The present invention relates generally to bariatric treatments. More particularly, this method relates to performing a gastric artery embolization procedure for the purpose of treating obesity.
Obesity is a chronic, metabolic state favoring a positive energy balance which results in excessive fat storage. It has highly significant associated medical, psychological, social, physical and economic co-morbidities. As presently understood, it is multifactorial, involving heredity, biochemical, hormonal, environmental, behavioral, public health and cultural elements. Morbid obesity, also referred to as severe obesity, typically is associated with a body mass index (BMI), i.e., the ratio of weight in kg to the square of the height in meters, of equal to, or in excess, of 40 kg/m2.
Approximately 27 percent of Americans are obese. Mortality rates for morbidly obese individuals are more than twice as high as those for otherwise similar normal weight individuals. Co-morbidities associated with obesity include, for example, high blood pressure, hypertension, hypercholesterolemia, dyslipidemia, Type 2 (non-insulin dependent) diabetes, insulin resistance, glucose intolerance, hyperinsulinemia, and numerous other disease states. Over 7 percent of American have Type 2 diabetes, and almost 2 million Americans are newly diagnosed with Type 2 diabetes each year. With obesity as a major contributing factor to Type 2 diabetes and other disease states, morbid obesity is an extreme health hazard if left untreated.
Bariatric surgical procedures have been developed and are practiced as a means of controlling obesity and obesity related diseased states. Gastric bypass requires a significant surgical procedure for removing a portion of the gastrointestinal tract, and the gastrointestinal pathway is re-routed in a manner that promotes the sensation of satiety and prevents the absorption of calories in order to reduce patient weight. However, if the procedure is not accepted well by the patient, it is irreversible. Laparoscopic gastric banding is a reversible procedure that involves the placement of a band about the upper portion of the stomach to create a stoma which restricts the intake of food. Tubing connects the band to a subcutaneous port where injection of saline allows adjustment of pressure just below the gastro-oesophageal junction. Both of the procedures work, but they are expensive and require a relatively invasive surgical procedure.
Recently, investigational studies have determined that bariatric arterial embolization may be as efficacious as bariatric surgery. Referring to prior art
The target zone for embolic infusion is the fundus 16, which is more resilient to ischemia from embolization and provides the therapeutic effect of weight loss through multiple mechanisms including reduced ghrelin, reduced gastric motility, reduced acid production, and other functional and hormonal changes.
In the current method of gastric artery embolization, a modified Seldinger technique is utilized to perform an intra-arterial infusion in the stomach. Entry is made at the femoral artery, and the infusion device is advanced via a delivery system up the aorta to the celiac axis. The infusion device is then selectively advanced into the left gastric artery, advanced past the esophageal artery, and advanced into several of the many vessels feeding the fundus. The left gastric artery proceeds distal to the fundus and supplies blood to tissue in the body of the stomach. The embolic agent is infused into the infusion device at various locations in one or many vessels supplying the fundus. The infusion device may be re-positioned during the procedure to reach target tissue.
Embolic agent that flows proximal to or beyond the fundus will embed in non-target tissues. This is particularly so if the physician infuses within the presence of slow flow or stasis. In such case, reflux of embolic agent may occur into the esophageal branch of the LGA. Further, if the physician infuses with too great pressure, the embolic agent can be infused to non-target vessels of the body or the antrum of the stomach or even outside the stomach. This is particularly problematic, as the arteries of the stomach, the esophageal arteries 22 and the hepatic arteries (not shown) are continuous with each other, and feed from one to the other.
Therefore, while embolizing agent therapies which are considered minimally or limited invasive often provide good results, the potential for non-targeted embolization which can lead to adverse events and morbidity exists. Current methods do not control flow or pressure and leave both distal and proximal vessels that lead to non-target areas in the stomach patent during infusion and therefore in danger of inadvertent infusion.
