Method of generating separate contests of skill or chance from two independent events

Information

  • Patent Grant
  • 11551529
  • Patent Number
    11,551,529
  • Date Filed
    Tuesday, May 30, 2017
    7 years ago
  • Date Issued
    Tuesday, January 10, 2023
    a year ago
Abstract
The systems and methods to generate and manage a separate contest based on two independent and unconnected systems utilize a cooperating fantasy league operator/provider and either a related or separate real-time contest provider. Separate winners for a third contest are determined by combining the performance in a specified daily fantasy league competition and a separate pre-specified performance in a real-time competition.
Description
FIELD OF THE INVENTION

The present invention relates to methods and systems for implementing a separate and combined contest for participants competing both in a daily fantasy event and a separate contest played in real-time on a web-connected device while viewing a live sporting event or other events.


BACKGROUND

According to Wikipedia and the International Telecommunication Union, roughly 3 billion people are or will be online (e.g., have access to the Internet), and the number continues to grow. In North America, there are 57 million participating in Fantasy Leagues with over 8 million participating in Daily Fantasy Leagues. In Europe, over 65 million using mobile or other internet connected devices place wagers in real-time directly related to a telecast of a sporting event. Therefore, hundreds of millions of people could be involved in contests of skill or chance at the same time. The complex computer systems support Daily Fantasy competition and those that control real-time contests which begin the very instant when Daily Fantasy competitions are closed are incompatible and operated by unrelated companies. The system handling the contests of skill or chance must be able to process such a computational and data load. A major computer-based, technical problem is efficiently handling large amounts of network data from potentially millions of participants. Many companies do not have a solution to this problem, and either limit competitions to a smaller number of competitors or the competitions suffer from technical issues such as network congestion which causes the gameplay to suffer.


SUMMARY OF THE INVENTION

The daily fantasy sports industry has rapidly grown in the last 5 years to evolve to over 8 million participants. These contests are based upon the skill in the drafting of teams of players based on prescribed limitations. The winners of these daily fantasy contests are those participants whose drafts selections score the highest number of total points. Since the winners are determined by the statistics and generated by the drafted players in actual games to be played, these contests cease to accept new entries concurrent with the start of the first event which is counted in scoring of the daily fantasy competition. Thus, in daily fantasy baseball, a contest based upon the results of games played on a Sunday; all entries are locked in after the first pitch in the first game of the day. Already millions of players are checking injury reports and weather conditions at the last minute then entering their drafts before all are simultaneously locked out. Almost all of these entrants then watch one or more of the games televised where the statistics originate, which will determine the winners of their fantasy contests.


Companies such as WinView offer games of skill which appeal to the very same target market, and these conducted contests begin when the fantasy game entries are locked in with the first televised/streamed game and are conducted live in real-time (sometimes utilizing two screens). The competition is based on the competitors observing the television broadcast and interacting on a separate interactive device. Daily fantasy contests and the real-time games are both scored by the unfolding game data. Both of these contests test the knowledge, skill, research and decision making capabilities of the participants and appeal to exactly the same audience. Each is scored by very different systems and software based on unrelated sets of statistics however, and the winners of each contest are determined by a different application of skill, knowledge, tactics, game play, and basic knowledge of the teams and participants The methods and systems described herein enable the creation and management of a completely separate unique and free standing contest utilizing unrelated and unconnected systems each processing potentially tens of millions of separate contest entries which are based on the combined performance among the entrants in two separate and different genres of events, a daily fantasy league competition and “In Play” competition played in real-time with the unfolding telecast. In the business of legalized sports betting, this kind of entry of independent and separate events in a single prize pool is called a parlay.


A solution to the problem of large amounts of network data involves utilizing multiple servers which are able to be positioned appropriately to serve users based on geographic proximity. Another solution is to utilize distributed computing such as enabling the end user devices to process results and scoring. Similarly, ensuring fair gameplay for millions of competitors is also addressed by determining and responding to any delays in receipt of content such as by the use of lockout signals.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a flowchart of a method of generating multiple contests of skill or chance from two independent events according to some embodiments.



FIG. 2 illustrates a block diagram of an exemplary computing device configured for implementing the method of generating multiple contests of skill or chance from two independent events according to some embodiments.



FIG. 3 illustrates a network of devices for implementing the method of generating multiple contests of skill or chance from two independent events according to some embodiments.



FIG. 4 illustrates a flowchart of a method of utilizing statistical information with the multiple contests of skill or chance according to some embodiments.





