The present invention relates generally to building construction, and more particularly, to the use of thin subsurface wallboard panels to form a shear wall structure.
Building codes today require that certain walls or, more commonly, sections of walls, of wood or steel framed houses or buildings, be formed to resist lateral (shear) loads due to anticipated seismic or wind conditions. Typically, ⅜″ to ⅝″ plywood sheets have been installed on the interior or exterior side of the framing studs to accept such lateral loads. It is common practice to install ½″ inch to ⅝″ thick wallboard panels (“drywall panels”), such as gypsum wallboards, on the interior sides of the framing studs and a ¾″ plaster (stucco) finish or other suitable material (with a water barrier) on the exterior side of the framing studs. Such interior and exterior finishing materials are typically installed over any plywood panels providing the lateral load resisting capacity. It is customary to install the plywood panels across an entire wall, requiring shear load resisting capacity, whether the plywood panels are located on the inside or outside of the framing studs, even when not needed in certain areas of the wall to avoid a drastic change in wall thickness.
For example, the interface between a ½″ drywall panel overlying a ½″ plywood panel and an adjacent sheet of ½″ or even a ⅝″ drywall panel would require considerable furring. By the same token, ½″ plywood paneling covering only a portion of an exterior framed wall would result in reducing the thickness of a typical exterior ⅞″ plaster finish by ½″. Such a thin layer of plaster is undesirable in that it will crack or break.
This current use of plywood to form a shear wall is wasteful of a limited natural resource. In addition, when subjected to reverse cyclical lateral forces (now required by the Uniform Building Code for shear wall structures) the openings in the plywood through which the fasteners (nails or screws) are placed tend to enlarge thereby tending to reduce the lateral load resisting capacity. In addition, plywood sheets are normally available in 4′ width and 8′, 9′ or 10′ lengths. An interior or exterior shear wall often requires a panel length that falls between such standard lengths, resulting in scrap end pieces.
As an alternative to using plywood sheets, steel straps have been installed in an “x” configuration to the wall framing studs, i.e., cross bracing, to provide shear resisting capacity. The interior drywall or exterior finishing material is then attached over the steel straps. Such straps generally require special plate brackets and are difficult to install without resulting in a sagging or loose fit. While the steel straps need only be employed in desired locations along a frame wall, if employed on the interior sides of the studs, there may be undesirable bumps or bulges in the inner wall surface. Further, such a wall structure is labor intensive to construct and requires higher design loads as specified by the building codes.
One solution to the above problem is disclosed in U.S. Pat. No. 5,768,841 (“'841 patent”) which issued to two of the co-inventors of this application. The '841 patent describes a composite wall board panel in which a thin sheet of high strength material, such as steel, is bonded to a wallboard panel made, for example, of gypsum. The overall thickness of the laminated panel, marketed as SURE-BOARD®Series 200 under the patent, is ½″ or ⅝″. SURE-BOARD is a trademark of Swartz and Kulpa Engineering. The 200 panel provides adequate lateral load protection for a section of a wall and eliminates a change in wall thickness when abutting a conventional drywall panel. While the 200 panel may be installed on steel studs as well as wood studs it is more readily attached with drywall screws which have a bugle head allowing the top surface of the screw to be set flush with the surface of the installed panel, therefore accommodating conventional taping.
Screws adapted to penetrate the steel sheet are generally hardened and when used to fasten the panels to wood studs may tend to break at the wood/steel sheet interface, e.g., by fatigue, when exposed to repeated shear forces thereby degrading the shear load protection. Such breakage may not be apparent without a partial destruction of the wall. In addition, the 200 panels are designed primarily for interior installation.
We have found an improved method of forming a shear wall structure in a stud framed building which is particularly adapted for wood framed structures and capable of forming a shear wall on the interior or exterior side of the framing studs. Our improvement includes the discovery of a novel, thin, subsurface, steel laminated, panel (hereinafter “subsurface shear panel” or “shear panel”), particularly useful in carrying out the method.
In accordance with the present invention, a shear wall structure is formed on at least one building wall or section thereof designed to accommodate anticipated wind or seismic shear loads by initially securing at least one shear panel on the interior or exterior sides of the framing studs (wood or steel) designed to form the shear wall. Generally a plurality of such subsurface panels will be required.
The subsurface shear panels are formed with a thin steel sheet having a thickness within the range of about 0.015 to 0.060 inches laminated to a substantially rigid non-structural member or sheet with the overall thickness of the subsurface panel not exceeding about ¼″, exclusive, of the steel sheet. Preferably the shear panel thickness is within the range of about 1/16″ to 3/16″ and most preferably about ⅛″, excluding the steel sheet. The nonstructural members may be comprised of a medium density fiber board, plywood or other suitable material which allows the steel sheet to be easily handled and maintains the laminated panel substantially flat when positioned against the studs. While the subsurface shear panels may be secured to the framing stud by any suitable fastening devices, such as screws for steel studs and nails for wood studs, the steel sheet must sit directly against the studs.
