The invention relates to a control method of an electronic device, and more particularly, to a method of generating control commands based on signal accumulation amount of sensors.
Digital devices or portable devices like digital cameras, smart phones, or tablet computers, or electronic devices like an ECG Holter, which is equipped with sensors of various types is operable to perform many default functions only through real buttons, switches, virtual buttons like touch on the screen, or voice activated control.
These methods of operation of prior art, however, are different from one another by nature and obviously each has its own drawbacks and limitation of use. For example:
It is therefore an important and urgent issue needed to be taken care of to provide an intuitive operation method for digital device or electronic device adaptive to various circumstances.
Embodiments of the invention therefore provide a method of generating control commands for an electronic device based on signal accumulation amount of sensors so that operation of digital devices or electronic devices can be more intuitive and adaptive for various scenarios.
An exemplary embodiment of the invention provides a method of generating control commands for an electronic device based on signal accumulation amount of sensors. The method includes following steps: storing a plurality of index parameters in an electronic device; at least one sensory element of the electronic device generating at least one signal variation curve, which is a curve of a signal value generated by the sensory element over time; obtaining at least one sensory index according to the signal variation curve and comparing the sensory index with one of the index parameters; setting the sensory index valid or invalid according to a comparison result of the sensory index with the index parameter; and the electronic device generating a corresponding control command according to a setting content of the sensory index.
The method of generating control commands for an electronic device based on signal accumulation amount of sensors provided in the invention is capable of equipping electronic devices with more diversified and easy operation experience, using concept of signal accumulation of one or more sensors as a basis to execute control commands. It also removes limitations and inconvenience of using physical buttons, touching the screen, or controlling with voice on the electronic devices.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. In the following discussion and in the claims, the terms “include” and “comprise” are used in an open-ended fashion. Also, the term “couple” is intended to mean either an indirect or direct electrical/mechanical connection. Thus, if a first device is coupled to a second device, that connection may be through a direct electrical/mechanical connection, or through an indirect electrical/mechanical connection via other devices and connections.
Please refer to
For example, given what functions and features the electronic device 1 is provided with, the first sensory element 30 and the second sensory element 40 can be sensors like 3-axis accelerometer, gyroscope, inertial accelerometer, photo diode, CCD or CMOS, capacitance sensor like a capacitance touch screen, inductance sensor, magnetic sensor . . . etc. The sensory elements can, based on the change of physical status of the electronic device 1, generate corresponding self-generated physical quantity such as linear acceleration variation, rotational acceleration variation, voltage variation intrigued by capacitance variation, voltage variation intrigued by inductance variation . . . etc., or based on the ambient state of environment where the electronic device 1 is located, generate corresponding ambient physical quantity such as magnetic field variation, color variation of image, light intensity variation, temperature variation . . . etc. Take digital camera or smartphone with picturing function as an example of the electronic device 1, one or more sensors generate signals and the variation of signal can be used to perform picture-related functions such as entering standby or sleep mode, taking a picture, video recording, time-lapse recording, focusing, zooming in or out . . . etc.; as a mobile communication device, one or more sensors generate signals and the variation of signal can be used to perform related functions such as entering standby mode, opening one or more Apps, awaking the screen, answering a call, hanging out a call, etc.; as a dedicated measurement equipment like a ECG Holter, functions like taking the ECG, awaking, shutting down . . . can be performed using the method in the invention.
Please refer to
Step S100: storing a plurality of index parameters in an electronic device;
Step S110: operating the electronic device so as to produce change of self-generated physical quantity of the electronic device or ambient physical quantity from where the electronic device is located;
Step S120: at least one sensory element of the electronic device generating at least one signal variation curve from detecting the change of physical quantity;
Step S130: obtaining at least one sensory index according to the signal variation curve;
Step S140: comparing the sensory index with one of the index parameters stored in the electronic device and setting whether the sensory index is valid or not?
Step S150: the electronic device generating a corresponding control command according to a setting content of the sensory index.
