The present invention generally relates to preventing water pipes from freezing. More particularly, the present invention relates to using a toilet to create a flow condition that can prevent pipes from freezing and regulate other hydraulic conditions.
In various cold climates, the water pipes providing water to a residence or building may freeze. This freezing of the water pipes can cause notable damage and displacement due to pipe bursts and/or leaks. Millions of homes every year suffer from bursts due to sudden flash-freeze conditions in temperate climates or lower than normal conditions in traditional sub-freezing climates.
The most common and effective way to prevent pipes from freezing is to generate flow in the pipes. Traditionally a faucet in the building is left dripping to produce movement of the water in the upstream portion of the pipes. While this can work, in buildings that are not occupied (e.g. vacation homes, etc.) this method wastes a lot of water because the water runs for a long time irrespective of weather conditions. Furthermore, in extreme conditions and depending on the size of the drip, it may not be totally effective. Water in pipes start freezing from the wall of the pipe as the frozen portion of the water increasingly moves towards the inside of the pipe until all the water inside the pipe is fully frozen. Therefore, the downstream drip may not be sufficient for the intensity of the freezing temperatures and the pipe can still totally freeze thereby causing substantial damage.
Beyond the problem of freezing water pipes, other situations may occur that create elevated hydraulic pressure in water systems which again puts strain on system components of the plumbing resulting in reduced service life for these system components. In certain instances, a high pressure event can lead to a burst of pipes, fittings or fixtures. High pressure can be caused directly by failure of various pressure-regulating equipment such as a pressure reducing valve, a thermal expansion tank or a pressure-relief valve. As previously taught, high pressure can also be caused indirectly by freezing conditions.
Accordingly, there is a need for a better and more practical solution of preventing freezing pipes and/or preventing/mitigating various high-pressure events. The present invention fulfills these needs and provides other related advantages.
An exemplary embodiment of the present invention includes a method of generating a controlled flow event of a piping system of a building to regulate a hydraulic condition of the piping system, the method comprising the steps of: providing an electrically-powered fluid pump having a fluid inlet and a fluid outlet, the electrically-powered fluid pump configured to move a fluid from the fluid inlet to the fluid outlet; providing an electronic controller in electrical communication with the electrically-powered fluid pump, the electronic controller configured to control the operation of the electrically-powered fluid pump, wherein the electronic controller receives an electrical power from an electric cord configured to be plugged into an electrical system of the building, or, wherein the electronic controller receives the electrical power from a battery that is associated with the electronic controller; installing the fluid inlet of the electrically-powered fluid pump to be in fluidic communication with a tank of a toilet; and installing the fluid outlet of the electrically-powered fluid pump to be in fluidic communication with either: i) a bowl of the toilet, wherein the bowl of the toilet is in fluidic communication with a drainage system of the building; ii) an overflow tube of the tank of the toilet, wherein the overflow tube is in fluidic communication with the bowl of the toilet; or iii) a drain of the piping system of the building; wherein the electronic controller is configured to repeatedly turn on and off the electrically-powered fluid pump to run for a predetermined elapsed time or volume displacement when the hydraulic condition is identified.
The hydraulic condition may be a potential freezing condition of the piping system of the building.
The hydraulic condition may be an overly high pressure of the piping system of the building.
The electronic controller may be configured to receive a wireless communication from an external electronic device.
The external electronic device may be a desktop computer, a laptop computer, a mobile electronic device, a centralized server or a temperature sensor.
The external electronic device may be configured to send the wireless communication to the electronic controller when a local weather condition of the building could result in a potential freezing condition of the piping system.
The external electronic device may be configured to monitor a pressure of the piping system.
The external electronic device may be configured to send the wireless communication to the electronic controller when the hydraulic condition is an overly high pressure of the piping system of the building.
The electronic controller may include and may be in electrical communication with an audible alarm configured to produce an alarm sound when a low battery condition is detected from the battery.
The electrically-powered fluid pump may be configured to be submersible and may be disposed within the tank of the toilet.
