1. Field of the Invention
The present invention relates to the field of energy generation technology. It relates to a method of generating energy and to a power plant for carrying out the method.
Such a method and such a plant have been disclosed, for example, by WO-A1-02/103176.
2. Brief Description of the Related Art
During the last decade the interest in environmentally compatible power stations with low emissions has increased considerably. As an answer to the possibly restricted economy with regard to the carbon, the possibility of generating energy from fossil fuels with low carbon dioxide emission is of particular interest. Various projects have already been started with the aim of developing gas-turbine-based processes with low emission. There are three conventional ways of reducing the CO2 emission from such power stations:
In a conventional capture process (see above variant (1)) on the output side, the CO2 is captured after the flue gas has been expanded in the expander or the turbine of the gas turbine, i.e. the absorption pressure is 1 atm. The main disadvantage of this boundary condition consists in the fact that the CO2 partial pressure is very low on account of the low CO2 concentration in the flue gas (typically 3-4% by volume) and therefore large and expensive devices for removing the CO2 are required. Although the CO2 concentration at the stack and thus the partial pressure could be increased by partial recirculation of the flue gas to the compressor of the gas turbine (in this respect see, for example, U.S. Pat. No. 5,832,712), it remains fairly low (about 6-10% by volume).
A novel variation of the first variant which can be applied to gas-turbine cyclic processes with flue-gas recirculation shifts the location of the CO2 separation downstream of the compressor or to an intercooling stage. As a result, the partial pressure of the carbon dioxide is markedly increased and thus the driving force for the separation is improved. In addition, the volume of the gas to be treated is considerably reduced. These two factors lead to a reduction in the size of the CO2 separation device and its energy flows and thus reduce the costs for each tonne of carbon dioxide not emitted. In order to further reduce the delivery of carbon dioxide to the atmosphere, the combustion gases can be enriched with oxygen, a factor which permits a higher flue-gas recirculation ratio and a lower mass flow to the stack. In addition, heat sources such as the intercooling can be used for operating the separation process. This type of process control is referred to as high-pressure separation and is shown in FIGS. 2 and 3 of WO-A1-02/103176 mentioned at the beginning.
As a closer consideration of the high-pressure separation shows, the aim of this development is to increase the partial pressure of the carbon dioxide in the separation unit. If the predominant proportion of the carbon dioxide (80-95%) in the compressed working medium is removed, this results in low carbon-dioxide concentrations in the exhaust gas and consequently in the recirculation to the compressor and the carbon-dioxide separation unit. This strategy of a high separation rate reduces the quantity of the carbon dioxide which leaves the cyclic process in the exhaust gas which is not recirculated, whereas the buildup of a carbon-dioxide concentration in the cyclic process is prevented. The inlet air can certainly be enriched with oxygen in order thus to permit a higher flue-gas recirculation ratio. However, the main effect is to further limit the carbon-dioxide emissions instead of increasing the carbon-dioxide concentration. In summary, it may be said that separation of most of the carbon dioxide downstream of the compressor in a high-pressure separation leads to carbon-dioxide partial pressures which are rather on the low side during the separation, a factor which works against the development aim. Such a configuration is described in publication WO-A1-02/103176 and is covered in the following table 1 by the cases 1 and 3 for a cyclic process with air or oxygen-enriched air.
If only some of the carbon dioxide is removed in a high-pressure CO2 separation process, it is possible to markedly increase the CO2 partial pressure in the separation unit, in particular if the oxygen enrichment is used. Table 1 illustrates this effect, the CO2 concentration increasing from 5% (molar) in case 3 to 14% in case 4. This increase in the concentration partly compensates for the low CO2 separation rate and thus enables 53% of the carbon dioxide produced in the cyclic process to be captured, although only 20% of the CO2 contained in the working medium is removed. If the cyclic process is operated exclusively with air, the buildup of the CO2 in the cyclic process is limited by the lower quantity of recirculated flue gas; therefore the method of partial separation is less effective (see cases 1 and 2 in table 1).
Whereas the carbon-dioxide emissions increase if only some of the carbon dioxide is separated from the working medium, savings in the equipment costs through a reduction in the separation requirements and an increase in the forces driving the process can be achieved. The optimum separation effectiveness results from a compromise between the costs (if a CO2 tax is assumed) caused by an increased carbon-dioxide emission into the atmosphere and the savings in the operating and equipment costs compared with an even better separation process.
The conceptual improvement of the conventional high-pressure separation has been described in the preceding section. However, further thermo-dynamic and economical improvements can be achieved by the use of a method designated as partial-flow separation. A disadvantage of the high-pressure CO2 separation is that large heat exchangers are required in order to cool the working medium and heat it up again if a cold CO2 separation process is used, such as, for example, “amine scrubbing”. For a good efficiency of the power station, it is important to maintain the outlet temperature of the compressor and thus keep the fuel consumption low. If it is taken into account that a low separation rate for the carbon dioxide is desirable (see above), a new separation strategy can be formulated in order to reduce the capital costs, increase the efficiency of the cyclic process and, in particular in the case of the feeding of enriched air, increase the partial pressure of the CO2 to be removed, namely:
a high CO2 separation rate in the case of a partial flow at the compressor outlet.
