The field to which the disclosure generally relates includes methods of making castings with frictional damping inserts and products therefrom.
One embodiment of the invention includes a method of making a product comprising providing a frictional damping insert including a downwardly extending leg stamped out of a flat planar portion of the insert, and placing the insert in a casting mold so that the downwardly extending legs support the insert in the casting mold, closing the casting mold and casting a molten metal into the mold and solidifying the same.
Other exemplary embodiments of the invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while disclosing exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Exemplary embodiments of the invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring now to
Referring now to
Details of the frictional damping insert 504 are provided hereafter.
Referring to
According to various illustrative embodiments of the invention, frictional damping may be achieved by the movement of the frictional surfaces 502 against each other. The movement of frictional surfaces 502 against each other may include the movement of: surfaces of the body 506 of the part against each other; a surface of the body 506 of the part against a surface of the insert 504; a surface of the body 506 of the part against the layer 520; a surface of the insert 504 against the layer 520; a surface of the body 506 of the part against the particles 514 or fibers; a surface of the insert 504 against the particles 514 or fibers; or by frictional movement of the particles 514 or fibers against each other or against remaining binder material.
In embodiments wherein the frictional surface 502 is provided as a surface of the body 506 or the insert 504 or a layer 520 over one of the same, the frictional surface 502 may have a minimal area over which frictional contact may occur that may extend in a first direction a minimum distance of 0.1 mm and/or may extend in a second (generally traverse) direction a minimum distance of 0.1 mm. In one embodiment the insert 504 may be an annular body and the area of frictional contact on a frictional surface 502 may extend in an annular direction a distance ranging from about 20 mm to about 1000 mm and in a transverse direction ranging from about 10 mm to about 75 mm. The frictional surface 502 may be provided in a variety of embodiments, for example, as illustrated in
Referring again to
In another embodiment of the invention the damping means or frictional surface 502 may be provided by particles 514 or fibers provided on at least one face of the insert 504 or a surface of the body 506 of the part 500. The particles 514 may have an irregular shape (e.g., not smooth) to enhance frictional damping, as illustrated in
In embodiments wherein at least a portion of the part 500 is manufactured such that the insert 504 and/or the particles 514 or fibers are exposed to the temperature of a molten material such as in casting, the insert 504 and/or particles 514 or fibers may be made from materials capable of resisting flow or resisting significant erosion during the manufacturing. For example, the insert 504 and/or the particles 514 or fibers may include refractory materials capable of resisting flow or that do not significantly erode at temperatures above 1100° F., above 2400° F., or above 2700° F. When molten material, such as metal, is cast around the insert 504 and/or the particles 514, the insert 504 or the particles 514 should not be wet by the molten material so that the molten material does not bond to the insert 504 or layer 520 at locations wherein a frictional surface 502 for providing frictional damping is desired.
Illustrative examples of suitable particles 514 or fibers include, but are not limited to, particles or fibers including silica, alumina, graphite with clay, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), phyllosilicates, or other high-temperature-resistant particles. In one embodiment of the invention the particles 514 may have a length along the longest dimension thereof ranging from about 1 μm-350 μm, or 10 μm-250 μm.
In another embodiment of the invention, the layer 520 may be a coating over the body 506 of the part or the insert 504. The coating may include a plurality of particles 514 which may be bonded to each other and/or to the surface of the body 506 of the part or the insert 504 by an inorganic or organic binder 516 (
In another embodiment, the coating may include at least one of alumina or silica particles, mixed with a lignosulfonate binder, cristobalite (SiO2), quartz, or calcium lignosulfonate. The calcium lignosulfonate may serve as a binder. In one embodiment, the coating may include IRONKOTE. In one embodiment, a liquid coating may be deposited on a portion of the insert and may include any high temperature ceramic coating, such as but not limited to, LADLE KOTE 310B. In another embodiment, the coating may include at least one of clay, Al2O3, SiO2, a graphite and clay mixture, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), or phyllosilicates. In one embodiment, the coating may comprise a fiber such as ceramic or mineral fibers.
When the layer 520 including particles 514 or fibers is provided over the insert 504 or the body 506 of the part the thickness L (
In yet another embodiment of the invention the particles 514 or fibers may be temporarily held together and/or to the surface of the insert 504 by a fully or partially sacrificial coating. The sacrificial coating may be consumed by molten metal or burnt off when metal is cast around or over the insert 504. The particles 514 or fibers are left behind trapped between the body 506 of the cast part and the insert 504 to provide a layer 520 consisting of the particles 514 or fibers or consisting essentially of the particles 514 or fibers.
The layer 520 may be provided over the entire insert 504 or only over a portion thereof. In one embodiment of the invention the insert 504 may include a tab 534 (
In one embodiment of the invention at least a portion of the insert 504 is treated or the properties of the insert 504 are such that molten metal will not wet or bond to that portion of the insert 504 upon solidification of the molten metal. According to one embodiment of the invention at least one of the body 506 of the part or the insert 504 includes a metal, for example, but not limited to, aluminum, titanium, steel, stainless steel, cast iron, any of a variety of other alloys, or metal matrix composite including abrasive particles. In one embodiment of the invention the insert 504 may include a material such as a metal having a higher melting point than the melting point of the molten material being cast around a portion thereof.
