The present invention relates to a process and device for the gasification of waste, in particular household waste and an apparatus for gasification implementing this method, using the conversion of waste into electricity and/or heat while the waste includes wood, paper, cardboard, plastic, organic matter, in particular food, timber, paper, cardboard, plastics, organic matter, in particular food.
The average single-family house with a usable area of 150-200 m2, which does not have electric heating, heat pumps, mechanical ventilation or air conditioning requires approx. 12.5 kW energy. The estimated annual consumption of energy for such a house is 1030 kWh. Examples electricity consumption by household appliances:
The synthesis gas (water gas) is a flammable gas formed during the reaction of coal, natural gas or light hydrocarbons with steam in the presence of suitable catalysts. It is a mixture of carbon monoxide (CO) and hydrogen (H2), which may contain substantial amounts of nitrogen. The composition of the synthesis gas (a mixture consisting of hydrogen and nitrogen in a molar ratio 3:1) consisting of: hydrogen (H2) 74.22% by volume, methane (CH4) 0.76% by volume, nitrogen (N2) 24.74% by volume, argon (Ar) 0.28% by volume. Reaction parameters, which results in the synthesis gas are as follows:
The landfills in Poland receive annually about 13 mln tons of municipal solid waste. The waste is hydrogen in approx. 6% by weight. Thus, the hydrogen content in municipal waste is estimated at 780,000 tonnes. 122 kJ (33.8 kWh) of thermal energy is obtained from the combustion of 1 kg of hydrogen. Therefore, the energy potential of waste hydrogen is 26,364,000 MWh.
Under the current state of the art, the best solution, economically and ecologically, is the use of molecular waste recycling process, which occurs in the synthesis process in the temperatures 1300-1600° C. Depending on the composition of waste and associated requirements of efficient distribution and optimization of the composition of the resulting synthesis gas for the energy use, it is possible to control the process parameters (temperature, conditions of catalyst), and to obtain a gas of the desired composition and the contents of each ingredients, e.g. the following composition: —10-55% hydrogen, H2; —5-40% methane, CH4; —other hydrocarbons (ethene, propene, butene) 0-40%; —carbon monoxide CO 0-20%; —0.5-25% carbon dioxide. That is how the gas is called synthesis gas. In the case of synthesis gas 8 MJ energy is contained in a kilogram of waste is converted into 24 MJ of available energy, as by molecular recycling of 1 kg of waste turns into 2 m3 a synthesis gas with a calorific value of about 12 MJ/m3. Depending on the composition of materials and process parameters this value can be modeled within certain limits. Depending on the composition of the feed material in the gasification process has not more than 5% of the solid residue (ash).
Publication US20090064581 A1 discloses expanded and multi-device gasification system of waste, working in continuous mode, in which the pre-screened and/or crushed waste is directed to the heating module and further preheated get to the gasifier, in which the process of melting waste and carrying it into the synthesis gas at a temperature of approx. 1600° C. The resulting synthesis gas from the gasifier is led through a series of devices in which it is cooled, dedusted and filtered off the solid impurities and purified chemically and then redirected to current generator, and the cooled and purified residue goes back into circulation.
In another publication, US200501154778 A1 an extensive gasification system is presented, which comprises at least one chamber for the process of gasification and combustion chamber together with a separate control room.
Thus, there is a need to develop a simple method and a device that supports such a method, preferably for use in a household, by which to transform the useless and harmful to the environment waste into electricity and heat in an energy saving way.
The present invention relates to a process for the gasification of waste, particularly household waste, in an apparatus comprising a gasification system for waste treatment and gasifier, comprising the following successive steps:
wherein step (d) is passing compressed granules of step (c4) to step (e), the interval between steps (c1)-(c4) and step (e) may be any, and excess unused energy produced in step (f) is stored.
Preferably, the waste disposed includes wood, paper, cardboard, plastics, organic matter, in particular food.
Preferably, after the execution of step (e), the transfer of the produced syngas for power generation plants and/or heat, preferably a power generator and/or boiler.
Preferably, upon completion of step (f) the device is switched off.
