A method of optimizing variables affecting stimulation treatments in order to improve well productivity is disclosed.
In a typical hydraulic fracturing treatment, fracturing treatment fluid comprising a transport slurry containing a solid proppant, such as sand, is injected into the wellbore at high pressures.
The transport of sand, as proppant, was examined in Biot and Medlin, “Theory of Sand Transport in Thin Fluids”, SPE 14468, Sep. 22-25, 1985, which is herein incorporated by reference. In Biot-Medlin, it was determined that the mechanics of sand transport are principally controlled by horizontal fluid velocity, U, of the transport fluid containing the proppant (transport slurry). The velocity ranges for transport mechanisms were defined in terms of the ratio vt/U as follows:
Once natural reservoir pressures are exceeded, the fluid induces fractures in the formation and proppant is placed in the created fractures to ensure that the fractures remain open once the treating pressure is relieved. Highly conductive pathways, radiating laterally away from the wellbore, are thereby provided to increase the productivity of oil or gas well completion. The conductive fracture area is defined by the propped fracture height and the effective fracture length.
In the last years, considerable interest has been generated in recently developed ultra-lightweight (ULW) proppants which have the requisite mechanical properties to function as a fracturing proppant at reservoir temperature and stress conditions. Hydraulic fracturing treatments employing the ULW proppants have often resulted in stimulated well productivity well beyond expectations. ULW proppants are believed to facilitate improved proppant placement, thus providing for significantly larger effective fracture area than can be achieved with previous fluid/proppant systems. Improvements in productivity have been attributable to the increased effective fracture area from use of such ULW proppants.
In light of cost economics, there has also recently been a renewed interest in slickwater fracturing which uses relatively non-damaging fracturing fluids. The most significant disadvantage associated with slickwater fracturing is poor proppant transportability afforded by the low viscosity treating fluid. Poor proppant transport results in the tendency of proppants to settle rapidly, often below the target zone, yielding relatively short effective fracture lengths and consequently, steeper post-stimulation production declines than may be desired. Post-frac production analyses frequently suggests that effective fracture area, defined by the propped fracture height and the effective fracture length, is significantly less than that designed, implying either the existence of excessive proppant-pack damage or that the proppant was not placed in designated areal location.
Three primary mechanisms work against the proper placement of proppant within the productive zone to achieve desired effective fracture area. First, fracture height typically develops beyond the boundaries of the productive zone, thereby diverting portions of the transport slurry into non-productive areas. As a result, the amount of proppant placed in the productive area may be reduced. Second, there exists a tendency for the proppant to settle during the pumping operation or prior to confinement by fracture closure following the treatment, potentially into non-productive areas. As a result, the amount of proppant placed in productive areas is decreased. Third, damage to the proppant pack placed within the productive zone often results from residual fluid components. This causes decreased conductivity of the proppant pack.
Efforts to provide improved effective fracture area have traditionally focused on the proppant transport and fracture clean-up attributes of fracturing fluid systems. Still, the mechanics of proppant transport are generally not well understood. As a result, introduction of the transport slurry into the formation typically is addressed with increased fluid viscosity and/or increased pumping rates, both of which have effects on fracture height containment and conductivity damage. As a result, optimized effective fracture area is generally not attained.
It is desirable to develop a model by which proppant transport can be regulated prior to introduction of the transport slurry (containing proppant) into the formation and during stimulation. In particular, since well productivity is directly related to the effective fracture area, a method of determining and/or estimating the propped fracture length and proppant transport variables is desired. It would further be highly desirable that such model be applicable with ULW proppants as well as non-damaging fracturing fluids, such as slickwater.
Prior to the start of a hydraulic fracturing treatment process, the relationship between physical properties of the selected transport fluid and selected proppant, the minimum horizontal velocity, MHVST, for transport of the transport slurry and the lateral distance to which that minimum horizontal velocity may be satisfied, are determined for a fracture of defined generalized geometry.
The method requires the pre-determination of the following variables:
The minimum horizontal flow velocity, MHVST, for suspension transport is based upon the terminal settling velocity, Vt, of a particular proppant suspended in a particular fluid and may be determined in accordance with Equation (I):
MHVST=Vt×10 (I)
Equation (I) is based on the analysis of Biot-Medlin which defines suspension transport as Vt/U<0.1, wherein U is horizontal velocity.