The electrically-powered fluid pump may be disposed outside the tank of the toilet.
Another exemplary embodiment of the present invention includes a method of generating a controlled flow event of a piping system of a building to regulate a hydraulic condition of the piping system, the method comprising the steps of: providing an electrically-controlled fluid valve having a fluid inlet, a first fluid outlet and a second fluid outlet, wherein the fluid inlet is configured to be fluidic communication with a fluid supply of the piping system of the building, and wherein a valve disposed within the fluid valve controls the flow to the first fluid inlet, and wherein the second fluid outlet is configured to be constant fluid communication with the fluid inlet; providing an electronic controller in electrical communication with the electrically-controlled fluid valve, the electronic controller configured to control the operation of the electrically-controlled fluid valve, wherein the electronic controller receives an electrical power from an electric cord configured to be plugged into an electrical system of the building, or, wherein the electronic controller receives the electrical power from a battery that is associated with the electronic controller; installing the fluid inlet of the electrically-controlled fluid valve to be in fluidic communication with the fluid supply of the piping system of the building; and installing the fluid outlet of the electrically-powered fluid valve to be in fluidic communication with either: i) a bowl of the toilet, wherein the bowl of the toilet is in fluidic communication with a drainage system of the building; ii) an overflow tube of the tank of the toilet, wherein the overflow tube is in fluidic communication with the bowl of the toilet; iii) the tank of the toilet, the tank having the overflow tube; or iv) a drain of the piping system of the building; wherein the electronic controller is configured to repeatedly turn on and off the electrically-controlled fluid valve for a predetermined elapsed time or volume displacement when the hydraulic condition is identified.
The hydraulic condition may be a potential freezing condition of the piping system of the building, or, wherein the hydraulic condition is an overly high pressure of the piping system of the building.
The electronic controller may be configured to receive a wireless communication from an external electronic device, wherein the external electronic device may be a desktop computer, a laptop computer, a mobile electronic device, a centralized server or a temperature sensor.
The external electronic device may be configured to send the wireless communication to the electronic controller when a local weather condition of the building could result in a potential freezing condition of the piping system.
The external electronic device may be configured to monitor a pressure of the piping system, wherein the external electronic device may be configured to send the wireless communication to the electronic controller when the hydraulic condition is an overly high pressure of the piping system of the building.
Another exemplary embodiment of the present invention includes a device for generating a controlled flow event of a piping system of a building to regulate a hydraulic condition of the piping system, the device comprising: an electrically-powered fluid pump having a fluid inlet and a fluid outlet, the electrically-powered fluid pump configured to move a fluid from the fluid inlet to the fluid outlet; wherein the fluid inlet of the electrically-powered fluid pump is configured to be in fluidic communication with a tank of a toilet; wherein the fluid outlet of the electrically-powered fluid pump is configured to be in fluidic communication with either: i) a bowl of the toilet, wherein the bowl of the toilet is in fluidic communication with a drainage system of the building; ii) an overflow tube of the tank of the toilet, wherein the overflow tube is in fluidic communication with the bowl of the toilet; or iii) a drain of the piping system of the building; an electronic controller in electrical communication with the electrically-powered fluid pump, the electronic controller configured to control the operation of the electrically-powered fluid pump; wherein the electronic controller is configured to receive an electrical power from an electric cord configured to be plugged into an electrical system of the building, or, wherein the electronic controller is configured to receive the electrical power from a battery that is associated with the electronic controller; wherein the electronic controller is configured to repeatedly turn on and off the electrically-powered fluid pump for a predetermined elapsed time or volume displacement when the hydraulic condition is identified.
The electronic controller may be configured to receive a wireless communication from an external electronic device, wherein the external electronic device may be a desktop computer, a laptop computer, a mobile electronic device, a centralized server or a temperature sensor.
The external electronic device may be configured to send the wireless communication to the electronic controller when a local weather condition of the building could result in a potential freezing condition of the piping system.