In the preferred embodiment of the invention the residue from step (e) as a solid, in particular ash, and gaseous form is discharged outside the system by a dedicated ventilation system.
Preferably, the unused excess energy produced in step (f) is stored in at least one battery constituting an external device and/or piece of equipment.
Preferably, the compression step (c3) is carried out under the pressure of 0.3-8 MPa, preferably in the range of 0.3-4 MPa.
Preferably, the time interval between the step (c4) and step (e) is arbitrary.
The invention also comprises an apparatus for the gasification of waste, particularly household waste, particularly for performing the method according to the invention, comprising:
Preferably, the waste processing system includes shredder for pre-shredding of waste.
Preferably, the device according to the invention has a battery of variable capacity.
In the present invention the compression, granulation and drying processes are carried out independently of the gasification process. Thanks to this, the waste decomposition process is slowed down, and there is no need of immediate gasification, unlike previously known processes which, due to the risk of adverse biological-chemical process are carried out continuously. Moreover, the present invention saves energy by storing energy generated and unused.
The invention will be described in detail below, with a presentation of preferred embodiments and with reference to the drawings, in which:
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
The figures use the following indications:
1—material feed module; 2—electrical panel unit to assist the start of the gasification device and gasification process control and storage of surplus energy; 3—shredder; 4—dryer; 5—compressor; 6 feeder/granules tray; 7—gasifier; 8—ash receiver; 9—power generator, 10—battery.
A method of gasification in accordance with the invention proceeds in accordance with the flowchart shown in
It is not necessary immediately after processes of drying, granulation and compression carried out sequentially in step (c) to carry out the process of gas synthesis in the gasifier 7, since as a result of these processes reduced degradation of waste is achieved. Therefore the process can be carried out in a gasification unit discontinuously, intermittently, wherein the waste from the individual steps (c1)-(c4), in the processing step (c), can be transferred to the gasifier 7, i.e. waste can be disposed between the grinder 3, the dryer 4, the compressor 5 and the granules feeder 6, depending on the amount and type of waste.
To fully utilize the available space, all of the above elements of the system can serve as a warehouse. With less waste, in particular when the waste is organic, they are rapidly and completely processed in the system for processing waste, passing through all the modules of the system for processing waste and stopping in the compressed form of dried granules before the gasifier 7, in the granules tray 6. The more processed the waste, i.e. the more compressed and dry, the longer the granules may wait for processing.
For larger quantities of waste, after filling the material feed module 1 and the compressor 5, it is permissible, in particular when the waste is not organic, to store it also in the dryer 4 and the shredder 3. For hygienic reasons it is best, however, that the waste passes the drying process in the dryer 4 before the shutdown operation. Hence, waste should stay in a shredder 3 only for a short time and if untreated waste is present in the shredder 3, the device signals the need for processing of at least part of the waste. In the case of waste paper and plastic unprocessed waste can be stored longer.
Then,
The gasification process is carried out in a controlled atmosphere. The process is characterised by the equivalence ratio (ER), which provides the ratio between the amount of oxygen involved in the process of thermal oxidation of waste, and volume of oxygen required for stoichiometric oxidation of carbon. It is one of the most important operating parameters of units for transforming waste into usable gasification energy. Equivalence ratio largely determines the composition of synthesis gas produced in the gasification of waste in the plasma (including tar) therefore the package of chemical energy contained in the gas.
The composition and amount of syngas, and hence the amount of energy produced depends primarily on the type of feed material.
The design of the gasification device according to the invention is shown in
The gas generator 7 is connected to a generator 9, generating power from synthesis gas supplied to it. Optionally, the gasification device also includes a boiler. The gasification device has a battery 10 for collecting the surplus generated electric energy. Optionally, the device has more than one battery. Alternatively, external batteries are linked to the device.
Optionally, the device has a battery 10 of a variable capacity to increase the storage capacity of power generated. An example of such a construction is shown in
The device with its size adapted to the needs of an individual user in its design and operation uses the solutions to obtain high-value energy from waste in and efficient and environmentally friendly way. It converts non-recyclable waste into energy produced at the place of its origin.
Characteristics of waste gasification device:
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.