Often, interventional radiologists try to reduce the amount and impact of reflux by slowly releasing the embolizing agent, by delivering a reduced dosage, or by super-selecting out multiple tiny branches of the target tissue. The added time, complexity, increased radiation dose to the patient and physician (longer monitoring of the patient) and potential for reduced efficacy make the slow delivery of embolization agents suboptimal. Reducing the dosage often leads to the need for multiple follow-up treatments. Finally, requiring super selective infusion in multiple small fundal vessels significantly increases procedure time and the potential for arterial vasospasm and dissection, limiting efficacy and potentially hurting the patient. Even when the physician tries to reduce the amount of reflux, the local flow conditions at the tip of the microcatheter change too fast to be controlled by the physician, and therefore rapid momentary reflux conditions can happen throughout infusion.
It is essential that the bariatric embolization procedures have a high safety profile in order to be widely adopted as a superior minimally invasive bariatric procedure.
A method of gastric arterial embolization is provided. The method includes deploying a pressure modulating device in a manner that infuses the embolizing agent into the fundus, but reduces or prevents delivery of the agent into proximal and distal non-target vessel. Such non-target vessels include the body and antrum of the stomach as well as the esophagus and liver with which the left gastric artery communicates. The fundus is the target for the bariatric embolization and has the highest blood flow and pressure drop from the left gastric artery. The method takes advantage of unique flow and pressure dynamics of the arterial vessels in the stomach.
In accord with the method, a modified Seldinger technique is utilized to introduce a delivery system for an infusion device up the aorta to the celiac axis. A pressure reducing infusion device (PRID) is then advanced into the left gastric artery, and deployed at a target location distal of esophageal artery and proximal to the arteries leading directly to the fundus. The pressure reducing infusion device is preferably a microvalve filter device, but alternatively can be an inflatable balloon catheter or other suitable device. Then, in a pressure targeting mode, a contrast agent is infused through the pressure reducing infusion device and the stomach is examined using a visualization technique such as fluoroscopy. If the contrast agent has been delivered to proximal or distal non-target vessels, then the pressure reducing infusion device is slightly expanded at the target location to increase its diameter within the vessel and generate a pressure drop in the arterial vessel of the stomach between the proximal and distal sides of the pressure reducing infusion device. It is important to note the stomach is supplied by both the left gastric artery (LGA) and the right gastric artery (RGA). The more the PRID is expanded, the greater flow is provided by the RGA, which provides blood supply that does not have embolic agents. Pressure targeting is repeated until only the larger flow arteries targeting the fundus are confirmed receiving contrast agent under visualization. Once targeting of the intended arteries is confirmed, embolic agent is infused (preferably together with additional contrast agent). Infusion is stopped once a dose of the embolizing agent has been delivered. After delivery of the embolizing agent, the pressure reducing infusion device and delivery system are withdrawn, and an arterial closure device is used to close the entry wound in the femoral artery.
Prior art
Prior art
With reference to the human body and components of the devices and systems described herein which are intended to be hand-operated by a user, the terms “proximal” and “distal” are defined in reference to the user's hand, with the term “proximal” being closer to the user's hand, and the term “distal” being further from the user's hand, unless alternate definitions are specifically provided.
Methods are provided herein for gastric arterial embolization suitable for bariatric treatment. A preferred methodology has been determined for infusing the left gastric artery and its large branch vessels within the fundus with an embolizing agent while maintaining other tissues within the stomach as well as other organs having vessels in direct and indirect communication with the left gastric artery free (or at least substantially free) of the embolizing agent. As can be appreciated, this provides preferred results over current practices in terms of a desirable safety profile and faciliates delivery of the prescribed dose of embolizing agent to solely the intended target tissue.
In accord with the procedure, a modified Seldinger technique is utilized to introduce a delivery system for an infusion device up the aorta to the celiac axis. The delivery system may comprise a delivery catheter. In the Seldinger technique, which is well-known and will not be described in detail herein, access is provided from the thigh to the femoral artery and a guidewire is advanced to the aorta. The delivery catheter is advanced over the guidewire. Once the delivery catheter is at its intended position, and in accord with the method herein, a pressure reducing infusion device (PRID) is advanced through the delivery catheter and over the guidewire. The invention is not limited to such delivery methods, and any other method or system to intravascularly advance a PRID to the target location, described below, is also contemplated to be within the scope of the invention.