The external electronic device may beconfigured to monitor a pressure of the piping system, wherein the external electronic device may be configured to send the wireless communication to the electronic controller when the hydraulic condition is an overly high pressure of the piping system of the building.
The electronic controller may include a fill detection sensor configured to monitor a height of the fluid in the tank.
The device may include a water flow sensor in electrical communication with the electronic controller, wherein the water flow sensor may be configured to determine a water flow in a fill tube for the overflow tube of the toilet.
Another exemplary embodiment of the present invention includes a device for generating a controlled flow event of a piping system of a building to regulate a hydraulic condition of the piping system, the device comprising: an electrically-controlled fluid valve having a fluid inlet, a first fluid outlet and a second fluid outlet; wherein a valve disposed within the electrically-controlled fluid valve controls the fluid flow to the first fluid inlet; wherein the second fluid outlet is configured to be constant fluid communication with the fluid inlet; wherein the first fluid inlet is configured to installed to be in fluidic communication with a fluid supply of the piping system of the building; wherein the first fluid outlet of the electrically-powered fluid valve is configured to be installed to be in fluidic communication with either: i) a bowl of the toilet, wherein the bowl of the toilet is in fluidic communication with a drainage system of the building; ii) an overflow tube of the tank of the toilet, wherein the overflow tube is in fluidic communication with the bowl of the toilet; iii) the tank of the toilet, the tank having the overflow tube; or iv) a drain of the piping system of the building; an electronic controller in electrical communication with the electrically-controlled fluid valve, the electronic controller configured to control the operation of the electrically-controlled fluid valve; wherein the electronic controller is configured to receive an electrical power from an electric cord configured to be plugged into an electrical system of the building, or, wherein the electronic controller is configured to receive the electrical power from a battery that is associated with the electronic controller; wherein the electronic controller is configured to repeatedly turn on and off the electrically-controlled fluid valve for a predetermined elapsed time or volume displacement when the hydraulic condition is identified.
The electronic controller may be configured to receive a wireless communication from an external electronic device, wherein the external electronic device may be a desktop computer, a laptop computer, a mobile electronic device, a centralized server or a temperature sensor.
The external electronic device may be configured to send the wireless communication to the electronic controller when a local weather condition of the building could result in a potential freezing condition of the piping system.
The external electronic device may be configured to monitor a pressure of the piping system, wherein the external electronic device may be configured to send the wireless communication to the electronic controller when the hydraulic condition is an overly high pressure of the piping system of the building.
Other features and advantages of the present invention will become apparent from the following more detailed description, when taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
The accompanying drawings illustrate the invention. In such drawings:
A float arm 38 is connected at one end to the fill valve 30 and at the other end has a water float 40. The float 40 rises as the water level rises and controls the fill valve 30 to close at a predetermined height. The height can be adjusted by a float adjustment screw 42. In this particular embodiment, there is a chain 44 that connects a handle arm 46 to the handle/trip lever 16. There is also an overflow tube 48 that prevents the tank from overflowing. The overflow tube is also designed to empty into the bowl 12. Any water that rises above the top of the overflow is then routed into the bowl 12 of the toilet 10. In this manner a fill valve that is stuck open cannot overflow the tank 14. Also shown are bolts 35 that attach the tank 14 to the bowl 12. The bolts 35 also have seals 37 to prevent water from escaping the tank.
The particular embodiment of a toilet shown and taught in
Turning now to
In one of its simplest form, a small submersible fluid pump or regular (non-submersible) fluid pump 50 is used to draw water from a toilet tank in a building and discharge it to the toilet bowl or other drains. By pumping water from the toilet tank, the water level in the tank drops and the toilet fill valve opens to replace the discharged water from the tank by drawing water from the water line. This discharge/re-fill sequencing creates periodic flow in the supply piping. The frequency that toilet fill valve cycles depends on the volume of water that the pump discharges. This can be regulated to the desired level to achieve the desired cycling intervals.