For a given proppant and transport fluid, a Slurry Properties Index, ISP, defines the physical properties of the transport slurry as set forth in Equation (II):
ISP=(d2prop)×(1/μfluid)×(ΔSGPS) (II)
wherein:
dprop is the median proppant diameter, in mm.;
μfluid is the apparent viscosity of the transport fluid, in cP; and
Δ SGPS is SGprop−SGfluid, SGprop being the specific gravity of the proppant and SGfluid being the specific gravity of the transport fluid.
With knowledge of the MHVST for several slurries of various fluid and proppant compositions, CTRANS, a transport coefficient may be determined as the slope of the linear regression of ISP vs. MHVST, in accordance with Equation (III):
MHVST=CTRANS×ISP (III)
The horizontal velocity, U and the generalized geometry of the fracture to be created are used to determine power law variables. This may be calculated from a generalized geometric fracture model required for proppant transport. Similar information can be extracted from some fracture design models, such as Mfrac. The generalized fracture geometry is defined by the aspect ratio, i.e., fracture length growth to fracture height growth. A curve is generated of the velocity decay of the transport slurry versus the fracture length by monitoring fracture growth progression from the instantaneous change in the major radii of the fracture shape.
As an example, where the aspect ratio is 1:1, the horizontal direction of the radial fracture may be examined. The instantaneous change in the major radii over the course of the simulation is used as a proxy for fluid velocity at the tip of the fracture. Using the volumes calculated for each geometric growth increment, the average velocities to satisfy the respective increments may then be determined. For instance, growth progression within the fracture may be conducted in 100 foot horizontal length increments. A transport slurry velocity decay versus fracture length curve is generated wherein the average incremental values are plotted for the defined generalized geometry versus the lateral distance from the wellbore.
A power law fit is then applied to the decay curve. This allows for calculation of the horizontal velocity at any distance from the wellbore. The multiplier, A, from the power law equation describing the transport slurry velocity vs. distance for the desired geometry is then determined. The exponent, B, from the power law equation describing the transport slurry velocity vs. distance for the desired geometry is also determined.
The length of a propped fracture, DPST, may then be estimated for a fracturing job with knowledge of multiplier A and exponent B as well as the injection rate and ISP in accordance with Equation (IVA and IVB):
(DPST)B=qi×(1/A)×CTRANS×ISP; or (IVA)
(DPST)B=qi×(1/A)×CTRANS×(d2prop)×(1/μfluid)×(ΔSGPS) (IVB)
wherein:
A is the multiplier from the Power Law equation describing the transport slurry velocity vs. distance for the generalized fracture geometry;
B is the exponent from the Power Law equation describing the transport slurry velocity vs. distance for the generalized fracture geometry;
qi is the injection rate per foot of injection height, bpm/ft.; and
CTRANS the transport coefficient, is the slope of the linear regression of the ISP vs MHVST.
DPST is thus the estimated propped fracture length which will result from a fracturing treatment using the pre-determined variables.
Via rearrangement of Equation (IVB), treatment design optimization can be obtained for other variables of the proppant, transport fluid or injection rate. In particular, prior to introducing a transport slurry into a fracture having a defined generalized geometry, any of the following parameters may be optimized:
(a) the requisite injection rate for a desired propped fracture length, in accordance with the Equation (V):
qi=[1/(DPST)B]×[(1/A)×CTRANS×(d2prop)×(1/μfluid)×(ΔSGPS)]; (V)
(b) Δ SGPS for the desired propped fracture length in accordance with Equation (VI):
ΔSGPS=(A)×(1/qi)×(DPST)B×(1/CTRANS)×(1/d2prop)×(μfluid) (VI);
(c) the requisite apparent viscosity of the transport fluid for a desired propped fracture length in accordance with Equation (VII):
μfluid=(1/A)×qi×(1/DPST)B×(CTRANS)×(ΔSGPS)×(d2prop); (VII); and
(d) the requisite median diameter of a proppant, dprop, for the desired propped fracture length in accordance with Equation (VIII):
(dprop)2=(A)×(1/qi)×(DPST)B×(1/CTRANS)×(1/ΔSGPS)×(μfluid) (VIII)
During fracturing, proppant size, the apparent viscosity of the transport fluid and/or the injection rate of the transport fluid may be manipulated in order to attain a constant DPST.
