other (see FIG.
6
). Therefore, it has been considered to be impossible to integrally form this type of fuel inlet pipe so far; however, it was made possible for the first time by use of the forming method of the invention.
In cases where the method of the invention for forming an eccentrically expanded pipe is applied to the making of the fuel inlet pipe, it is preferable, in the eccentrically expanding process, to dispose HAZ portions in the range of 45 to 135 degrees relative to a direction of eccentricity, seen in section of the pipe. A HAZ portion means a weld heat affected zone (referred to as a HAZ in general). More specifically, it is a portion formed on the periphery of weld metal when flux and part of base metal are fused by heat energy such as an arc.
Since the HAZ portions are different from the other portions in expanding properties, it is not preferable to dispose the HAZ portions in an area where the pipe is highly expanded at the time of decentering, that is, in an upper part of the fuel inlet pipe. This is because there is a possibility that the pipe might be cracked if the HAZ portions are disposed in such an area. On the contrary, it is preferable to dispose the HAZ portions in an area where the pipe is not so highly expanded at the time of decentering, that is, in a lower part of the fuel inlet pipe. However, the HAZ portions are easily cracked by a shock, such as an automobile collision, and therefore, if the HAZ portions are disposed in the lower part of the fuel inlet pipe, fuel leaks may be caused in the case of formation of cracks in the HAZ portions. Consequently, it is preferable to dispose the HAZ portions in the range of 45 to 136 degrees relative to the direction of eccentricity, seen in section of the pipe, such that the HAZ portions can be prevented from being cracked at the time of decentering, and such that even in the event that the HAZ portions are cracked by the automobile collision or the like, fuel leakage from the cracked portions can be prevented.
When the eccentrically expanding process according to the invention is implemented, the following device is preferably used. That is, an eccentrically pipe-expanding device comprising:
neck-portion holding means moveable in a predetermined radial direction while holding a periphery of the neck portion of the processed pipe;
neck-portion moving means for moving the neck-portion holding means in the predetermined radial direction, thereby placing the neck portion and the expanded portion in eccentric relation to each other; and
an expander punch for being pressed, from the expanded portion of the processed pipe held by the neck-portion holding means, into the expanded portion in an axial direction thereof. Use of the eccentrically pipe-expanding device facilitates the eccentrically expanding process of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
FIGS. 1A and 1B
are explanatory views showing a first process according to an embodiment of the invention;
FIGS. 2A and 2B
are explanatory views showing a second process according to the embodiment;
FIGS. 3A
,
3
B and
3
C are explanatory views showing a third process according to the embodiment as well as schematic diagrams showing an eccentrically pipe-expanding device to be used therein;
FIG. 4
is an explanatory view showing arrangement of HAZ portions according to the embodiment;
FIG. 5
is a schematic diagram showing an eccentrically pipe-expanding device according to another embodiment of the invention; and
FIG. 6
is a sectional view of a fuel inlet pipe.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In this embodiment, the making of a fuel inlet pipe FP (see
FIG. 6
) as an eccentrically expanded pipe is taken as an example. The fabrication procedure is divided into three processes, i.e., a first process (a first coaxially expanding process), a second process (a second coaxially expanding process), and a third process (an eccentrically expanding process), each of which is described below.
(1) First Process (First Coaxially Expanding Process)
FIG. 1A
is an explanatory view showing a state prior to the first process, and
FIG. 1B
is an explanatory view showing a state during the first process.
First of all, a one-inch straight pipe (of which the outside diameter is 25.4 mm) is prepared as a base pipe P
0
, and a first expander punch
11
is pressed into the base pipe P
0
, with one end of the base pipe P
0
thrust against a stopper
10
, from an opening at the other end of the base pipe P
0
. The first expander punch
11
comprises a first punch body
11
a
of cylindrical shape, a first conical top
11
b
formed at an end of the first punch body
11
a
in coaxial relation thereto, and a first pedestal
11
c
attached to a base end of the first punch body
11
a
. The outside diameter of a tip of the first conical top
11
b
is approximately equal to the inside diameter of the base pipe P
0
. Also, the first punch body
11
a
is inserted in a first ring
11
d
, which is coupled, via first springs
11
e
, to the first pedestal
11
c.