It is noted that the pump discharge rate can be controlled by an inline valve on the delivery (fluid outlet) or suction sides (fluid inlet) of the pump. Alternatively, the pump discharge rate can be controlled by the selection of the size of the pump and/or the voltage applied to the pump.
Dissimilar to leaving a faucet running with a small stream of water, water discharge in this method is intermittent and discharges a larger volume of water (in comparison to a steady stream) at each interval. This surge of water helps move any frozen water along the walls of the pipe forward and can prevent various forms of damage to the piping system of a building. The final product can be in the form described above or any combination of that and/or the other embodiments described herein.
Now referring to
An electronic controller 58 is in electrical communication with the electrically-powered fluid pump. As shown here, the electronic controller is connected to the pump and can be packaged in a single unit. The electronic controller 58 is configured to control the operation of the electrically-powered fluid pump. As is understood by those skilled in the art, the electronic controller may be an electrical board with various electrical components necessary to make it function appropriately.
For example, the electronic controller may be configured to receive a wireless communication from an external electronic device 70. Accordingly, the electronic controller would have a wireless receiver 66 disposed within the electrical board. Optionally, the electronic controller could also have a wireless transmitter 68 such that information could be sent outwardly. These wireless communications could be replaced with a hard line (electronic wire) that also transmits information to the external electronic device 70. Accordingly, the external electronic device 70 may be a desktop computer, a laptop computer, a mobile electronic device, a centralized server or even a temperature sensor.
The electronic controller 50 may receive an electrical power from an electric cord 60 configured to be plugged into an electrical system of the building. Alternatively, the electronic controller may receive the electrical power from a battery (permanent or rechargeable) 62 that is associated with the electronic controller. In either situation, it may be helpful for the electronic controller 50 to also include a speaker/audible alarm 64 that is configured to produce an alarm sound when a low battery condition is detected from the battery. The alarm 64 may also be activated if the electronic controller detects any other fault or a possible malfunctioning condition.
As shown in
As can be understood, the electronic controller 50 is configured to repeatedly turn on and off the electrically-powered fluid pump for a predetermined elapsed time or volume displacement when the hydraulic condition is identified. The hydraulic condition may be a potential freezing condition of the piping system of the building. The external electronic device is configured to send the wireless communication to the electronic controller when a local weather condition of the building could result in a potential freezing condition of the piping system. Again, such a weather condition can be recognized by the external electronic device 70.
Alternatively, the hydraulic condition may be an overly high pressure of the piping system of the building. For example, the external electronic device 70 can be a fluid monitoring and control system that includes a pressure sensor, as is taught by the Applicant in application Ser. No. 14/182,213 filed on Feb. 17, 2014 (Pub. No. 2014/0230925), the contents of which are fully incorporated herein with this reference. The external electronic device is configured to monitor a pressure of the piping system and if an overly high pressure is identified, the pump can activate which in turn will cause water to flow in the building's pipe system to therefore relieve such pressure. For example, the present invention can be used to relieve a pressure rise caused by thermal expansion, water hammer, pressure reducing valve bleed-through of main pressure, or for diagnostic purposes for system pressure response.
Also shown in
As shown in
As shown in
As shown in
Turning now to
It is also noted that the valve 50A has a second fluid outlet 54A. The second fluid outlet 54A is in constant (uninterrupted) fluid communication with the fluid inlet 52 such that water can still flow through the fluid valve 50A between the inlet 52 and the outlet 54A (and the pipe extension 32) such that when the toilet is used in its normal course it can operate as originally designed. Therefore, a valve 76 is disposed within the valve 50A that controls the flow of water out through the fluid outlet 54 and does not control flow out through the second fluid outlet 54A. The valve 76 may be a ball valve or any other suitable fluidic valve.
The electronic controller now has a fill detection sensor 82. The fill detection sensor 82 can be made from a multitude of types known to those skilled in the art, as this teaching is not limited to this exact form. However, as shown herein, the fill detection sensor 82 comprises a small float (ballcock/float type sensor) at end of a cantilevered arm, where a pivot point of the arm controls the operation of an electronic switch.
