The present invention relates generally to electrically connecting a composite core conductor. More particularly, the present invention relates to a crimp die for connecting a composite core of a conductor to an electrical connector. Still more particularly, the present invention relates to a method of connecting a composite core of a conductor to an electrical connector.
The vast majority of high voltage transmission conductors used includes strands of high strength steel surrounded by multiple strands of aluminum wire. The steel strands are the principle load bearing component holding up the wire, while the softer, more elastic aluminum strands include the majority of the electrical power transport component. Many variations of transmission wire operating at between approximately 115 kv to 800 kV involve this basic design concept and have these two basic components.
More recently, a composite core conductor having a fiberglass and epoxy resin core covered by aluminum wire has emerged as a substitute for the steel support stranding in high voltage transmission conductors. However, the outer surface of the composite core is difficult to mechanically connect to a compression tube of a connector member. The outer surface of the composite core is sensitive, such that a scratch on the outer surface can lead to a fracture of the composite core. Due to the sensitivity of the composite core, composite core conductors are not crimped and are usually connected with wedge connectors such as is disclosed in U.S. Pat. No. 7,858,882 to De France, which is hereby incorporated by reference in its entirety. Accordingly, a need exists for an electrical connector in which a composite core conductor is crimped thereto without damaging the outer surface of the composite core.
A conventional crimp die 2 is shown in
An object of the present invention is to provide an improved electrical connector in which a composite core of a composite core conductor is crimped to the electrical connector.
Another object of the present invention is to provide an improved electrical connector member in which a composite core conductor is more easily and inexpensively crimped to an electrical connector.
Another object of the present invention is to provide an improved crimping die that crimps the composite core to an electrical connector without damaging an outer surface of the composite core.
Another object of the present invention is to provide an improved crimping die proving improved crimp control when crimping a composite core conductor.
The foregoing objectives are basically attained by an electrical connector including a coupling portion and a tubular portion extending from the coupling portion. A conductor has a non-metallic core surrounded by electrically conductive strands and has a connecting portion of the core extending axially beyond the strands. The connecting portion is received in the tubular portion. A crimped portion on the tubular portion radially engages the connecting portion and secures the conductor to the tubular portion. The crimped portion is formed by concave surfaces on internal surfaces of crimping dies. The concave surfaces have different radii of curvature than remaining portions of the internal surfaces
The foregoing objectives are also basically attained by a method of crimping a conductor. A portion of electrically conductive strands surrounding a non-metallic core of the conductor is removed from the core. The exposed core of the conductor is inserted in a substantially tubular portion extending from a coupling portion of an electrical connector. The substantially tubular portion is crimped to the core to form a first crimped portion. The first crimped portion is formed by concave surfaces on internal surfaces of crimping dies. The concave surfaces have different radii of curvature than remaining portions of the internal surfaces.
Objects, advantages, and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses an exemplary embodiment of the present invention.
As used in this application, the terms “front,” “rear,” “upper,” “lower,” “upwardly,” “downwardly,” and other orientational descriptors are intended to facilitate the description of the exemplary embodiments of the present invention, and are not intended to limit the structure thereof to any particular position or orientation.
The above benefits and other advantages of the various embodiments of the present invention will be more apparent from the following detailed description of exemplary embodiments of the present invention and from the accompanying drawing figures, in which:
Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.
The present invention generally relates to an electrical connector 21 for receiving a composite core conductor 23, as shown in
The composite core conductor 23, as shown in
The electrical connector 21 includes an eyebolt 28 having a substantially tubular portion 29 having an open first end 30 and an eyelet 31 connected to a second end 32, as shown in
The tolerances of the tubular portion 29 are preferably extremely tight to more precisely control the inner and outer diameters thereof. The inner diameter preferably has a tolerance of 0.001 inches. The outer diameter preferably has a tolerance of 0.002 inches. By more precisely controlling the inner and outer diameters of the tubular portion 29, better control of the crimp between the tubular portion 29 and the core 26 of the composite core conductor 23 is achieved, thereby substantially preventing damage to the composite core during crimping.