In order to more fully understand the drawings referred to in the detailed description of the present invention, a brief description of each drawing is presented, in which:
Certain physical properties of proppant and transport fluid affect the ability of the proppant to be transported into a subterranean formation in a hydraulic fracturing treatment. Such properties include the median diameter of the proppant, specific gravity of the proppant and the apparent viscosity and specific gravity of the fluid used to transport the proppant into the formation (“transport fluid”).
A Slurry Properties Index, ISP, has been developed to define the inherent physical properties of the transport slurry (transport fluid plus proppant):
ISP=(d2prop)×(1/μfluid)×(ΔSGPS) (I)
wherein:
dprop is the median proppant diameter, in mm.;
μfluid is the apparent viscosity of the transport fluid, in cP; and
Δ SGPS is SGprop−SGfluid, SGprop being the specific gravity of the proppant and
SGfluid being the specific gravity of the transport fluid.
As an example, the ISP for sand having a specific gravity of 2.65 g/cc and specific gravity of the transport fluid being 8.34 lbs/gallon (1 g/cc), a median diameter of sand of 0.635 mm and an apparent viscosity of 7 cP for the transport fluid would be:
wherein the 1150 multiplier is a unit conversion factor.
Thus, an increase in ISP translates to an increased difficulty in proppant transport. As illustrated in Equation (I), the proppant size very strongly influences the ISP. Since the median diameter of the proppant is squared, increasing proppant size results in a relatively large increase in the ISP index. Since the fluid viscosity, μfluid, is in the denominator of Equation (I), an increase in fluid viscosity translates to a reduction in ISP. This results in a proportional improvement in proppant transport capability. Further, an increase in Δ SGPS, the differential in specific gravity between the proppant and the transport fluid, created, for instance, by use of a heavier proppant and/or lighter transport fluid, translates into a proportional decrease in proppant transport capability. The ISP, defined in Equation (1) may be used to describe any proppant/fluid combination by its inherent properties.
The ISP may be used to determine the lateral distance that a given transport slurry may be carried into a fracture. This lateral distance is referred to as the effective fracture length. The effective fracture length may further be defined as the lateral distance into a given fracture at which the minimum velocity for suspension transport is no longer satisfied, wherein the minimum velocity is represented as Vt/U<0.1. [Bed load transport (Vt/U>0.1) is generally not considered capable of providing sufficient lateral proppant transport for significant extension of propped fracture length.]
Thus, the effective fracture length is dependent on the terminal settling velocity, Vt. Vt, as reported by Biot-Medlin, is defined by the equation:
Vt=2[(ρp−ρ)/3ρCd×gd]1/2
wherein:
ρp is the density of proppant;
ρ is the density of the transport fluid;
Cd is the drag coefficient;
d is the diameter of the proppant; and
g is acceleration due to gravity.
There is a large body of published data for Vt for proppants in both Newtonian and non-Newtonian liquids.
Horizontal fluid velocity, U, within the growing hydraulic fracture is dependent upon the injection rate as well as fracture geometry. The fracture geometry is defined by the aspect ratio, i.e., fracture length growth to fracture height growth. For example a 1:1 aspect ratio is radial and a 3:1 and 5:1 aspect ratio is an elliptical growth pattern. As the fracture is created and growth in length and height proceeds, it is possible to calculate (with knowledge of the velocity of the fluid and the time required to fill the fracture) the volume of fluid which fills the fracture. The volume for geometric growth increments may therefore be determined.
Fracture growth progression may be monitored from the changes in the major radii of the fracture shape. Using the volumes calculated for each geometric growth increment, the average horizontal velocity, U, to satisfy the respective increments may then be determined.
