1. Field of the Invention
The present invention relates to garments. More particularly, the present invention relates to garments having edge bands seamlessly secured thereto and processes for making such garments.
2. Description of Related Art
Many types of garments require bands secured to the edge of the garment. In some instances, the bands provide elasticity to the edge of the garment to maintain the garment in a desired location when worn. For example, intimate apparel garments such as, but not limited to, briefs and panties include an elastic waistband and often include elastic leg bands. Garments such as brassieres include an elastic chest band, while garments such as socks and hosiery include elastic leg bands. In other instances, the bands may provide a decorative or aesthetic effect to the garment.
Sewn seams have traditionally been used to secure bands to the garment edges; however, in applications where a band rests against the skin of the wearer, the sewn seams may be a source of physical and/or aesthetic discomfort. For example, the seams may cause chaffing and discomfort to the skin, and may be bulky so as to be seen through the outer clothing of the wearer.
Adhesives have been previously used to secure bands to garments. While adhered bands can resolve some of the discomforts associated with sewn seams, the adhered bands can lead to other deleterious effects. For example, the normal washing and drying cycles that typical garments are exposed to require the use of aggressive adhesives that may diminish the elasticity of the band and/or negatively effect the hand feel of the garment. Also, the manufacture of garments having adhered bands has proven to require additional process steps that lead to increased garment costs and decreased productivity.
The use of sonic energy, both subsonic and ultrasonic, to bond or weld (hereinafter “weld”) materials having thermoplastic components has also been used to secure elastic bands to garments, such as in the disposable diaper industry. The process typically involves the use of high frequency mechanical vibrations that cause friction and melting at adjoining surfaces of the thermoplastic components, fusing them together in a strong molecular bond. Typically, the process includes pressing the materials to be joined between a vibrating horn and an anvil. The horn channels mechanical vibrations into the materials to fuse the materials at the location of the horn. While sonically welded elastic bands can result in increased productivity, they have not proven durable enough for many non-disposable garment applications.
Accordingly, there is a continuing need for garments having bands seamlessly secured thereto and processes for making such garments that resolve one or more deleterious effects and drawbacks of prior garments and processes.
It is an object of the present invention to provide garments having bands seamlessly secured thereto.
It is another object to provide processes for seamlessly securing bands to garments.
These and other objects and advantages of the present invention are provided by a garment having a fabric layer and an edge band. The edge band and the fabric layer each include a sonically weldable material. In one embodiment, the garment comprises a sonic edge weld securing the edge band to the fabric layer along a cut edge of the garment, and an adhesive securing the edge band to the fabric layer.
Further objects and advantages are provided by a process for making a garment. One process includes: (1) placing an edge band on a fabric layer, the fabric layer and edge band each including a sonically weldable material, (2) applying sonic energy to the fabric layer and the edge band so that the fabric layer and the edge band are simultaneously trimmed along a cut edge and welded to one another along the cut edge, and (3) activating an adhesive between the fabric layer and the edge band to adhere the edge band to the fabric layer.
The above-described and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.
Referring to the drawings and in particular to
Garment 10 is illustrated by way of example as a panty having an elastic edge band 14 secured to a waist region 18 and leg region 20. Of course, it is contemplated by the present invention for garment 10 to be any other apparel or clothing item such as, but not limited to, a brassiere, a shirt, a pair of pants, a coat, a sock, a pair of pantyhose, a bathing suit, a camisole, a boxer short, a men's brief, and any other clothing item having an edge band secured to any desired region.
In addition, garment 10 is illustrated by way of example having a single fabric layer 12. Of course, it is contemplated by the present invention for the garment to include more than one fabric layer 12.
Edge band 14 is seamlessly secured to fabric layer 12 by an edge weld 22 and an adhesive 24. As described in detail below, the energy input into garment 10 to define edge weld 22 may also simultaneously trim fabric layer 12 and edge band 14 to define a cut edge 26 of garment 10. Advantageously, edge weld 22 also seals cut edge 26 so that the free outer edge of fabric layer 12 and a free edge of the edge band 14 terminate at the same point and do not fray during use of garment 10. Further, the simultaneous cutting of fabric layer 12 and edge band 14 at cut edge 26 ensures that the fabric layer and band are co-planar at the cut edge. Thus, fabric layer 12 and edge band 14 are sonically welded to one another along cut edge 26 and are adhered to one another in the remaining portions where the band overlaps the fabric layer. In one embodiment, the adhesive 24 is applied along more than half of the inner surface of the edge band 14.
In some embodiments, edge band 14 may further be seamlessly secured to fabric layer 12 by one or more tack welds 28. As described in detail below, edge weld 22, and tack welds 28 if present, hold fabric layer 12 and edge band 14 in place with respect to one another during the manufacturing process prior to activation of adhesive 24.
Fabric layer 12 and/or edge band 14 may be formed of any non-woven fabric, woven fabric, or knitted fabric having between about ten percent and about one hundred percent of a sonically weldable material and all subranges therebetween. Sonically weldable materials include polypropylene, lycra spandex, tricot, polyester, nylon, acrylic, vinyl, PVC, thermoplastic urethane, or any combinations and blends thereof. Advantageously, fabric layer 12 and/or edge band 14 have up to about ninety percent natural fibers.