An outer sleeve 36 is substantially tubular and has an outer surface 45 and first and second ends 37 and 38, as shown in
A crimp die 25 in accordance with an exemplary embodiment of the present invention is shown in
The crimp die 25 has a crimping area 7 including first and second crimping surfaces 8 and 9 and a non-crimping surface 10, as shown in
The non-crimping surface 10 is disposed between the first and second crimping surfaces 8 and 9. The crimping surfaces 8 and 9 are concave. Center points 55 and 56 of the radii of the first and second crimping surfaces 8 and 9 are spaced from a center point 57 of the radius of the non-crimping surface 10, as shown in
Preferably, the two concave crimping surfaces 8 and 9 are approximately 90 degrees apart on the crimping surface 7, as shown in
To assemble the electrical connector 21, a portion of the aluminum conductors 27 are removed from the conductor 23 to expose only the composite core 26, as shown in
The dies 25 and 46 of
Additionally, the tubular portion 29 has very close tolerances on the inner diameter and outer diameter thereof such that a proper amount of travel (or force) is applied during crimping. As shown in
As shown in
The concave crimping surfaces 8 and 9 in accordance with exemplary embodiments of the present invention as shown in
The applied crimping forces 61 are diametrically opposed such that, in combination with the mating contact surfaces 48 and 49 substantially eliminating a gap between the dies 25 and 46 during the crimping process, that the composite core 26 is compressed to a substantially rounded shape. Accordingly, the crimp dies 25 and 46 substantially prevent crimps that damage or otherwise detrimentally affect the composite core 26. Accordingly, a better crimp can be obtained that does not substantially damage the outer surface of the composite core 26.
The crimping surfaces 8 and 9 provide a non-damaging indent on the inner surface 35 of the tubular portion 29 of the eyebolt, as shown in
The outer sleeve 36 is then crimped in second and third crimping areas 11 and 12, as shown in
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the scope of the present invention. The description of the exemplary embodiments of the present invention is intended to be illustrative, and not to limit the scope of the present invention. Various modifications, alternatives and variations will be apparent to those of ordinary skill in the art, and are intended to fall within the scope of the invention as defined in the appended claims and their equivalents.
This application is divisional application of Ser. No. 14/052,197 filed Oct. 11, 2013 which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 61/800,255, filed Mar. 15, 2013, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2535013 | Freedom | Dec 1950 | A |
3517539 | Chrico | Jun 1970 | A |
3575036 | Hoffman | Apr 1971 | A |
4053249 | Ness | Oct 1977 | A |
4696298 | Higgins et al. | Sep 1987 | A |
4828516 | Shaffer | May 1989 | A |
5058272 | Steube | Oct 1991 | A |
5217392 | Hosler | Jun 1993 | A |
5692294 | Casey | Dec 1997 | A |
5907901 | Hogan, Jr. | Jun 1999 | A |
6101862 | Rzasa | Aug 2000 | A |
6227030 | Lefavour | May 2001 | B1 |
6382318 | Whitlock | May 2002 | B1 |
6747211 | Connor | Jun 2004 | B2 |
6769173 | Chadbourne | Aug 2004 | B2 |
6805596 | Quesnel | Oct 2004 | B2 |
7385138 | De France | Jun 2008 | B2 |
8167665 | De France | May 2012 | B2 |
9397461 | De France | Jul 2016 | B2 |
20050281512 | Lutzen | Dec 2005 | A1 |
20060084327 | Chadbourne | Apr 2006 | A1 |
20070062718 | De France | Mar 2007 | A1 |
20070161299 | Chen | Jul 2007 | A1 |
20080072991 | Tamm | Mar 2008 | A1 |
20100206631 | Peters | Aug 2010 | A1 |
20100243320 | Bryant | Sep 2010 | A1 |
20120148251 | Elberbaum | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
101268595 | Sep 2008 | CN |
WO-2013014955 | Jan 2013 | WO |
Entry |
---|
Japanese Office Action dated Jun. 13, 2017 which issued in corresponding Patent Application No. 201480022651.9, including English translation. |
International Preliminary Report on Patentability dated Sep. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20160301174 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61800255 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14052197 | Oct 2013 | US |
Child | 15191030 | US |