For instance, using an aspect ratio of 1:1, the horizontal direction of the radial fracture may be examined wherein growth progression within the fracture is conducted in 100 foot horizontal length increments using a model fracture width maintained at a constant ¼″ throughout the created geometry. To account for fluid loss, a fluid efficiency factor may be applied. A typical fluid efficiency factor is 50%. The transport slurry injection was modeled using an initial height of 10 feet and a 10 bpm/min fluid injection rate (i.e. 1 bpm/ft of injection height). These values resulted in 17.1 ft/sec horizontal velocity at the wellbore. Fracture growth progression may be conducted in 100 foot horizontal length increments and may be monitored by the instantaneous change in the major radii of the fracture shapes (the horizontal direction in the case of the radial fracture simulation). The instantaneous change in the major radii over the course of the simulation was used as a proxy for fluid velocity at the tip of the fracture. Using the volumes calculated for each geometric growth increment, the average velocities to satisfy the respective increments may then be determined.
A transport slurry velocity decay versus fracture length curve may be generated wherein the average incremental values are plotted for the defined generalized geometry versus the lateral distance from the wellbore. The resultant curve is a plot of velocity decay of the transport slurry versus the fracture length. The decay in horizontal velocity versus lateral distance from the wellbore for fracture geometries having aspect ratios of 1:1 (radial), 3:1 (elliptical) and 5:1 (elliptical) are illustrated in
Power law fits may then be applied to the decay curves, allowing for calculation of the horizontal velocity at any distance from the wellbore. Thus, the model defined herein uses the horizontal velocity of the fluid, U, and the geometry of the fracture to be created in order to determine power law variables. Such power law variables may then be used to estimate the propped fracture length using known transport slurry. The multiplier from the power law equation describing the velocity of the transport slurry vs. distance for the desired geometry for the 1:1 and 3:1 aspect ratios was 512.5 and 5261.7, respectively. The exponents from the power law equation describing the velocity of transport slurry vs. distance for the desired geometry for the 1:1 and 3:1 aspect ratios was −2.1583 and −2.2412, respectively.
The minimum horizontal flow velocity, MHVST, necessary for suspension transport is based on the terminal settling velocity, Vt, of a proppant suspended in a transport fluid and may be defined as the velocity, U, at which a plot of Vt/U vs. U crosses 0.1 on the y-axis. Thus, MHVST may be represented as follows:
MHVST=Vt×10 (I)
Equation (I) properly defines the MHVST for all proppant/transport fluids.
To determine the MHVST of a transport fluid containing a proppant, a linear best fit of measured ISP versus their respective MHVST (vt times 10) may be obtained, as set forth in Table I below:
MHVST=CTRANS×ISP (III); or
MHVST=CTrans×dprop2×1/μfluid×ΔSGPS; or
MHVST=Vt×10 (II); or
MHVST=CTrans×ISP
wherein:
MHVST=Minimum Horizontal Velocity for the Transport Fluid;
CTRANS=Transport Coefficient
ISP=Slurry Properties Index
dprop=Median Proppant Diameter, in mm.
μfluid=Apparent Viscosity, in cP
Δ SGPS=SGprop−SGfluid
Vt=Terminal Settling Velocity
The plotted data is set forth in
An empirical proppant transport model may then be developed to predict propped fracture length from the fluid and proppant material properties, the injection rate, and the fracture geometry. Utilizing the geometric velocity decay model set forth above, propped fracture length, DPST, may be determined prior to the onset of a hydraulic fracturing procedure by knowing the mechanical parameters of the pumping treatment and the physical properties of the transport slurry, such as ISP and MHVST. The estimated propped fracture length of a desired fracture, DPST, is proportional to the ISP, and may be represented as set forth in Equations IVA and IVB:
(DPST)B=(qi)×(1/A)×CTRANS×ISP; or (IVA)
(DPST)B=(qi)×(1/A)×CTRANS×(d2prop)×(1/μfluid)×(ΔSGPS) (IVB)
wherein:
A is the multiplier from the Power Law equation describing the velocity of transport slurry vs. distance for the fracture geometry;
B is the exponent from the Power Law equation describing the transport slurry velocity vs. distance for the fracture geometry; and
qi is the injection rate per foot of injection height, bpm/ft.
Thus, increasing the magnitude of the ISP value relates to a corresponding increase in difficulty in proppant transport.