The PRID generally includes two requisite features. First, the PRID includes an infusion lumen and distal orifice through which an embolizing agent can be infused into the arterial vessel. Second, and in distinction from a simple microcatheter, the PRID includes expandable structure that can be expanded within the vessel, selectively between a non-expanded state, various partially expanded states within the vessel, and a fully expanded stated within the vessel so as to be in contact with the vessel wall. In the preferred devices, the expandable structure is located entirely proximal to the lumen orifice; however, it may alternatively be flush with the distal end of the expandable structure or even recessed relative to the expandable structure. During each of the various partial states and fully expanded states within the arterial vessel, the PRID modifies the distal pressure within the vessel relative to the non-expanded state. The significance of the PRID and its operation to facilitate and enhance embolic infusion specifically within the fundus is discussed below.
Referring to
The microvalve 108 can be manually displaced between open and closed configurations by longitudinally displacing the distal end 116 of the inner catheter 106 relative to the distal end 114 of the outer catheter 104 by moving the proximal end of one of the catheters relative to the other. By displacing the inner catheter 106 distally (in the direction of arrow 128) relative to the outer catheter 104, the microvalve 108 is moved into a collapsed configuration, suitable for delivery to the treatment site, as shown in
To deploy and expand the microvalve 108, the inner catheter 106 can be refracted (in the direction of arrow 132) a selected distance relative to the outer catheter 104 to cause the microvalve 108 to reconfigure, resulting in radial expansion toward (
The proximal portion 120 of the microvalve preferably has a different radial expansion force than the distal portion 118 of the microvalve. More preferably, the proximal portion 120 has a substantially greater radial expansion force than the distal portion. With the microvalve 108 in a deployed open configuration, i.e., with the distal tip in a retracted position relative to the delivery position, the microvalve remains dynamically responsive to local pressure about the microvalve. Given the structural dynamic property of the microvalve, even if the microvalve is expanded fully to the vessel wall, under the dynamically responsive operation, substantially unrestricted downstream (forward) flow of blood in the vessel is permitted, while (upstream) reflux or backflow is prevented to stop reflux of the therapeutic agent within the vessel. Similarly, if the microvalve is only partially expanded within the vessel, the microvalve is dynamically responsive to pressure conditions of the flow in the vessel.
Turning now to
The PRID, in any suitable form (device 102 referred to hereinafter by way of example only), is advanced up the aorta 12 to the celiac axis 30, and eventually into the left gastric artery 10 (
Once targeting of only the intended larger flow arteries of the fundus 16 is confirmed, embolic agent is infused through the infusion lumen of the sized PRID 102 (preferably together with additional contrast agent under visualization of fluoroscopy). Infusion continues, preferably until the intended dose of embolizing agent has been completely delivered.
Referring to
After delivery of the embolic agent, the infusion device and delivery system are collapsed and withdrawn, and an arterial closure device is used to close the entry wound in the femoral artery.
There have been described and illustrated herein methods of bariatric embolization. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular pressure reducing infusion devices (PRID) have been described, it is anticipated that other PRIDs may be used in the methods described herein. That said, it is anticipated that the manually adjustable, but dynamically adjustable microvalve which has superior operating characteristics in a vessel will be optimum for the procedure for its ability to provide fine pressure control relative to the expandable microvalve while continuing to permit downstream blood flow. Also, while the method described herein has been primarily directed to bariatric embolization, it is appreciated that it can be similarly used to direct infusion of other therapeutic treatments to the fundus over other tissues of the stomach and connected tissues. Further, while embolization of the fundus has been described with respect to providing a bariatric treatment, it is recognized that there are potential other therapeutic benefits of infusing an embolizing agent to the fundus, and such resulting treatments are within the scope of the invention. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its scope as claimed.