In the embodiments of the invention, decisions for executing corresponding control commands are made from the result of analysis of the magnitude and lasting time of signals generated by the movement of the electronic device 1, i.e., the accumulation of signal magnitude with respect to time, as a form of ‘carried-out energy accumulation’ of the movement. In other words, the control method of the invention is effective in obtaining the required input information whether the input is a long term, low strength signal or a constantly-changing strength signal within a specific period of time. In Step S100, a plurality of index parameters is pre-stored in the storage unit 20 of the electronic device 1. Each of the index parameters (model) corresponds to a control command and the index parameters are built from the concept of area.
It should be noted that in the description of the invention, the term ‘index’ may be interpreted as an alternative way of describing the concept ‘area’ or as a result converted from the physical quantity ‘area,’ which is obtained by integration of the magnitude with respect to time in a 2-D magnitude-time chart of signal and comes with no specific unit for such index (index parameter or sensory index). Please refer to
When the electronic device 1 is operated so that certain physical quantities vary accordingly as in Step S110, the sensory elements in the electronic device 1 are able to detect the change of the physical quantities and generate at least one signal variation curve, which is a curve of a signal value generated by the sensory element over time (Step S120). At least a sensory area can be obtained from the at least one signal variation curve generated by the sensory element and such sensory area is presented as a sensory index (Step S130, detailed in the following paragraphs). For electronic device 1 that has sensory elements, e.g., 3-axis accelerometer, gyroscope, inertial accelerometer . . . , capable of detecting movements of the electronic device 1 and that comes with the ability to demonstrate different types of movements for the sensory elements to generate various types of signal variation curves, patterns of variation related to signal value over time for different sensory element vary and at least one sensory index can be obtained therefrom. These sensory indexes are used for comparison with each corresponding index parameter stored in the storage unit 20 (Step S140). When one sensory index obtained from a signal variation curve is compared with some specific index parameter and has a certain relation with the index parameter, e.g., for one embodiment of the invention, the sensory index has accumulated enough ‘energy of execution’, and then the sensory index is set to be valid as in Step S140. Finally, combination or set content of one or many sensory indexes is used to generate a corresponding control command for performing a function on the electronic device 1. Besides, Steps S130˜S150 are carried out by the control unit 10 in
Please refer to
To stay away from being interfered by noise when implementing the method 100 of the invention, it can be put into practice that the signal value will be, under the control of the control unit 10, counted into the sensory area only when the signal value of the signal variation curve S is greater than a threshold I as the sensory element is generating the signal variation curve S and the at least one sensory area is obtained accordingly. It can be learned from
Next in Step S140, the sensory index obtained from the accumulated sensory area A, which is a constantly accumulated value beginning from time t1, is compared with a specific index parameter. In an embodiment, the sensory index will be set valid (an effective index) and the accumulation of the sensory area A stops when the value of the sensory index is larger than or equal to the index parameter. In another embodiment, each index parameter may also use a tolerance interval and the sensory index can be set valid only when the value of the sensory index falls within the tolerance interval of the index parameter, which in other words implies the electronic device 1 is under proper operation instead of being excessively operated.
Please keep referring to
Each of the plurality of index parameters stored in the storage unit 20 in the above embodiments represents a value related to a physical quantity, i.e., the corresponding index parameter representing the variation of displacement acceleration for the first sensory element 30 in
When the electronic device 1 is an ECG Holter, the signal variation curve generated by the sensory element is known as a specific section of ECG pulse signal.
A number of examples are provided below as exemplary embodiments, but not limited to, of the invention:
1. Light Intensity Variation:
The sensory element of the electronic device 1 may be a photo diode, which generates corresponding voltage values based on the intensity of light source when exposed in an ambient light. The stronger the intensity, the greater the voltage generated. A sensory area can be obtained from a variation curve of voltage value over time.
Take the electronic device 1 for a digital camera as an example. When a digital camera moves from a dark environment to a bright environment, e.g., picking up the digital camera from the table, the photo diode in the digital camera senses changes of light, thereby causing variation of outputted voltage. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the digital camera then executes a control command: restoring from standby mode.