In one embodiment, fabric layer 12 and/or edge band 14 may be a blend of about sixty percent sonically weldable material and about forty-percent natural fibers. In another embodiment, fabric layer 12 is a blend of about twelve percent sonically weldable material and about eighty-eight percent natural fibers, while edge band 14 is a one hundred percent sonically weldable material. It is believed that fabric layer 12 and/or edge band 14 may include at least about 70 percent natural fibers.
The adhesive 24 may be any heat activated adhesive material. In some embodiments, adhesive 24 may impart a desired elasticity to garment 10. In other embodiments, edge band 14 alone, or in combination with adhesive 24, may impart a desired elasticity to garment 10. Thus, garment 10 may be provided with elasticity at its edges by adhesive 24, edge band 14, or any combination thereof.
Adhesive 24 is preferably a heat activated adhesive net or film. For example, adhesive 24 may be a heat activated adhesive net that provides elasticity to garment 10 such as the adhesive nets commercially available under the DELNET® tradename from Delstar Technologies of Austin, Tex. In another example, adhesive 24 may be a heat activated elastic film such as the adhesive films commercially available under the tradename SEWFREE® from Bemis Associates Incorporated of Shirley, Mass.
Referring now to
In addition, fabric layer 12 and edge band 14 may include multiple cut edges 26 to provide garment 10 with a decorative effect 32, such as a lace effect. Here, an edge weld 22 is defined at each of the cut edges 26 of decorative effect 32.
In some embodiments, edge band 14 may further be seamlessly secured to fabric layer 12 by one or more tack welds 28. However, it has also been found that provision of multiple cut edges 26 and, thus, multiple edge welds 22, not only provides decorative effect 32, but also can mitigate the need for additional tack welds 28.
An exemplary embodiment of a process 40 for making garment 10 is described with reference to
During a second step of process 40, shown in
In a preferred embodiment, adhesive 24 is laminated on edge band 14 prior to placement of the edge band on fabric layer 12. Here, edge band 14 is placed on fabric layer 12 so that adhesive 24 is in contact with the fabric layer.
As edge band 14 and adhesive 24 are placed on fabric layer 12, the edge band, adhesive, and fabric layer are sonically cut and welded along final shape 44 to define edge weld 22 (not shown) and cut edge 26. Selvage 42 having both fabric layer 12 and edge band 14 is removed and discarded. In some embodiments, fabric layer 12 and edge band 14 are also sonically welded to define tack welds 28 (not shown). Accordingly, the second process step applies sonic energy with sufficient intensity to simultaneously cut fabric layer 12, adhesive 24, and edge band 14 along cut edge 26 and weld the fabric layer and edge band to one another at edge weld 22 and, if present, at tack welds 28. For example, it is contemplated for process 40 to expose fabric layer 12 and edge band 14 to sonic energy of between about 20 and 60 kilohertz (kHz) and a pressure of between about 20 and 40 pounds per square inch (psi).
In a preferred embodiment, the second process step of process 40 is carried out using a sealing and bonding machine commercially available under the tradenames SEAMMASTER or LACEMASTER from Sonobond Ultrasonics of West Chester, Pa.
At this point, fabric layer 12 and edge band 14 are held in place with respect to one another by edge weld 22 and, if present, by tack welds 28. The sonic energy that creates cut edge 26 and welds 22, 28 also locally activates adhesive 24. Thus, welds 22, 28 include components of fabric layer 12, edge band 14, and adhesive 24 in addition to a localized area of activated adhesive surrounding around the welds. However, adhesive 24 remains un-activated in the remaining portions of overlap between fabric layer 12 and edge band 14.
During a third step of process 40, shown in
Process 40 can be easily modified to provide tack welds 28, decorative pattern 30, and/or decorative effect 32 as desired. For example, the horn used to apply sonic energy during the second and third steps may be modified using known methods to provide the tack welds 28, decorative pattern 30 and/or decorative effect 32, as desired.
During a fourth step of process 40, shown in
Finally, garment 10 may be completed by folding the garment and adding side seams 16 for securing portions of fabric layer 12 to one another, as shown in
Advantageously, process 40 uses sonic welds 22, 28 to hold fabric layer 12 and edge band 14 in place with respect to one another while cutting through both the edge band and fabric, so that the edges are co-planar with one another. Process 40 then activates adhesive 24 to firmly secure edge band 14 to fabric layer 12 without deleteriously effecting the elastic characteristics of the edge band or the hand feel of the edge band and fabric. It has been determined that the combination of edge weld 22 and adhesive 24, as well as tack welds 28 if present, provide garment 10 with a desired durability, washability, hand feel, and method of manufacture not previously possible.
It should also be noted that the terms “first”, “second”, “third”, “upper”, “lower”, and the like may be used herein to modify various elements. These modifiers do not imply a spatial, sequential, or hierarchical order to the modified elements unless specifically stated.
While the present disclosure has been described with reference to one or more exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment(s) disclosed, but that the disclosure will include all embodiments falling within the scope of the appended claims.
This application is a divisional of pending U.S. patent application Ser. No. 11/032,285, filed on Jan. 10, 2005, the entirety of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11032285 | Jan 2005 | US |
Child | 12944017 | US |