The first expander punch
11
is shifted in an axial direction of the base pipe P
0
such that the tip of the first conical top
11
b
is pressed into the base pipe P
0
from the opening at the other end thereof. Then, the base pipe P
0
is expanded to conform to the shape of the first expander punch
11
as the first expander punch
11
is pressed thereinto, since the base pipe P
0
is thrust, at its one end, against the stopper
10
.
Even after the first ring
11
d
externally attached to the first punch body
11
a
comes into contact with the other end of the base pipe P
0
, the first expander punch
11
is further pressed into the base pipe P
0
against the urging force of the first springs
11
e
. Once the first expander punch
11
is pressed in up to a place where it can no longer proceed in a pressing direction, the first expander punch
11
is then shifted in the reverse direction, that is, in a drawing direction.
As a result, the base pipe P
0
is formed into a first processed pipe P
1
by plasticity. The first processed pipe P
1
comprises a first expanded portion P
1
a
expanded by the first punch body
11
a
of the first expander punch
11
, a first tapering portion P
1
b
shaped in conformity with the shape of the first conical top
11
b
of the first expander punch
11
, and a first neck portion P
1
c
, having the original diameter of the base pipe P
0
, into which the first expander punch
11
was not inserted. These portions P
1
a
to P
1
c
are formed in coaxial relation to one another. In this example, the outside diameter of the first expanded portion P
1
a
is 36.2 mm, and the expansion ratio thereof is 42.5% relative to the base pipe P
0
.
(2) Second Process (Second Coaxially Expanding Process)
FIG. 2A
is an explanatory view showing a state prior to the second process, and
FIG. 2B
is an explanatory view showing a state during the second process.
First of all, a second expander punch
21
is pressed into the first processed pipe P
1
resulting from the first process, with one end of the first processed pipe P
1
thrust against a stopper
20
, from an opening at the other end of the first processed pipe P
1
.
The second expander punch
21
comprises a second punch body
21
a
of cylindrical shape, a second conical top
21
b
formed at an end of the second punch body
21
a
in coaxial relation thereto, and a second pedestal
21
c
attached to a base end of the second punch body
21
a
. The outside diameter of a tip of the second conical top
21
b
is approximately equal to the inside diameter of the first neck portion P
1
c
of the first processed pipe P
1
. Also, the second punch body
21
a
is inserted in a second ring
21
d
, which is coupled, via second springs
21
e
, to the second pedestal
21
c
. The diameter of the second punch body
21
a
is larger than that of the first punch body
11
a.
The second expander punch
21
is shifted in an axial direction of the first processed pipe P
1
such that the tip of the second conical top
21
b
is pressed into the first processed pipe P
1
from the opening at the other end thereof (i.e., at an end of the first expanded portion P
1
a
). Then, the first processed pipe P
1
is expanded to conform to the shape of the second expander punch
21
as the second expander punch
21
is pressed thereinto, since the first processed pipe P
1
is thrust, at its one end (i.e., at an end of the first neck portion P
1
c
), against the stopper
20
.
Even after the second ring
21
d
externally attached to the second punch body
21
a
comes into contact with the other end of the first processed pipe P
1
, the second expander punch
21
is further pressed into the first processed pipe P
1
against the urging force of the second springs
21
e
. Once the second expander punch
21
is pressed in up to a place where it can no longer proceed in a pressing direction, the second expander punch
21
is then shifted in the reversed direction, that is, in a drawing direction.
As a result, the first processed pipe P
1
is formed into a second processed pipe P
2
by plasticity. The second processed pipe P
2
comprises a second expanded portion P
2
a
expanded by the second punch body
21
a
of the second expander punch
21
, a second tapering portion P
2
b
shaped in conformity with the shape of the second conical top
21
b
of the second expander punch
21
, and a second neck portion P
2
c
, having the original diameter of the base pipe P
0
, into which the second expander punch
21
was not inserted. These portions P
2
a
to P
2
c
are formed in coaxial relation to one another. In this example, the outside diameter of the second expanded portion P
2
a
is 45.0 mm, and the expansion ratio thereof is 77.2% relative to the base pipe P
0
.