In one embodiment the insert 504 may have a minimum average thickness of 0.2 mm and/or a minimum width of 0.1 mm and/or a minimum length of 0.1 mm. In another embodiment the insert 504 may have a minimum average thickness of 0.2 mm and/or a minimum width of 2 mm and/or a minimum length of 5 mm. In other embodiments the insert 504 may have a thickness ranging from about 0.1-20 mm, 0.1-6.0 mm, or 1.0-2.5 mm, or ranges therebetween.
Referring now to
In one embodiment the insert 504 is not pre-loaded or under pre-tension or held in place by tension. In one embodiment the insert 504 is not a spring. Another embodiment of the invention includes a process of casting a material comprising a metal around an insert 504 with the proviso that the frictional surface 502 portion of the insert used to provide frictional damping is not captured and enclosed by a sand core that is placed in the casting mold. In various embodiments the insert 504 or the layer 520 includes at least one frictional surface 502 or two opposite friction surfaces 502 that are completely enclosed by the body 506 of the part. In another embodiment the layer 520 including the particles 514 or fibers that may be completely enclosed by the body 506 of the part or completely enclosed by the body 506 and the insert 504, and wherein at least one of the body 506 or the insert 504 comprises a metal or consists essentially of a metal. In one embodiment of the invention the layer 520 and/or insert 504 does not include or is not carbon paper or cloth.
Referring again to
When the term “over,” “overlying,” overlies,” “under,” “underlying,” or “underlies” is used herein to describe the relative position of a first layer or component with respect to a second layer or component such shall mean the first layer or component is directly on and in direct contact with the second layer or component or that additional layers or components may be interposed between the first layer or component and the second layer or component.
The above description of embodiments of the invention is merely exemplary in nature and, thus, variations thereof are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
974024 | Carter | Oct 1910 | A |
1484421 | Thomspon | Feb 1924 | A |
1989211 | Norton | Jan 1935 | A |
2012838 | Tilden | Aug 1935 | A |
2026878 | Farr | Jan 1936 | A |
2288438 | Dach | Jun 1942 | A |
2603316 | Pierce | Jul 1952 | A |
2978793 | Lamson et al. | Apr 1961 | A |
3085391 | Hatfield et al. | Apr 1963 | A |
3127959 | Wengrowski | Apr 1964 | A |
3147828 | Hunsaker | Sep 1964 | A |
3292746 | Robinette | Dec 1966 | A |
3378115 | Stephens, Ill | Apr 1968 | A |
3425523 | Robinette | Feb 1969 | A |
3509973 | Kimata | May 1970 | A |
3575270 | Wagenfuhrer et al. | Apr 1971 | A |
3774472 | Mitchell | Nov 1973 | A |
3841448 | Norton, Jr. | Oct 1974 | A |
3975894 | Suzuki | Aug 1976 | A |
4049085 | Blunier | Sep 1977 | A |
4072219 | Hahm et al. | Feb 1978 | A |
4195713 | Hagbjer et al. | Apr 1980 | A |
4250950 | Buxmann et al. | Feb 1981 | A |
4278153 | Venkatu | Jul 1981 | A |
4338758 | Hagbjer | Jul 1982 | A |
4379501 | Hagiwara et al. | Apr 1983 | A |
4475634 | Flaim et al. | Oct 1984 | A |
4523666 | Murray | Jun 1985 | A |
4529079 | Albertson | Jul 1985 | A |
4905299 | Ferraiuolo et al. | Feb 1990 | A |
5004078 | Oono et al. | Apr 1991 | A |
5025547 | Sheu et al. | Jun 1991 | A |
5083643 | Hummel et al. | Jan 1992 | A |
5115891 | Raitzer et al. | May 1992 | A |
5139117 | Melinat | Aug 1992 | A |
5143184 | Snyder et al. | Sep 1992 | A |
5183632 | Kiuchi et al. | Feb 1993 | A |
5184662 | Quick et al. | Feb 1993 | A |
5259486 | Deane | Nov 1993 | A |
5310025 | Anderson | May 1994 | A |
5416962 | Passarella | May 1995 | A |
5417313 | Matsuzaki et al. | May 1995 | A |
5509510 | Ihm | Apr 1996 | A |
5530213 | Hartsock et al. | Jun 1996 | A |
5582231 | Siak et al. | Dec 1996 | A |
5620042 | Ihm | Apr 1997 | A |