Equation 7 may further be used to determine, prior to introducing a transport slurry into a fracture having a defined generalized geometry, the requisite injection rate for the desired propped fracture length. This may be obtained in accordance with Equation (V):
qi=[1/(DPST)B]×[(1/A)×CTRANS×(d2prop)×(1/μfluid)×(ΔSGPS)] (V)
Further, Δ SGPS may be determined for the desired propped fracture length, prior to introducing a transport slurry into a fracture of defined generalized geometry in accordance with Equation (VI):
ΔSGPS=(A)×(1/qi)×(DPST)B×(1/CTRANS)×(1/d2prop)×(μfluid) (VI).
Still, the requisite apparent viscosity of the transport fluid for a desired propped fracture length may be determined prior to introducing a transport slurry into a fracture of defined generalized geometry in accordance with Equation (VII):
μfluid=(1/A)×(qi)×(1/DPST)B×(CTRANS)×(ΔSGPS)×(d2prop) (VII)
The requisite median diameter of a proppant, dprop, for the desired propped fracture length may also be determined prior to introducing the transport slurry into a fracture of defined generalized geometry in accordance with Equation (VIII):
(dprop)2=(A)×(1/qi)×(DPST)B×(1/CTRANS)×(1/ΔSGPS)×(μfluid) (VIII)
Using the relationships established, placement of proppants to near limits of a created fracture may be effectuated.
The model defined herein is applicable to all transport fluids and proppants. The model finds particular applicability where the transport fluid is a non-crosslinked fluid. In a preferred embodiment, the transport fluid and proppant parameters are characterized by a fluid viscosity between from about 5 to about 60 cP, a transport fluid density from about 8.34 to about 10.1 ppg, a specific gravity of the proppant between from about 1.08 to about 2.65 g/cc and median proppant diameter between from about 8/12 to about 20/40 mesh (US).
The description herein finds particular applicability in slurries having a viscosity up to 60 cP, up to 10.1 ppg brine, 20/40 mesh to 8/12 mesh proppant size and specific gravities of proppant from about 1.08 to about 2.65. The mathematical relationships have particular applicability in the placement of ultra lightweight proppants, such as those having an specific gravity of less than or equal to 2.45 as well as slickwater fracturing operations.
A model may further be developed for use during fracturing based on the empirical proppant transport model set forth above. Referring to Eq. (IVB), during a fracturing treatment, only three operating parameters—proppant size, fluid viscosity and injection rate—may be manipulated in those circumstances were DPST is to remain constant and where Δ SGPS is unchanged. While the operator may change one of these three parameters, the change must be offset by a change in at least one other parameter. Otherwise, a change in one of the three parameters, without accommodation by one or more of the others to offset that change, will result in changes in proppant transport distance and possibly fracture geometry.
The operator may modify any one of the three parameters during the course of the treatment operation. For instance, any of equations (V), (VII) or (VIII) may be used to modify parameters which may be changed during the fracturing treatment in order to maintain constant proppant transport distance, DPST.
For example, a change in proppant size, dprop, may be offset by adjustment of the apparent viscosity (ufluid) of the transport fluid where DPST is to be constant and the injection rate of the fluid into the well is to remain constant during the fracturing treatment. The relationship between proppant size and the apparent viscosity of the transport fluid may be varied in accordance with equation (VIII) to render the relationship expressed by (XI) below:
wherein
dprop1 is the median diameter of the proppant of a first stage introduced into the formation;
dprop2 is the median diameter of the proppant of a successive or second stage introduced into the formation after the first stage;
ufluid1 is the apparent viscosity of the transport fluid introduced into the formation in the first stage;
ufluid2 is the apparent viscosity of the transport fluid introduced into the formation in the successive stage;
qi1 is the injection rate of the transport fluid in a first stage introduced into the formation; and
qi2 is the injection rate of the transport fluid in a successive stage introduced into the formation.