For the electronic device 1 as an ECG Holter, when an ECG Holter moves from a light environment to a dark environment, e.g., an ECG Holter user puts up clothe that covers the ECG Holter, the photo diode in the ECG Holter senses changes of light, thereby causing variation of outputted voltage. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the ECG Holter then executes a control command: measuring the ECG value.
2. Color Detection:
The sensory element of the electronic device 1 may be a CCD or CMOS, which accumulates charges of different colors when receiving lights from an image. As some color received is increased in proportion, the voltage of the CCD or CMOS with respect to the color also increases. A sensory area can be obtained from a variation curve of voltage value over time.
Take the electronic device 1 for a digital camera as an example. When a digital camera moves to a red dominant environment, the ‘red component’ of the CCD or the CMOS has voltage rise accordingly. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the digital camera then executes a control command: taking a picture.
For the electronic device 1 as an ECG Holter, when an ECG Holter moves to a red dominant environment, the ‘red component’ of the CCD or the CMOS has voltage rise accordingly. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the ECG Holter then executes a control command: measuring the ECG value.
3. Capacitance:
The sensory element of the electronic device 1 is a capacitance sensor like a capacitance touch screen. When a dielectric, i.e., a finger, comes close to the capacitance sensor, there will be voltage accumulation within the capacitance sensor such that the voltage read by the capacitance sensor rises. A sensory area can be obtained from a variation curve of voltage variation over time.
Take the electronic device 1 for a digital camera as an example. When a finger gets close to the capacitance sensor on the screen and when the finger stays within a distance or contacts the screen for as long as required, the voltage outputted by the capacitance sensor rises accordingly. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the digital camera then executes a control command: turning off.
For the electronic device 1 as an ECG Holter, when a finger gets close to the capacitance sensor of the ECG Holter and when the finger stays within a distance or contacts the sensor for as long as required, the voltage outputted by the capacitance sensor rises accordingly. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the ECG Holter then executes a control command: turning off.
4. Inductance:
The sensory element of the electronic device 1 is an inductance sensor. When electric current flowing through the inductance sensor varies, voltage value will be generated accordingly by the inductance sensor based on the degree of current variation. A sensory area can be obtained from a variation curve of voltage variation over time.
Take the electronic device 1 for a digital camera as an example. If a surge of charging current occurs during the charging process perhaps caused by an abnormity of charging system, the inductance sensor acts accordingly to output a rising voltage value. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the digital camera then executes a control command: cutting off the power.
5. Magnetic Force:
The sensory element of the electronic device 1 is a magnetic sensor. When getting close to a magnet, the magnetic sensor generates current accordingly. A sensory area can be obtained from a variation curve of current variation over time.
Take the electronic device 1 for a digital camera as an example. When mounted to a fastening device with a magnet, the magnetic sensor of the digital camera detects a stronger magnetic field, thereby generating a larger voltage. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the digital camera then executes a control command: video recording.
For the electronic device 1 as an ECG Holter, when a lead of the ECG Holter with the magnetic sensor is placed at a base with a magnet, the magnetic sensor detects a stronger magnetic field, thereby generating a larger voltage. When the sensory index, corresponding to the sensory area obtained from the variation curve of voltage value over time, exceeds a predetermined value, the ECG Holter then executes a control command: awaking.
Please refer to
The method of generating control commands for the electronic device based on signal accumulation amount of sensors according to the embodiments of the invention collects effective signal values using sensor(s) in the electronic device when physical quantities, generated or detected by the electronic device, change during the movement of the electronic device. As one or more effective signal values are accumulated to a certain amount that match the comparison with one activation mode or index parameter, the electronic devices then performs corresponding function accordingly. Two or more types of signal values from one or more sensors may also be used as a comparison basis so as to provide combinational result able to execute control command correspondingly.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
106131429 | Sep 2017 | TW | national |