5660251 | Nishizawa et al. | Aug 1997 | A |
5789066 | DeMare et al. | Aug 1998 | A |
5819882 | Reynolds et al. | Oct 1998 | A |
5855257 | Wickert et al. | Jan 1999 | A |
5862892 | Conley | Jan 1999 | A |
5878843 | Saum | Mar 1999 | A |
5927447 | Dickerson | Jul 1999 | A |
5965249 | Sutton et al. | Oct 1999 | A |
6047794 | Nishizawa | Apr 2000 | A |
6073735 | Botsch et al. | Jun 2000 | A |
6112865 | Wickert et al. | Sep 2000 | A |
6206150 | Hill | Mar 2001 | B1 |
6216827 | Ichiba et al. | Apr 2001 | B1 |
6223866 | Giacomazza | May 2001 | B1 |
6231456 | Rennie et al. | May 2001 | B1 |
6241055 | Daudi | Jun 2001 | B1 |
6241056 | Cullen et al. | Jun 2001 | B1 |
6283258 | Chen et al. | Sep 2001 | B1 |
6302246 | Naumann et al. | Oct 2001 | B1 |
6357557 | DiPonio | Mar 2002 | B1 |
6405839 | Ballinger et al. | Jun 2002 | B1 |
6465110 | Boss et al. | Oct 2002 | B1 |
6481545 | Yano et al. | Nov 2002 | B1 |
6505716 | Daudi et al. | Jan 2003 | B1 |
6507716 | Nomura et al. | Jan 2003 | B2 |
6543518 | Bend et al. | Apr 2003 | B1 |
6648055 | Haug et al. | Nov 2003 | B1 |
6799664 | Connolly | Oct 2004 | B1 |
6880681 | Koizumi et al. | Apr 2005 | B2 |
6890218 | Patwardhan et al. | May 2005 | B2 |
6899158 | Matuura et al. | May 2005 | B2 |
6932917 | Golden et al. | Aug 2005 | B2 |
6945309 | Frait et al. | Sep 2005 | B2 |
7066235 | Huang | Jun 2006 | B2 |
7112749 | DiPaola et al. | Sep 2006 | B2 |
7178795 | Huprikar et al. | Feb 2007 | B2 |
7293755 | Miyahara et al. | Nov 2007 | B2 |
7594568 | Hanna et al. | Sep 2009 | B2 |
7604098 | Dessouki et al. | Oct 2009 | B2 |
7644750 | Schroth et al. | Jan 2010 | B2 |
7775332 | Hanna et al. | Aug 2010 | B2 |
7836938 | Agarwal et al. | Nov 2010 | B2 |
7937819 | Hanna et al. | May 2011 | B2 |
20020084156 | Ballinger et al. | Jul 2002 | A1 |
20020104721 | Schaus et al. | Aug 2002 | A1 |
20030037999 | Tanaka et al. | Feb 2003 | A1 |
20030127297 | Smith et al. | Jul 2003 | A1 |
20030141154 | Rancourt et al. | Jul 2003 | A1 |
20030213658 | Baba | Nov 2003 | A1 |
20040031581 | Herreid et al. | Feb 2004 | A1 |
20040045692 | Redemske | Mar 2004 | A1 |
20040074712 | Quaglia et al. | Apr 2004 | A1 |
20040084260 | Hoyte et al. | May 2004 | A1 |
20040242363 | Kohno et al. | Dec 2004 | A1 |
20050011628 | Frait et al. | Jan 2005 | A1 |
20050150222 | Kalish et al. | Jul 2005 | A1 |
20050183909 | Rau, III et al. | Aug 2005 | A1 |
20050193976 | Suzuki et al. | Sep 2005 | A1 |
20060076200 | Dessouki et al. | Apr 2006 | A1 |
20060243547 | Keller | Nov 2006 | A1 |
20070039710 | Newcomb | Feb 2007 | A1 |
20070056815 | Hanna et al. | Mar 2007 | A1 |
20070062664 | Schroth et al. | Mar 2007 | A1 |
20070062768 | Hanna et al. | Mar 2007 | A1 |
20070142149 | Kleber | Jun 2007 | A1 |
20070166425 | Utsugi | Jul 2007 | A1 |
20070235270 | Miskinis et al. | Oct 2007 | A1 |
20070298275 | Carter et al. | Dec 2007 | A1 |
20080099289 | Hanna et al. | May 2008 | A1 |
20080185249 | Schroth et al. | Aug 2008 | A1 |
20090020256 | Hanna et al. | Jan 2009 | A1 |
20090032569 | Sachdev et al. | Feb 2009 | A1 |
20090107787 | Walker et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
428319 | Jan 1967 | CH |
200510113784.X | Oct 2005 | CN |
1757948 | Apr 2006 | CN |
2863313 | Jan 2007 | CN |
24 46 938 | Apr 1976 | DE |
25 37 038 | Mar 1977 | DE |
19649919 | Jun 1998 | DE |
199 48 009 | Mar 2001 | DE |
60000008 | Mar 2002 | DE |
101 41 698 | Mar 2003 | DE |
102005048258.9 | Oct 2005 | DE |
60116780 | Nov 2006 | DE |
0 205 713 | Dec 1986 | EP |
1230 274 | Apr 1971 | GB |
57154533 | Sep 1982 | JP |
1126434 | Aug 1989 | JP |
05104567 | Apr 1993 | JP |
11-342461 | Dec 1999 | JP |
11342461 | Dec 1999 | JP |
2003214465 | Jul 2003 | JP |
2004011841 | Jan 2004 | JP |
20010049837 | Jun 2001 | KR |
WO 9823877 | Jun 1998 | WO |
WO 0136836 | May 2001 | WO |
2007035206 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090176122 A1 | Jul 2009 | US |