1. Field of the Invention
This invention relates to polycrystalline diamond cutters for use in earth boring bits. Specifically, this invention relates to polycrystalline diamond cutters which have modified substrates to selectively modify and alter residual stress in the cutter structure.
2. Statement of the Art
Polycrystalline diamond compact cutters (hereinafter referred to as “PDC” cutters) are well-known and widely used in drill bit technology as the cutting element of certain drill bits used in core drilling, oil and gas drilling, and the like. Polycrystalline diamond compacts generally comprise a polycrystalline diamond (hereinafter “PCD”) table formed on a carbide substrate by a high temperature-high pressure (hereinafter “HTHP”) sintering process. The PCD table and substrate compact may be attached to an additional or larger (i.e., longer) carbide support by, for example, a brazing process. Alternatively, the PCD table may be formed on an elongated carbide substrate in a sintering process to form the PDC cutter with an integral elongated support. The support of the PDC cutter is then brazed or otherwise attached to a drill bit in a manner which exposes the PCD table to the surface for cutting.
It is known that PDC cutters, by virtue of the materials comprising the PCD table and the support, inherently have residual stresses existing in the compact therebetween, throughout the table and the carbide substrate, and particularly at the interface. That is, the diamond and the carbide have varying coefficients of thermal expansion, elastic moduli and bulk compressibilities such that when the PDC cutter is formed, the diamond and the carbide shrink by different amounts. As a result, the diamond table tends to be in compression while the carbide substrate and/or support tend to be in tension. Fracturing of the PDC cutter can result, often in the interface between the diamond table and the carbide, and/or the cutter may delaminate under the extreme temperatures and forces of drilling.
Various solutions have been suggested in the art for modifying the residual stresses in PDC cutters so that cutter failure is avoided. For example, it has been suggested that configuring the diamond table and/or carbide substrate in a particular way may redistribute the stress such that tension is reduced, as disclosed in U.S. Pat. No. 5,351,772 to Smith and U.S. Pat. No. 4,255,165 to Dennis. Other cutter configurations which address reduced stresses are disclosed in U.S. Pat. No. 5,049,164 to Horton; U.S. Pat. No. 5,176,720 to Martell, et al.; U.S. Pat. No. 5,304,342 to Hall; and U.S. Pat. No. 4,398,952 to Drake (in connection with the formation of roller cutters).
Recent experimental testing has shown that the residual stress state of the diamond table of a PDC cutter can be controlled by novel means not previously disclosed in the literature. That is, results have shown that a wide range of stress states, from high compression through moderate tension, can be imposed on the diamond table by selectively tailoring the carbide substrate. Thus, it would be advantageous in the art to provide a PDC cutter having selectively tailored stress states, and to provide methods for producing such PDC cutters.
In accordance with the present invention, a polycrystalline diamond compact cutter having a tailored carbide substrate which favorably alters the compressive stresses in the diamond table and residual tensile stresses within the carbide substrate is provided to produce a PDC cutter with improved stress characteristics. Modification of the substrate to tailor the stress characteristics in the diamond table and substrate may be accomplished by selectively thinning the carbide substrate subsequent to HTHP processing, by selectively varying the material constituents of the substrate, by subjecting the PDC cutter to an annealing process during sintering, by subjecting the formed PDC cutter to a post-process stress relief anneal, or a combination of those means.
The PDC cutters of the present invention are comprised of a polycrystalline diamond table, a carbide substrate on which the polycrystalline diamond table is formed (e.g., sintered) and, optionally, a carbide support of typically greater thickness than either the diamond table or the substrate to which the substrate is connected (e.g., brazed). However, it has been discovered that a wide range of stress states, from high compression through moderate tension, can be imposed in the diamond table by selectively tailoring the carbide substrate thickness. The carbide substrate may be formed with a selected thickness by the provision of sufficient carbide material during the HTHP sintering process to produce the desired thickness. In addition, or alternatively, once the PDC cutter is formed, the substrate may be selectively thinned by subjecting it to a grinding process or machining or by electro-discharge machining processes.
It has been shown through experimental and numerical residual stress analyses that the magnitude of stress existing in the diamond table is related to the thickness of the support. Thus, within a suitable range, the carbide substrate of the cutter may be thinned to achieve a desired magnitude of stress in the diamond table appropriate to a particular use. The achievement of an appropriate or desired degree of thinness in the carbide support, and therefore the desired magnitude of stress, may be determined by residual stress analyses.