Subsequently, the subsurface shear panels are covered with a conventional interior or exterior finishing material. Conventional wall board panels, e.g., ½″ or ⅝″ drywall may be used to cover interior subsurface shear panels with generally no furring being required. However, where a ½ drywall panels are used it may be desirable to place a thin shim stock such as cardboard on the interior side of the framing stud(s) adjacent the end(s) of the shear panel. A conventional exterior finishing material may be used to cover exterior placed shear panels with no furring or shimming.
Another aspect of the invention resides in the subsurface shear panel. While the face of the nonstructural member may serve as a building architectural finish, the shear panel is particularly useful as a subsurface panel to be covered by a more conventional interior or exterior finishing material. The combination of the nonstructural member, such as mdf, and the high strength sheet, such as steel, result in a highly water resistant panel. It is to be noted that a thin sheet of high strength material having a strength at least as great as the specified steel sheet can be substituted from the steel sheet with the overall thickness of the shear panel falling within the above ranges.
The present invention may best be understood by reference to the following description taken in conjunction with the drawings wherein like members are identified by the same reference numeral.
Referring now to the drawings, and more particularly to
The thin nonstructural member 12 has a thickness within the range of about 1/16″ to ¼″, preferably within the range of about 1/16″ to 3/16″ and most preferably about ⅛″. The shear panels may be formed in conventional widths and lengths, i.e., 4′ wide and a standard length of 8′, 9′, 10′, or 12′ or alternatively the panels may be formed to a desired length at the factory site where nonstandard interior 8′ ceilings are called for or where panels of a nonstandard length are to be used on the exterior framing studs and the precut panels may be delivered to a construction site. This eliminates a cutting operation, with its attendant scrap.
The subsurface shear panels 10 may be made by an automated process. The steel, if in a customary coil form, may be flattened and then trimmed to the desired width and length. The nonstructural members may be cut to the desired widths and lengths at the factory and applied with an adhesive. The metal sheet can then be laid on the adhesive side of the precut nonstructural members to provide a completed subsurface shear panel as is illustrated in the enlarged cross sectional view of
Referring now to
Once the shear panel or panels have been secured to the studs, conventional drywall panels, e.g., ½″ or ⅝″ thick, are secured directly over the shear panel or panels as is illustrated in
It should be noted that screws would normally be used to secure the shear panels to metal studs.
Referring now to
The above described detailed description of a preferred embodiment describes the best mode contemplated by the inventors for carrying out the present invention at the time this application was filed and is offered by way of example and not by way of limitation. Accordingly, various modifications may be made to the above described preferred embodiment without departing from the scope of the invention. It should be understood that although the invention has been described and shown for a particular embodiment, nevertheless various changes and modifications obvious to a person of ordinary skill in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
851343 | Caldwell | Apr 1907 | A |
2485648 | Norquist | Oct 1949 | A |
2539461 | Norquist | Jan 1951 | A |
2797448 | Revell et al. | Jul 1957 | A |
3324617 | Knight et al. | Jun 1967 | A |
3492196 | Moore | Jan 1970 | A |
3654067 | Klein | Apr 1972 | A |
3733231 | Rutkowski et al. | May 1973 | A |
3763614 | Hyde et al. | Oct 1973 | A |
4037381 | Charles | Jul 1977 | A |
4126725 | Shiflet | Nov 1978 | A |
4231205 | Wendt | Nov 1980 | A |
4346543 | Wilson et al. | Aug 1982 | A |
4567100 | Pickett et al. | Jan 1986 | A |
4571909 | Berghuis et al. | Feb 1986 | A |
4646494 | Saarinen et al. | Mar 1987 | A |
4817355 | Tilsley et al. | Apr 1989 | A |
4869037 | Murphy | Sep 1989 | A |
5281382 | McClure | Jan 1994 | A |
5768841 | Swartz et al. | Jun 1998 | A |
6279284 | Moras | Aug 2001 | B1 |
6826882 | Lucey et al. | Dec 2004 | B2 |
6901713 | Axsom | Jun 2005 | B2 |
20030055147 | Lelli et al. | Mar 2003 | A1 |
20040187289 | Toback | Sep 2004 | A1 |
20050086895 | Elliot et al. | Apr 2005 | A1 |
20050086905 | Ralph et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
660864 | Jul 1995 | AU |
Number | Date | Country | |
---|---|---|---|
20060150573 A1 | Jul 2006 | US |