Since all parameters other than the proppant size and viscosity are desired to be constant, the relationship between the proppant size and apparent viscosity of the transport fluid in the second stage may be reduced to:
If the size of the proppant in the second stage is known, then the apparent viscosity of the transport fluid of the second stage may be determined by equation (XIII):
Further, where the DPST is to remain constant and Δ SGPS unchanged, the operator may keep the apparent viscosity of the transport fluid unchanged by varying the size of the proppant and the rate of injection of the transport fluid in the successive stage. Using equation (VIII), the relationship between proppant size and the rate of injection of the transport fluid may be expressed as follows:
If the proppant size of the second fluid is known, then the injection rate of the second transport fluid may be determined from the proppant size of the proppant of the second stage, the proppant size of the proppant of the first stage and the rate of injection of the first transport fluid as set forth in equation (XVI):
Further, where the DPST is to remain constant, Δ SGPS unchanged, and the proppant size of a first stage and a successive stage are unchanged, the operator may vary the apparent viscosity of the transport fluid and the rate of injection of the transport fluid in the second stage. Apparent viscosity and rate of injection of the transport fluid may be varied in accordance with equation (VII) to render the relationship expressed by (XVIII) below:
Since all parameters other than the apparent viscosity and the rate of injection of the transport fluid are constant between a first and successive stage, the equation may be reduced to:
If the apparent viscosity of the fluid of the second stage is known, then the rate of injection of the fluid of the successive stage may be determined to be:
If the rate of injection of the fluid of the successive stage is known, then the apparent viscosity of the fluid of the second stage may be determined to be:
The following examples are illustrative of some of the embodiments of the present invention. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the description set forth herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims which follow.
The distance a transport fluid containing a proppant comprised of 20/40 ULW proppant having an specific gravity of 1.08 and 29 cP slickwater would be transported in a fracture having a 3:1 length to height geometry with a 1 bpm/ft injection rate was obtained by first determining the minimum horizontal velocity, MHVST, required to transport the proppant in the slickwater:
MHVST=CTRANS×(d2prop)×(1/μfluid)×(ΔSGPS); or
MHVST=(1150)×(CTRANS)×(0.5810)×(1/29)×(1.08−1.00)=0.022 ft/sec.
The distance was then required by as follows:
DPSTB=MHVST/A
wherein A for a 3:1 length to height geometry is 5261.7 and B is −2.2412; or
DPST−2.2412=0.022/5261.7;
DPST=251 ft.
The distance a transport fluid containing a proppant comprised of 20/40 Ottawa sand and 7 cP 2% KCl brine would be transported in a fracture having a 3:1 length to height geometry with a 1 bpm/ft injection rate was obtained by first determining the minimum horizontal velocity, MHVST, required to transport proppant in the slickwater as follows:
MHVST=CTRANS×(d2prop)×(1/μfluid)×(ΔSGPS); or
MHVST=(1150)×(CTRANS)×(0.4032)×(1/7)×(2.65−1.01)=1.27 ft/sec
wherein the 1150 multiplier is a unit conversion factor.
The distance was then determined as follows:
DPSTB=MHVST/A
wherein A for a 3:1 length to height geometry is 5261.7 and B is −2.2412; or
DPST−2.2412=1.27/5261.7;
DPST=41 ft.
For a transport fluid containing a proppant having the following properties:
Proppant diameter: 0.635 mm
Specific gravity of proppant: 1.25
Fluid viscosity: 30 cP
Specific gravity of transport fluid: 1.01
the propped fracture length, DPST, for a fracture having a 3:1 length to height geometry with a 5 bpm/ft injection rate was determined as follows:
(DPST)B=(qi)×(1/A)×(CTRANS)×1150×(d2prop)×(1/μfluid)×(ΔSGPS)
(DPST)B=(5)×(1/5261.7)×(0.117)×(0.635)2×(1/30)×(1.25−1.01)
DPST=90.4 ft.