A corresponding configuration is reproduced in
A considerable advantage of the high-pressure separation concept over, for example, the oxy-fuel concepts consists in the fact that the existing turbomachines can be used with only slight changes. This is possible because the properties of the working medium are very similar to those in existing gas turbines. However, an inherent feature of high-pressure separation concepts is the fact that the working medium is extracted between the compressor and the turbine. If existing turbomachines are used, this means a considerable loss of power output as a consequence of both the decrease in the mass flow in the expander and the fact that the pressure into the expander must drop in order to maintain a constant volumetric flow. Consequently, the mass flow of the working medium should be increased, so that the conditions at the design point can be reestablished. This can be achieved by one of the two following measures:
The oxygen injection has already been explained further above as a means of limiting the CO2 emissions. However, if it is carried out after the compression, it also serves to maintain the predetermined design conditions (pressure, mass flow) at the inlet of the expander. The humidification can be realized either by water injection, steam injection or by the use of a humidification tower. All three methods compensate for the loss of the CO2 from the working medium by the addition of water vapor. As in the case of the oxygen injection, the predetermined design conditions at the inlet of the expander are thereby reestablished and the efficiency of the cyclic process is greatly improved. This method should be used both in the case of the conventional high-pressure separation processes and in the case of those with partial-flow separation.
The object of the invention is to specify a method of generating energy in a power plant comprising a gas turbine, in which method carbon dioxide is removed according to the high-pressure separation concept and which is characterized by a reduced overall size of the separation devices and by reduced energy and plant costs, and to specify a power plant for carrying out the method.
The invention specifies a method with which the equipment required for a CO2 separation in a power station with semi-closed cyclic process can be reduced by high-pressure CO2 separation. In addition, the energy costs for the CO2 separation can be reduced. The invention makes use of the CO2 separation at increased pressures, i.e. downstream of the compressor or if need be between two compressor stages if intercooling is present. It is important that only some (10-70%) of the carbon dioxide in the compressed working medium is separated, so that the carbon dioxide in the cyclic process formed during the combustion can be enriched. Compared with processes having a high degree of carbon dioxide separation from the compressed working medium, the driving forces for the separation are higher and the size of the CO2 separation device can be further reduced. This leads to savings in both the equipment costs and the energy consumption of the separation process. An important modification consists in passing some of the gas from the compressor directly to the combustor and only the remainder to the CO2 separation device. Numerous advantages arise from this type of process control; thus, for example, the size of the CO2 separation device and of the gas heat exchanger can be reduced, since a smaller gas flow is processed. After the CO2 separation, the remaining partial flow can be passed to the combustor or can even be used for cooling the turbine. In both cases, the combustor inlet temperature is increased and the fuel consumption is reduced as a result, so that the thermal efficiency of the gas turbine is improved compared with previously known high-pressure separation methods.
A development of the invention presents methods which improve the power output and the plant efficiency associated with the high-pressure CO2 separation. In this case, oxygen or water vapor is added downstream of the compressor by various methods in order to compensate for the loss of working medium between compressor and expander. This permits the use of existing gas turbines for the high-pressure CO2 separation without the expander of the gas turbine having to be adapted or without other disadvantages in the case of the power output or the plant efficiency having to be accepted.
All parts of the invention are in this case intended for use in a simple gas turbine process or a combined-cycle process, provided something else is not expressly stated. The simple gas turbine process is that in which the heat of the exhaust gases from the gas turbine are not used for generating additional energy, whereas the combined-cycle process generates steam for a steam turbine by means of the exhaust gases.
A first preferred configuration of the method according to the invention is characterized in that the entire flow of the compressed gas is passed through the CO2 separator, and in that between 10% and 70% of the carbon dioxide contained in the compressed gas is removed from the compressed gas.
In this case, either the compressed gas coming from the CO2 separator is passed directly to the combustor, or the compressed gas coming from the CO2 separator first of all extracts heat in a gas/gas heat exchanger from the compressed gas coming from the first compressor and is then passed to the combustor, or the compressed gas coming from the CO2 separator is compressed further in a second compressor of the gas turbine, and the gas compressed further is fed to the combustor.
A second preferred configuration of the method according to the invention is characterized in that the entire flow of the compressed gas is split up into a larger and a smaller partial flow, and in that only the smaller partial flow is passed through the CO2 separator and more than 50%, preferably between 70% and 99%, of the carbon dioxide contained in the compressed gas is removed there from the compressed gas.
In this case, too, either the compressed gas coming from the CO2 separator is passed directly to the combustor, or the compressed gas coming from the CO2 separator first of all extracts heat in a gas/gas heat exchanger from the compressed gas coming from the first compressor and is then passed to the combustor, or the compressed gas coming from the CO2 separator is used for cooling the hot-gas duct of the turbine, or the compressed gas coming from the CO2 separator is compressed further in a second compressor of the gas turbine, and the gas compressed further is fed to the combustor.