The electronic controller 58 has a power cord 84 that is routed to a power adapter 86 that is configured to send the required voltage and amperage to the electronic controller 58. Likewise, an electrical cord 60 is configured to be plugged into a standard electrical wall outlet. As taught previously, the electronic controller 58 could comprise a battery 62 for power.
In this embodiment, the external electronic device is an external temperature sensor 70. The temperature sensor 70 would also have at least a wireless transmitter 68 to send wireless information to the electronic controller 58. Alternatively, the temperature sensor 70 could have a wireless receiver 66. Similarly, the electronic controller 58 has at least a wireless receiver 66, and alternatively could include a wireless transmitter 68, to communicate with the temperature sensor 70.
The fluid outlet 54 of the pump can be various lengths of flexible tubing and includes a clip 88 at its distal end that allows it to be easily attached to the overflow tube 48 as seen in
Additionally, either fluid outlet 54 or the clip 88 has an additional sensor 90, which is a water flow sensor. This sensor 90 can be electrically routed by wire 92 to the pump and in turn to the electronic controller 58, or be wired directly to the electronic controller 58. The sensor 90 is configured to detect the presence of water in the fill tube 36. The sensor 90 is made of a conductive material and when powered by the microcontroller creates a charged electric field that changes when water is near the sensor. Alternatively, the sensor 90 could also be made as a separate device that is not part of the fluid outlet 54. The sensor 90 could be simply attached to a portion of the fill tube 36 to sense when water was moving there through.
Alternatively, an additional sensor 90, 82 or the like may be placed inside the bowl of the toilet to protect against flooding by the toilet bowl water overflowing due to a blockage in the draining system.
Referring to
There are many advantages of having a fill detection sensor 82 and a water flow sensor 90. If one was to flush the toilet, the present invention can take this into account because it can detect a flush. One is also able to determine the rate of water filling the tank, such that calculations can be based on how frequently one needs to empty the toilet tank to reduce the hydraulic condition that may be present.
The flow sensor 90 provides more precise ability to measure and control the flow events of the toilet fill valve 30. In application of the base concept to use the pump 50 to displace water from the tank to include a flush event there is a limitation where each fill valve 30 will respond differently relative to the volume displaced before starting a refill cycle. Control logic applies pump flow rate and duty cycle modulation to create a series of fill valve refill/flow events over a specific time interval. The count and frequency can be increased by increasing pump flow rate and duty cycle as temperature decreases.
In another embodiment, if the device of the present invention is coupled to an external flow sensor (i.e. the applicant's other device disclosed in the '213 application) there can be feedback relative to the actual flow rate. The fill detection sensor 82 is a simpler, integrated alternative to relying on a discrete flow meter signal. Instead of using existing pump speed and duty cycle modulation, the fill sensor 82 allows binary control logic for pump 50. The pump 50 is turned on and a timer is started. The pump 50 can run until the fill detection sensor 82 detects flow going from the toilet fill valve to overflow fill tube 48. The pump 50 is turned off at that point and timer stopped. Knowing flow rate of the pump 50 and the duration of pump's on time gives one the ability to quantify the volume of water for that specific toilet/fill valve combination.
Furthermore, property and plumbing system information provided by property owner (square footage, pipe diameter, pipe material, etc.) can provide those skilled in the art with an idea as to approximate volume of water in the piping system. For a typical 2,000 square foot home with ¾″ copper tubing one skilled in the art could estimate the volume of water in the system to be 3 to 6 gallons. To reduce risk of a pipe freezing, the objective is to achieve a complete purging of that volume within a specific time frame which is variable based upon ambient temperature reading from remote temperature sensor. Application of this knowledge with the event feedback in control logic will allow system purging in a most conservative manner such that not too much water is consumed/wasted.