(
3
) Third Process (Eccentrically Expanding Process)
FIG. 3A
is an explanatory view showing a state prior to the third process, and
FIGS. 3B and 3C
are explanatory views each showing a state during the third process.
Prior to the description of the third process, composition of an eccentrically pipe-expanding device
50
is first described. The eccentrically pipe-expanding device
50
comprises a movable body
51
, a neck-portion holder
52
, a third expander punch
56
, and an expanded-portion holder
57
, and it is set up on a working bench
60
.
The movable body
51
can be moved, by an actuator (not shown) such as a hydraulic cylinder or the like, in a vertical direction relative to the working bench
60
.
The neck-portion holder
52
is composed of a lower neck-portion holding member
53
being capable of moving up and down via a plurality of springs
53
a
provided on the working bench
60
, and an upper neck-portion holding member
54
fixed on a bottom face of the movable body
51
. Both the members
53
and
54
pinch and hold the second neck portion P
2
c
of the second processed pipe P
2
from its upper and lower sides to prevent the second processed pipe P
2
from moving in its axial direction (specifically, in a direction in which the third expander punch
56
is inserted, or in the right direction in
FIGS. 3A
to
3
C).
The third expander punch
56
comprises a cylindrically-shaped third punch body
56
a
and a tip
56
b
. The third, punch body
56
a
and the tip
56
b
correspond to the large-diameter portion FPa and the gradually changing portion FPb, respectively, of the fuel inlet pipe FP as shown in FIG.
6
. The diameter of the third punch body
56
a
is larger than that of the second punch body
21
a
. The tip
56
b
of the third expander punch
56
is formed in such a manner that an upper portion thereof slopes downward, forming a curve toward an end of the tip
56
b.
The expanded-portion holder
57
is composed of a lower expanded-portion holding member
58
fixed on the working bench
60
, and an upper expanded-portion holding member
59
being capable of moving up and down via a plurality of springs
59
a
provided on the bottom face of the movable body
51
. Both the members
58
and
59
pinch and hold the second expanded portion P
2
a
of the second processed pipe P
2
from its upper and lower sides.
Now, the procedure of eccentrically expanding the second processed pipe P
2
by use of the eccentrically pipe-expanding device
50
is described. First of all, as shown in
FIG. 3A
, the movable body
51
is set above the working bench
60
, being greatly apart therefrom. In this state, the second neck portion P
2
c
and the second expanded portion P
2
a
of the second processed pipe P
2
are placed, respectively, on the lower neck-portion holding member
53
and the lower expanded-portion holding member
58
.
If the second processed pipe P
2
has a beaded portion (weld metal portion) B and HAZ (heat affected zone) portions H as shown in
FIG. 4
, the second processed pipe P
2
is disposed in such a manner that the beaded portion B as well as the HAZ portions H are located in the range of 45 (θ1) to 135 (θ2) degrees (preferably, at an angle of approximately 90 degrees) relative to a direction of eccentricity (E), i.e., the vertical direction.
Subsequently, as shown in
FIG. 3B
, the movable body
51
is moved toward the working bench
60
. Then, the second neck portion P
2
c
and the second expanded portion P
2
a
of the second processed pipe P
2
are pinched and held, respectively, between the upper and lower neck-portion holding members
54
,
53
and between the upper and lower expanded-portion holding members
59
,
58
. In this state, the second neck portion P
2
c
is decentered relative to the second expanded portion P
2
a.
More specifically, with a downward movement of the movable body
51
, the second neck portion P
2
c
of the second processed pipe P
2
is also moved downward by the upper neck-portion holding member
54
, while the springs
53
a
provided between the lower neck-portion holding member
53
and the working bench
60
are compressed. Accordingly, a central axis of the second neck portion P
2
c
is lowered after the movable body
51
is moved downward. On the other hand, even after the movable body
51
is moved downward, a central axis of the second expanded portion P
2
a
is maintained at the same height as before the movable body
51
is moved downward, since the springs
59
a
provided between the movable body
51
and the upper expanded-portion holding member
59
are compressed. The amount of the downward movement of the movable body
51
is determined depending on a desired slippage between the central axis of the small-diameter portion FPc of the fuel inlet pipe FP and that of the large-diameter portion FPa thereof.