In principle, it is advantageous that the compressed gas is cooled down in a heat exchanger before entering the CO2 separator.
Furthermore, it is conceivable for the flue gas expanded in the turbine to be cooled down in a heat exchanger or to be used in a heat-recovery steam generator for generating steam.
It is also advantageous if water is extracted in a condenser from the partial flow, recirculated to the inlet of the first compressor, of the flue gas before the mixing with the gas containing air.
Furthermore, it is conceivable for oxygen to be added to the compressed gas coming from the CO2 separator, if need be after further compression in a second compressor, and for the air used to be air enriched with oxygen.
Advantages with regard to the efficiency are obtained if the compressed gas coming from the CO2 separator is preheated in a gas/gas heat exchanger before entering the combustor by hot flue gas issuing from the turbine.
It may also be advantageous if steam is generated by means of the hot flue gas issuing from the turbine, and the generated steam is partly injected into the combustor and is partly used in the CO2 separator, and if the compressed gas coming from the CO2 separator is subsequently compressed in a booster compressor, and the subsequently compressed gas, in a gas/gas heat exchanger, exchanges heat with the compressed gas coming from the first compressor.
Furthermore, it may be advantageous if the compressed gas coming from the CO2 separator is humidified in a humidification device before entering the combustor, and the humidified gas, before entering the combustor, extracts heat in a gas/gas heat exchanger from the compressed gas issuing from the first compressor.
A first preferred configuration of the power plant according to the invention is characterized in that a single connecting line leads from the outlet of the first compressor to the first inlet of the combustor, in that the CO2 separator is inserted into this connecting line, and in that the CO2 separator is designed in such a way that it does not separate more than 70% of the carbon dioxide of the gas flowing through it.
A second preferred configuration of the power plant according to the invention is characterized in that two connecting lines lead from the outlet of the first compressor in parallel to the first inlet of the combustor, and in that the CO2 separator is inserted into one of these connecting lines.
The invention is to be explained below with reference to exemplary embodiments in connection with the drawing, in which:
Described in the publication WO-A1-02/103176 mentioned at the beginning, as in the present
Said publication also includes a cyclic process in which the CO2 separation takes place between two compressor stages (see
There is a problem with the type of process sequences described above: since the CO2 separation rate is fairly high, the CO2 concentration in the CO2 separator 6 is relatively low and therefore leads to a large apparatus consuming a lot of energy.
In contrast, the invention proposes that a CO2 separation with low efficiency be applied to the compressed working medium in order to permit higher concentrations in the CO2 separator.
A first exemplary embodiment of the invention is shown in
In the same manner, a second exemplary embodiment of the invention (
The third exemplary embodiment of the invention relates to a refined configuration for carrying out the carbon dioxide separation described in the case of the first exemplary embodiment. In this example, a low separation rate is achieved by only a partial flow (10-90%) of the working medium being subjected to the separation process (see
A fourth exemplary embodiment of the invention uses the partial-flow configuration of the third exemplary embodiment described above and applies it to the configuration according to the second exemplary embodiment of the invention, i.e. the gas-turbine cyclic process with intercooling (
A fifth exemplary embodiment of the invention relates to a high-pressure CO2 separation process with recuperation (
A sixth exemplary embodiment of the invention makes use of the steam injection into the gas turbine 29 for increasing the outlet temperature of the high-pressure CO2 separation process (
A seventh exemplary embodiment of the invention is very similar to the sixth exemplary embodiment discussed above; however, instead of the steam injection, the working medium in this process is humidified in a humidification device (humidification tower 22) arranged upstream of the combustor (
In all the concepts described, the CO2 separation processes could comprise, for example, a chemical absorption process which uses an amine-based solvent or a sodium carbonate solvent or the like. In a conventional manner, the working medium would be brought into contact with the solvent in an absorption tower, where CO2 is transformed from the gas to the liquid phase and a low-CO2 gas emerges. Alternatively, a diaphragm can act as contact element. This has the advantage that the two flows are kept separate and transfer of the solvent into the gas flow is prevented and thus the turbomachines are protected. In addition, the overall size, weight and costs can be reduced. The solvent issuing from the absorber or the diaphragm unit and enriched with CO2 is regenerated in a separation column and recirculated in order to be used again. Other examples for a CO2 separation process are the physical absorption, combinations of chemical and physical absorption, adsorption on solid bodies, and combinations thereof.
A dashed arrow in FIGS. 1 to 4 indicates that oxygen 20 can be added to the process after the CO2 separation and if need be after further compression in a second compressor 2b, as has already been explained at the beginning.
List of Designations
While the invention has been described in detail with reference to preferred embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. Each of the aforementioned documents is incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
103 25 111.1 | Jun 2003 | DE | national |
This application claims priority under 35 U.S.C. § 119 to German application number 103 25 111.1, filed 02 Jun. 2003, the entirety of which is incorporated by reference herein.