The fluid viscosity for slickwater which would be necessary to transport 20/40 ULW proppant having an specific gravity of 1.25 100 feet from the wellbore using a transport fluid comprised of 20/40 ULW-1.25 proppant was determined by assume a fracture having a 3:1 length to height geometry and a 5 bpm/ft injection rate as follows:
μfluid=(1/A)×(qi)×(1/DPST)B×(CTRANS)×(ΔSGPS)×(d2prop)
μfluid=(1/5261.7)×(5)×(1/100)−2.2412×(0.0117)×(ΔSGPS)×(0.42642)
μfluid=37.6 cP
During a hydraulic fracturing treatment, the operator desires to maintain a constant DPST and a constant injection rate of the fluids into the well. Sand having a median diameter of 200μ (˜80 mesh) is used in the initial stages of the fracturing treatment. During treatment, the sand is to be substituted with sand having a mediam diameter 400μ (about 40 mesh). In order to change proppants during the job, it is necessary to increase the apparent viscosity from the initial 20 cP to 80 cP in order to achieve a constant DPST, as may be determined by the following:
dprop1=1st proppant, median diameter=0.200 mm;
dprop2=2nd proppant, median diameter=0.400 mm
ufluid1=apparent viscosity, initial=20 cP
During a hydraulic fracturing treatment, the operator desires to maintain a constant DPST and apparent viscosity for the transport fluids introduced into the formation. Sand having a median diameter of 200μ (˜80 mesh) is selected to be pumped during the initial stages of the fracturing treatment into the formation at a rate of 1.5 bpm per foot. During treatment, the sand is to be substituted with sand having a mediam diameter 400μ (about 40 mesh). In order to change proppants during the job and to keep the apparent viscosity of the transport fluid pumped into the formation constant, it is necessary to adjust the rate of injection of the transport fluid into the formation in the successive stage. It may then be determined that the injection rate must be increased from the initial 1.5 bpm per foot of height to 6.0 bpm per foot of height in order to achieve the constant DPST, as determined by the following:
dprop1=1st proppant, median diameter=0.200 mm;
dprop2=2nd proppant, median diameter=0.400 mm
qi1=injection rate, initial=1.5 bpm/ft of height
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the true spirit and scope of the novel concepts of the invention.
This application is a continuation-in-part application of U.S. patent application Ser. No. 13/243,753, filed on Sep. 23, 2011, which is a divisional application of U.S. patent application Ser. No. 12/688,959, now U.S. Pat. No. 8,051,911, which is a divisional application of U.S. patent application Ser. No. 11/706,033, now U.S. Pat. No. 7,669,655.
Number | Name | Date | Kind |
---|---|---|---|
4067389 | Savins | Jan 1978 | A |
4220205 | Coursen et al. | Sep 1980 | A |
4547468 | Jones et al. | Oct 1985 | A |
5103905 | Brannon et al. | Apr 1992 | A |
5425421 | Coleman et al. | Jun 1995 | A |
6876959 | Peirce et al. | Apr 2005 | B1 |
8186431 | Brannon | May 2012 | B2 |
20030078732 | Pandey et al. | Apr 2003 | A1 |
20050000690 | Boney | Jan 2005 | A1 |
20080108520 | Fu et al. | May 2008 | A1 |
Entry |
---|
SPE 14468; Biot et al., “Theory of Sand Transport in Thin Fluids,” Sep. 1985. |
SPE 98005; Brannon et al., “Large Scale Laboratory Investigation of the Effects of Proppant and Fracturing Fluid Properties on Transport,” Feb. 2006. |
SPE 102758; Brannon et al., “Improved Understanding of Proppant Transport Yields New Insight to the Design and Placement of Fracturing Treatments,” Sep. 2006. |
SPE 95675; Brannon et al., “The Quest for Improved Proppant Placement: Investigation of the Effects of Proppant Slurry Component Properties on Transport,” Oct. 2005. |
SPE 106312: Brannon et al., “A New Correlation for Relating the Physical Properties of Fracturing Slurries to the Minimum Flow Velocity Required for Transport,” Jan. 2007. |
SPE 84308; Rickards et al., “High Strength, Ultra-Lightweight Proppant Lends New Dimensions to Hydraulic Fracturing Applications,” Oct. 2003. |
SPE 84309: Wood et al., “Ultra-Lightweight Proppant Development Yields Exciting New Opportunities in Hydraulic Fracturing Design.” Oct. 2003. |
SPE 90698: Brannon et al., “Maximizing Fracture Conductivity with Partial Monolayers: Theoretical Curiosity or Highly Productive Reality,” Sep. 2004. |
Number | Date | Country | |
---|---|---|---|
20120241152 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12688959 | Jan 2010 | US |
Child | 13243753 | US | |
Parent | 11706033 | Feb 2007 | US |
Child | 12688959 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13243753 | Sep 2011 | US |
Child | 13480733 | US |