Further subsequently, as shown in
FIG. 3C
, the third expander punch
56
is moved in an axial direction of the second processed pipe P
2
to be pressed into the second processed pipe P
2
from an opening at the other end thereof (i.e., at an end of the second expanded portion P
2
a
). Because the second processed pipe P
2
is prevented, by the neck-portion holder
52
, from moving in the axial direction, it is expanded in conformity with the shape of the third expander punch
56
as the third expander punch
56
is pressed into the second processed pipe P
2
.
At the same time, since the upper expanded-portion holding member
59
is provided on the bottom face of the movable body
51
via the springs
59
a
, if the third expander punch
56
is pressed into the second processed pipe P
2
, the third punch body
56
a
further expands the second expanded portion P
2
a
, thereby compressing the springs
59
a
and raising the upper expanded-portion holding member
59
.
As mentioned above, the movable body
51
is moved downward, and the neck-portion holder
52
gets out of alignment relative to the expanded-portion holder
57
. As a result, the second neck portion P
2
c
is decentered relative to the second expanded portion P
2
a
, while the second expanded portion P
2
a
is expanded by the third expander punch
56
in conformity with the shape thereof.
Consequently, the second processed pipe P
2
is formed into the fuel inlet pipe FP by plasticity. The fuel inlet pipe FP is, as shown in
FIG. 6
, comprised of the large-diameter portion FPa expanded by the third punch body
56
a
of the third expander punch
56
, the gradually changing portion FPb formed in conformity with the shape of the tip
56
b
of the third expander punch
56
, and the small-diameter portion FPc, having the original diameter of the base pipe P
0
, into which the third expander punch
56
was not inserted. The large-diameter portion FPa and the small-diameter portion FPc are formed in eccentric relation to each other. There are, of course, no cracks formed on the large-diameter portion FPa nor on the gradually changing portion FPb, and no buckling caused to the small-diameter portion FPc. In this example, the outside diameter of the large-diameter portion FPa is 48.7 to 49.1 mm, and the expansion ratio thereof is 91.7 to 93.3% relative to the base pipe P
0
.
In these manners, by way of the first through third processes, the fuel inlet pipe FP can be produced as an eccentrically expanded pipe without formation of cracks or the like thereon, even in cases where a desired expansion ratio of the large-diameter portion FPa is high relative to the base pipe P
0
.
Also, the beaded portion B and the HAZ portions H are different from the other portions in expanding properties, and it is, therefore, preferable to dispose these portions to the bottom of the fuel inlet pipe FP, which is a region where the pipe is not highly expanded at the time of decentering. However, the beaded portion B and the HAZ portions H are easily cracked in the event that any shock is caused to the pipe, for example, in case of automobile collision, and, therefore, if these portions are disposed to the bottom of the fuel inlet pipe FP, fuel leaks might be caused in such an event. For this reason, in the embodiment, these portions are disposed in the range of 45 to 135 degrees relative to the direction of eccentricity, as shown in
FIG. 4
, seen in section of the pipe, thereby preventing formation of cracks at the time of decentering as well as preventing fuel from leaking out even in the event that these portions are cracked by the automobile collision or the like.
The present invention is, of course, not restricted to the above described embodiment, and may be practiced or embodied in still other ways without departing from the subject matter thereof.
For example, in the above embodiment, the coaxially expanding process is performed twice, but the coaxial expansion of the pipe may be accomplished in three or more processes. Otherwise, it may be accomplished in only one process depending on the expansion ratio desired.
Also, the eccentrically expanded pipe is not restricted to the fuel inlet pipe, and other types of pipes of any application can be produced as well according to the manufacturing method of the invention.