Regarding the application/event case for the hydraulic condition of a pressure regulation, in most cases the volume of water displaced to trigger the fill valve response is a fraction of that from a standard flush. With flow feedback of the present invention, one is able to regulate the control of one fill valve cycle to drop the pressure. One skilled in the art could program pump 50 to achieve the gpf (gallons per flush) value of the toilet (in an optimum case). For example, on a 1.6 gpf toilet with the Applicant's approach, one could consume 1.6 gallons of a ‘pumped’ volume to guarantee a fill valve cycle. With flow feedback that volume could be reduced to 0.3 to 0.4 gallons.
Even though the embodiment in
As taught herein, it is understood that the pump 50/valve 50A can be cycled on and off. Therefore, there is a first elapsed time that is the time for which the pump/valve is kept on. For example, if the pump/valve is kept on the toilet may flush and but keep filling as water is being moved from the tank into the bowl and out through the drainage system. This means a water flow can be kept moving indefinitely as needed based on the various hydraulic conditions present.
Secondarily, there is also a second elapsed time between which the pump/valve is activated, in other words, how often the pump/valve is being activated. For example, the pump/valve may be activated every hour, every half hour, every 15 minutes, every 5 minutes or the like dependent upon the various hydraulic condition. As can be appreciated, activating the pump/valve repeatedly may also be needed during various extreme hydraulic conditions, such as very cold temperatures that might lead to frozen pipes. Again, all of these calculations are taken into account with the device of the present invention.
In any of the various embodiments, the pump 50/valve 50A duty cycle and schedule can be independently controlled by the external electronic device 70 to further characterize the volume and frequency of flow.
In any of the various embodiments, the pump 50/valve 50A can be controlled by a temperature sensor 70 that is placed outside the building that is in wired or wireless communication with the control.
In any of the various embodiments, the pump 50/valve 50A can be controlled remotely through Wi-Fi, Internet, Cellular communication or other means.
In any of the various embodiments, the pump 50/valve 50A can be directly or remotely controlled by a third-party through remote and or wireless communication.
In any of the various embodiments, the pump 50/valve 50A can be controlled by weather forecast obtained from internet.
In any of the various embodiments, more than one toilet in a building can be equipped with the present invention. These devices can be controlled by separate controllers or by one controller. Control signals between installations can be conducted via direct connection or remotely via wireless communication means.
In any of the various embodiments, a latching-type solenoid valve 50A connected between the inlet side of toilet fill valve and toilet overflow tube is pulsed open to relieve pressure caused by thermal expansion.
In any of the various embodiments, temperature or pressure telemetry can be provided via other smart devices within the premises that connect via local-communication or cloud infrastructure.
In any of the various embodiments, the pump 50/valve 50A operating state can be determined remotely via mobile application or web site interface.
In any of the various embodiments, the pump 50/valve 50A operation can be controlled remotely via mobile application or web site interface.
In any of the various embodiments, the pump 50/valve 50A is connected to an intermediate tank within or outside the main toilet tank, wherein intermediate tank contains media for treatment of main bowl residual water for sanitation and odor-remediation purpose.
In any of the embodiments disclosed herein, an alternative form of electrical energy may be harvested from either the water coming into the tank of the toilet or when water exits the tank of the toilet. This can be accomplished with a turbine that is rotated as water moves past it. The turbine then turns an electrical generator which can be stored in the battery 62.
As used herein, the use of “hydraulic” relates to a liquid moving in a confined space under pressure. More specifically, the fluid referred to herein is water which is used throughout various building structures, such as the water supplied to faucets, showers, sinks, sprinkler, toilets and the like.
Although several embodiments have been described in detail for purposes of illustration, various modifications may be made to each without departing from the scope and spirit of the invention. Accordingly, the invention is not to be limited, except as by the appended claims.
This application claims priority to the provisional application 62/718,675 filed on Aug. 14, 2018, the entire contents of which are hereby incorporated in full by this reference.
Number | Date | Country | |
---|---|---|---|
62718675 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16540482 | Aug 2019 | US |
Child | 18096303 | US |