This application is a continuation-in-part of U.S. Ser. No. 14/259,293, filed Apr. 23, 2014, which claims benefit of U.S. Provisional No. 61/970,202, filed Mar. 25, 2014, both of which are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4738740 | Pinchuk et al. | Apr 1988 | A |
5234425 | Fogarty et al. | Aug 1993 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6059745 | Gelbfish | May 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6306074 | Waksman et al. | Oct 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6371969 | Tsugita et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6383206 | Gillick et al. | May 2002 | B1 |
6395014 | Macoviak et al. | May 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6443926 | Kletschka | Sep 2002 | B1 |
6485456 | Kletschka | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6499487 | McKenzie et al. | Dec 2002 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6533800 | Barbut | Mar 2003 | B1 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6537297 | Tsugita et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6582396 | Parodi | Jun 2003 | B1 |
6589264 | Barbut et al. | Jul 2003 | B1 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6607506 | Kletschka | Aug 2003 | B2 |
6620148 | Tsugita | Sep 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6645220 | Huter et al. | Nov 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6652555 | VanTassel et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6656351 | Boyle | Dec 2003 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6676682 | Tsugita et al. | Jan 2004 | B1 |
6689150 | VanTassel et al. | Feb 2004 | B1 |
6692508 | Wensel et al. | Feb 2004 | B2 |
6692509 | Wensel et al. | Feb 2004 | B2 |
6692513 | Streeter et al. | Feb 2004 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6695858 | Dubrul et al. | Feb 2004 | B1 |
6702834 | Boylan et al. | Mar 2004 | B1 |
6706053 | Boylan et al. | Mar 2004 | B1 |
6706055 | Douk et al. | Mar 2004 | B2 |
6730108 | VanTassel et al. | May 2004 | B2 |
6746469 | Mouw | Jun 2004 | B2 |
6818006 | Douk et al. | Nov 2004 | B2 |
6830579 | Barbut | Dec 2004 | B2 |
6837898 | Boyle et al. | Jan 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6866677 | Douk et al. | Mar 2005 | B2 |
6887258 | Denison et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6902540 | Dorros et al. | Jun 2005 | B2 |
6908474 | Hogendijk et al. | Jun 2005 | B2 |
6911036 | Douk et al. | Jun 2005 | B2 |
6936060 | Hogendijk et al. | Aug 2005 | B2 |
6939362 | Boyle et al. | Sep 2005 | B2 |
6964670 | Shah et al. | Nov 2005 | B1 |
6964673 | Tsugita et al. | Nov 2005 | B2 |
6974469 | Broome et al. | Dec 2005 | B2 |
6989027 | Allen et al. | Jan 2006 | B2 |
7044958 | Douk et al. | May 2006 | B2 |
7044966 | Svanidze et al. | May 2006 | B2 |
7066946 | Douk et al. | Jun 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7169164 | Borillo et al. | Jan 2007 | B2 |
7172614 | Boyle et al. | Feb 2007 | B2 |
7172621 | Theron | Feb 2007 | B2 |
7214237 | Don Michael et al. | May 2007 | B2 |
7217255 | Boyle et al. | May 2007 | B2 |
7223253 | Hogendijk | May 2007 | B2 |
7232452 | Adams et al. | Jun 2007 | B2 |
7232453 | Shimon | Jun 2007 | B2 |
7241304 | Boyle et al. | Jul 2007 | B2 |
7250041 | Chiu et al. | Jul 2007 | B2 |
7252675 | Denison et al. | Aug 2007 | B2 |
7279000 | Cartier et al. | Oct 2007 | B2 |
7306575 | Barbut et al. | Dec 2007 | B2 |
7322957 | Kletschka et al. | Jan 2008 | B2 |
7326226 | Root et al. | Feb 2008 | B2 |
7331973 | Gesswein et al. | Feb 2008 | B2 |
7338510 | Boylan et al. | Mar 2008 | B2 |
7344549 | Boyle et al. | Mar 2008 | B2 |
7371249 | Douk et al. | May 2008 | B2 |
7425215 | Boyle et al. | Sep 2008 | B2 |
7537600 | Eskuri | May 2009 | B2 |
7544202 | Cartier et al. | Jun 2009 | B2 |