The substrate of the PDC cutter may typically be made of cobalt-cemented tungsten carbide (WC), or other suitable cemented carbide material, such as tantalum carbide, titanium carbide, or the like. The cementing material, or binder, used in the cemented carbide substrate may be cobalt, nickel, iron, or alloys formed from combinations of those metals, or alloys of those metals in combination with other materials or elements. Experimental testing has shown that introduction of a selective gradation of materials in the substrate will produce suitable stress states in the carbide substrate and diamond table. For example, the use of varying qualities of grades or percentages of cobalt-cemented (hereinafter “Co-cemented”) carbides in the substrate produces very suitable states of compression in the diamond table and reduced residual tensile stress in the carbide substrate and provides increased strength in the cutter.
It has also been shown that a PDC cutter with suitably modified stress states in the diamond table and substrate may be formed by selectively manipulating the qualities of grades or percentages of binder content, carbide grain size or mixtures of binder or carbide alloys in the substrate. Thus, the specific properties of the cutter may be achieved through selectively dictating the metallurgical content of the substrate. Further, subjecting the PDC cutter of the present invention to an annealing step during the sintering process increases the hardness of the diamond table. Subjecting the formed (sintered) PDC cutter to a post-process stress relief anneal procedure provides a further means for selectively tailoring the stresses in the PDC cutter and significantly improves the hardness of the diamond table. Additionally, tailoring the thickness of the backing and/or subjecting the substrate to the disclosed annealing processes also provides selected suitable stress states in the diamond table and support.
In the drawings, which illustrate what is currently considered to be the best mode for carrying out the invention,
It is known that the difference in coefficients of thermal expansion between diamond and carbide materials results in the bulk of the diamond table of a PDC cutter being in compression and the bulk of the carbide substrate being in tension following the HTHP sintering process used to form a PDC cutter. The respective existences of compression and tension states in the diamond table and substrate components of a PDC cutter have been demonstrated through residual stress analyses. Residual stress analyses have also demonstrated, however, an ability to tailor the residual stress states which exist in the diamond table and substrate of the PDC cutter by reducing the thickness of the carbide substrate, or varying the properties of the carbide substrate.
The correlation is illustrated by
Accordingly, in a first embodiment of the invention, represented in
The carbide substrate 14 of the illustrated embodiment may be comprised of any conventional cemented carbide, such as tungsten carbide, tantalum carbide or titanium carbide. Additionally, the substrate may contain additional material, such as cobalt, nickel, iron or other suitable material. The carbide substrate 14 may be selectively thinned, subsequent to sintering, from its original thickness to achieve a desired residual stress state by any of a number of methods. For example, the thickness 24 of the carbide substrate 14 may be selected initially, in the formation of the PDC cutter 10, to provide a final, post-sintering carbide substrate 14 of the desired thickness 24. Alternatively, the carbide substrate 14 may be formed by conventional methods to a conventional thickness, and the carbide substrate 14 may thereafter be selectively thinned along the planar surface 26 to which the carbide support 16 is thereafter joined. The carbide substrate 14 may be thinned by grinding the planar surface 26 using grinding methods known in the art, or the carbide substrate 14 may be thinned by employing an electro-discharge or other machining process. The carbide substrate 14 is thinned to remove a sufficient amount of material from the carbide substrate 14 to achieve the desired residual stress levels. The carbide substrate 14 and polycrystalline diamond table 12 assembly may then be attached to the additional carbide support 16 by brazing or another suitable technique.
Alternatively, the polycrystalline diamond table 12 may be formed on the carbide substrate 14 by conventional methods to provide a conventional thickness, and the polycrystalline diamond table 12 and carbide substrate 14 assembly may then be joined to the additional carbide support 16. Thereafter, the total thickness of the carbide substrate 14 plus carbide support 16 may be modified by grinding, machining (e.g., sawing) or by electro-discharge machining processes.
The residual stresses in the diamond table of a PDC cutter may also be modified and tailored by selectively modifying the materials content of the substrate of the PDC cutter. Specifically, a PDC cutter 30, as illustrated
Alternatively, as shown in
By way of example only, and again with reference to
The advantageous modification of residual stress in the substrate resulting from a selected modification of the material of the substrate is demonstrated in
Notably, Knoop hardness testing conducted on the PDC cutters illustrated in
A post-process stress thermal treatment cycle is also beneficial in reducing the residual stresses experienced in the diamond table. The post-process stress relief anneal cycle comprises the steps of subjecting a sintered compact (i.e., the diamond table and substrate) to a temperature of between about 650° C. and 700° C. for a period of one hour at less than 200 μm of vacuum pressure. Notably, the heat up and cool down cycles of the process are controlled over a three-hour period to promote even and gradual cooling, thereby reducing the residual stress forces in the cutter.