Furthermore, in the third process, stoppers for preventing movement in the axial direction of the second processed pipe P
2
may be incorporated into the neck-portion holder
52
. For example, as shown in
FIG. 5
, a wall
54
b
for abutting on the end face of the second neck portion P
2
c
may be provided on a surface, on which the second neck portion P
2
c
is placed, of the upper neck-portion holding member
54
, and a wall
53
b
for abutting on the end face of the second neck portion P
2
c
may be provided on a surface, on which the second neck portion P
2
c
is placed, of the lower neck-portion holding member
53
. In this case, the walls
53
b
and
54
b
function as the stoppers.
Claims
- 1. A method of forming an eccentrically expanded pipe, the method comprising the steps of:coaxially expanding a portion of a base pipe by use of a first expander punch to form an expanded portion, an intermediate tapering portion and a neck portion having a diameter the same as that of the base pipe, all of said portions being contiguously coaxially connected about a central axis; decentering the expanded portion and the neck portion relative to one another to form a secondary axis spaced from the central axis by use of a second expander punch having a diameter larger than that of the first expander punch, thereby forming an eccentrically expanded pipe, and coaxially expanding the base pipe at least one time, while the decentering step is performed only one time.
- 2. The method of forming an eccentrically expanded pipe according to claim 1, wherein the method further comprises a step of coaxially expanding the portion of the base pipe a plurality of times using expander punches of various diameters.
- 3. The method of forming an eccentrically expanded pipe according to claim 1, wherein the method further comprises a step of coaxially expanding the portion of the base pipe a plurality of times using expander punches of increasing diameter.
- 4. The method of forming an eccentrically expanded pipe according to claim 1, wherein the method further comprises the steps of coaxially expanding the expanded portion of the processed pipe at a ratio of between about 70 to 80% relative to the base pipe, and further expanding the expanded portion during decentering at a ratio of at least 90% relative to the base pipe.
- 5. The method of forming an eccentrically expanded pipe according to claim 1, wherein the eccentrically expanded pipe formed by the method is a fuel inlet pipe.
- 6. The method of forming an eccentrically expanded pipe according to claim 5, wherein the base pipe is initially formed having HAZ portions, and during decentering the HAZ portions are disposed between a range of about 45 to 135 degrees relative to a direction of eccentricity defined by the central and secondary axis.
- 7. A pipe-expanding device for eccentrically expanding a processed pipe having an expanded portion, an intermediate tapering portion, and a neck portion, all of said portions being contiguously coaxially connected about a central axis, the pipe-expanding device comprising:neck-portion holding means moveable in a predetermined radial direction for holding a periphery of the neck portion of the processed pipe; neck-portion moving means for moving the neck-portion holding means in the predetermined radial direction to facilitate displacement of the neck portion and the expanded portion in eccentric relation to each other; and an axially moveable expander punch for axial insertion into an opening end of the expanded portion of the processed pipe held by the neck-portion holding means to facilitate further expansion of the expanded portion.
- 8. The pipe-expanding device for eccentrically expanding a processed pipe as set forth in claim 7, wherein the axially moveable expander punch further comprises a cylindraceous body having an insertion tip, the body defining a substantially constant diameter about the central axis and wherein the insertion tip has an upper portion having a slope defined by a radially decreasing diameter from the constant diameter towards an end of the tip.
- 9. The pipe-expanding device for eccentrically expanding a processed pipe as set forth in claim 8, further comprising an expanded portion holding means having a displaceable pipe holding means for accommodating the further expansion of the expanded portion of the pipe.
- 10. The pipe-expanding device for eccentrically expanding a processed pipe as set forth in claim 9, wherein the neck portion holding means has a displaceable neck portion holding means for accommodating the eccentric displacement of the neck portion relative to the central axis caused by the neck portion moving means.
- 11. The pipe-expanding device for eccentrically expanding a processed pipe as set forth in claim 10, wherein the eccentric displacement of the neck portion relative to the central axis creates the secondary axis about which the neck portion is substantially defined.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-091493 |
Mar 2000 |
JP |
|
US Referenced Citations (3)
Foreign Referenced Citations (2)
Number |
Date |
Country |
11-239835 |
Sep 1999 |
JP |
2000-271676 |
Oct 2000 |
JP |