7572272 | Denison et al. | Aug 2009 | B2 |
7582100 | Johnson et al. | Sep 2009 | B2 |
7585309 | Larson | Sep 2009 | B2 |
7591832 | Eversull et al. | Sep 2009 | B2 |
7604650 | Bergheim | Oct 2009 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7833242 | Gilson et al. | Nov 2010 | B2 |
7842084 | Bicer | Nov 2010 | B2 |
7853333 | Demarais | Dec 2010 | B2 |
7873417 | Demarais | Jan 2011 | B2 |
7922691 | Kletschka | Apr 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
8257384 | Bates | Sep 2012 | B2 |
8500775 | Chomas et al. | Aug 2013 | B2 |
8696698 | Chomas et al. | Apr 2014 | B2 |
8696699 | Chomas et al. | Apr 2014 | B2 |
20020161390 | Mouw | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20030097114 | Ouriel et al. | May 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040220609 | Douk et al. | Nov 2004 | A1 |
20040225354 | Allen et al. | Nov 2004 | A1 |
20040260333 | Dubrul et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050015048 | Chiu et al. | Jan 2005 | A1 |
20050015112 | Cohn et al. | Jan 2005 | A1 |
20050119688 | Bergheim | Jun 2005 | A1 |
20050261759 | Lambrecht et al. | Nov 2005 | A1 |
20060167537 | Larsson et al. | Jul 2006 | A1 |
20060173490 | LaFontaine et al. | Aug 2006 | A1 |
20070106324 | Garner et al. | May 2007 | A1 |
20070179590 | Lu et al. | Aug 2007 | A1 |
20080033341 | Grad | Feb 2008 | A1 |
20080039786 | Epstein et al. | Feb 2008 | A1 |
20090018498 | Chiu et al. | Jan 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090222035 | Schneiderman | Sep 2009 | A1 |
20110137399 | Chomas et al. | Jun 2011 | A1 |
20110288529 | Fulton | Nov 2011 | A1 |
20120116351 | Chomas et al. | May 2012 | A1 |
20120259206 | Roberts et al. | Oct 2012 | A1 |
20130079731 | Chomas et al. | Mar 2013 | A1 |
20130226166 | Chomas et al. | Aug 2013 | A1 |
20140207178 | Chomas et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
1226795 | Jul 2002 | EP |
1803423 | Jul 2007 | EP |
WO 9916382 | Apr 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 0141679 | Jun 2001 | WO |
WO 0145592 | Jun 2001 | WO |
WO 0149215 | Jul 2001 | WO |
WO 2004043293 | May 2004 | WO |
Entry |
---|
US 7,169,126, 01/2007, Zadno-Azizi (withdrawn) |
A Study of the Geometrical and Mechanical Properties of a Self-Expandig Metallic Stent—Theory and Experiment, Dr. Michael R. Jedwab, Claude O. Clerc, Journal of Applied Biomaterials, vol. 4, Issue 1, pp. 77-85, Spring 1993. |
Finite Element Stent Design, M. De Beule, R. Van Impe, P. Verdonck, B. Verhegghe, Computer Methods in Biomechanics and Biomedical Engineering, 2005. |
Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: a Multicentre Safety and Proof-of-Principle Cohort Study, Krum et al, The Lancet, 2009. |
Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implications for an Old Concept, Schlaich et al., Hypertension, Journal of the American Heart Association. |
Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension, Schlaich et al, The New England Journal of Medicine, 2009, pp. 932-934. |
Fusion Drug Delivery System-Novel Catheter/Stent Design for Targeted Drug Delivery, Gerschwind & Barnett, Non-Published US provisional patent application filed Sep. 17, 2. |
Embolization II, Scientific Session 11, JVIR, Mar. 27, 2012. |
Embolization procedure lowers levels of “hunger hormone,” leads to weight loss, EurekAlert Public Release, Mar. 7, 2013. |
First-In-Man Study of Left Gastric Artery Embolization for Weight Loss, Nicholas Kipshidze et al., ACC.13, E2056, JACC Mar. 12, 2013, vol. 61, Issue 10. |
Left Gastric Embolization Leads to Weight Loss, Bariatriac News, Owen Haskins, Dec. 4, 2013. |
U.S. Appl. No. 14/259,293, filed Apr. 23, 2014, Bryan Pinchuk et al. |
Number | Date | Country | |
---|---|---|---|
61970202 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14259293 | Apr 2014 | US |
Child | 14259489 | US |