Comparative Knoop hardness testing performed on a conventional PDC cutter, as described above with a 13% cobalt content in the carbide substrate, and a PDC cutter, as illustrated in
Further evidence of the difference effected on residual stress by use of a post-annealing process can be observed in a comparison of
The present invention is directed to providing polycrystalline diamond compact cutters having selectively modified residual stress states in the diamond table and substrate or support thereof. Through the means of selective thinning of the substrate and/or support, through the means of selectively modifying the materials content of the substrate, through the means of subjecting the PDC cutter to in-process annealing procedures, and through the means of subjecting a sintered PDC cutter to a post-process stress relief annealing procedure, or combinations of all these means, desired residual stresses and compressive forces in a PDC cutter may be achieved. The concept may be adapted to virtually any type or configuration of PDC cutter and may be adapted for any type of drilling or coring operation. The structure of the PDC cutters of the invention may be modified to meet the demands of the particular application. Hence, reference herein to specific details of the illustrated embodiments is by way of example and not by way of limitation. It will be apparent to those skilled in the art that many additions, deletions and modifications to the illustrated embodiments of the invention may be made without departing from the spirit and scope of the invention as defined by the following claims.
This application is a divisional of application Ser. No. 09/717,595, filed Nov. 21, 2000, now U.S. Pat. No. 6,521,174, issued Feb. 18, 2003, which is a divisional of application Ser. No. 09/231,350, filed Jan. 13, 1999, now U.S. Pat. No. 6,220,375, issued Apr. 24, 2001.
Number | Name | Date | Kind |
---|---|---|---|
2889138 | Haglund | Jun 1959 | A |
3745623 | Wentorf et al. | Jul 1973 | A |
4398952 | Drake | Aug 1983 | A |
4484644 | Cook et al. | Nov 1984 | A |
4604106 | Hall et al. | Aug 1986 | A |
4686080 | Hara et al. | Aug 1987 | A |
4767050 | Flood et al. | Aug 1988 | A |
4811801 | Salesky et al. | Mar 1989 | A |
4956238 | Griffin | Sep 1990 | A |
5011515 | Frushour | Apr 1991 | A |
5022894 | Vagarali et al. | Jun 1991 | A |
5032147 | Frushour | Jul 1991 | A |
5049164 | Horton et al. | Sep 1991 | A |
5060739 | Griffin | Oct 1991 | A |
5135061 | Newton, Jr. | Aug 1992 | A |
5176720 | Martell et al. | Jan 1993 | A |
5304342 | Hall et al. | Apr 1994 | A |
5332051 | Knowlton | Jul 1994 | A |
5351772 | Smith | Oct 1994 | A |
5355969 | Hardy et al. | Oct 1994 | A |
5435403 | Tibbitts | Jul 1995 | A |
5451430 | Anthony et al. | Sep 1995 | A |
5510193 | Cerutti et al. | Apr 1996 | A |
5598750 | Griffin et al. | Feb 1997 | A |
5635256 | Olson | Jun 1997 | A |
5645617 | Frushour | Jul 1997 | A |
5669271 | Griffin et al. | Sep 1997 | A |
5688557 | Lemelson et al. | Nov 1997 | A |
5701578 | Liu | Dec 1997 | A |
5706906 | Jurewicz | Jan 1998 | A |
5738698 | Kapoor et al. | Apr 1998 | A |
5816347 | Dennis et al. | Oct 1998 | A |
5820985 | Chow et al. | Oct 1998 | A |
5848348 | Dennis | Dec 1998 | A |
5875862 | Jurewicz et al. | Mar 1999 | A |
5960896 | Barr et al. | Oct 1999 | A |
6220375 | Butcher et al. | Apr 2001 | B1 |
6258139 | Jensen | Jul 2001 | B1 |
6268045 | Leyendecker et al. | Jul 2001 | B1 |
6521174 | Butcher et al. | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
2258260 | Feb 1993 | GB |
2307931 | Jun 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20030072669 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09717595 | Nov 2000 | US |
Child | 10295641 | US | |
Parent | 09231350 | Jan 1999 | US |
Child | 09717595 | US |