DETAILED DESCRIPTION

The systems and methods to generate and manage a separate contest based on two independent and unconnected systems utilize a cooperating fantasy league operator/provider and either a related or separate real-time contest provider. In some embodiments, the separate contests are generated and managed using related or connected systems. Each game provider generates a data management system to accept entries and cash deposits from players who wish to enter a parlay-type separate contest where winners are determined by combining the performance in a specified daily fantasy league competition and a separate pre-specified performance in a real-time competition. Entries in the combined event can be accepted by either of the two separate contest management systems. At any time before the first sporting event counted as part of the daily fantasy event begins, a participant is able to elect to enter the combined event and pay a separate entry fee in a manner similar to the method utilized by daily fantasy leagues for administrating separate contests for a specified event, for example a “50/50” contest, or a “winner takes all” group. The separate game management systems (e.g., the daily fantasy league provider and the real-time provider) communicate with another game server that an entry fee deducted from one or both accounts has occurred and an entry was made in the combined (parlay) separate event.


A separate data management system manages only the combined performance of those players who have entered the combined contest system and are ranked from top to bottom from the results of the completed designated daily fantasy league play. In this case, someone who finished 5th, for example, in the open daily fantasy league contest played concurrently might finish first among just those who have entered the separate parlay contest.


While the results of the daily fantasy league entry in the combined contest are not determined until the completion of the last game of the combined games specified for scoring, the daily fantasy league contest are completed, the real-time two screen event is selected and specifically designated for the parlay contest could be based on, for example, a single quarter of a Monday night football game, an average of all quarters from a Monday night football game, or any combination of future events conducted by the two screen real-time provider specified in advance by the combined competition organizers to constitute the second part of the two contest competition.


Although a two-screen event is described herein, single screen events are able to be implemented as well, such as streaming content (e.g., a baseball game) with game data (e.g., real-time questions related to the content) where the streamed content and game data are displayed on a single device. It is understood that any references to “two screen” are able to be implemented with a single screen or any other implementation. The common element is a game played live while viewing an event via television/streaming received and displayed in any manner, with the game play data delivered via an Internet connection. The event telecast/stream and game data is able to be delivered and displayed separately or in a combined communications path on a single user interface.


At the conclusion of the predesigned live two screen event, which may be the second part for the combined contest, the system again scores only those entrants in the parlay contest, and then performances are ranked from top to bottom. In each case, a percentile standing is then assigned to each participant in each contest, for example. The winner of the daily fantasy segment contest will receive an assigned score of 100%, second place 99.9% and so on. This final result database will be compiled for these fantasy participants and sent to a server managing and administrating the combined contest. The same process will be repeated at the close of the events constituting the two-screen side of the combined parlay contest, with only those entered who have paid an entry fee to the combined contest, with scores being ranked from top to bottom and also assigned a separate percentile standing. The two screen (real-time) aspect of the contest may also be based on an average of the performance in multiple contests, for example, the average of the finish in four quarters of a football game.


The two separate percentile standings are then averaged to generate a combined score for the combined or parlay contest. Therefore, if individual “A” achieved an 89.6 percentile in the daily fantasy section of a combined contest in a 92.4 percentile standing in the two screen real-time contest, the score for the combined contest would be 91.0. All combined scores are ranked from highest to lowest (or vice versa), and the parlay prize pool distribution would be made based upon the average scores of the two separate and individual contests paid. Scoring is able to be implemented in other ways such as providing weighted scores (e.g., the real-time contest is weighted higher than the daily fantasy contest) and/or any other scoring implementations.


As it must be determined and verified that the scores achieved in the two contests are by the same individual, the combined contest server compares the cell phone numbers and other account registration information required to be supplied to the daily fantasy operator with the similar information separately collected by the two screen real-time game provider to verify that the scores were generated by the identical entrant and the entry fees (if required) received by each operator.


There are many variations of this approach. For example, an MLB or NFL season or a selected portion of a season on the fantasy league side could be designated as part of the combined event with a similar long-term series of events designated as two screen real-time event. Again, although the real-time competition is described as two screen, it is possible for the competition to be implemented using fewer or more screens (e.g., one screen with two windows or one screen with embedded information or three screens). The screens are able to be on the same device (e.g., mobile device receiving a streamed broadcast or web-connected “smart” television) or different devices (e.g., a television is the first screen and a mobile device is the second screen).



FIG. 1 illustrates a flowchart of a method of generating multiple contests of skill or chance from two independent events according to some embodiments. In the step 100, a user selects/generates a first competition. For example, the user joins a daily fantasy competition. More specifically, the user joins a competition where they select players to participate in fantasy football for that Sunday. In another example, the user is a game operator who generates daily fantasy competitions for other users to join. In some embodiments, any of the rules or variations of rules apply to selecting the first competition. For example, the user is able to draft/select players in a variety of ways and/or make other selections to generate a fantasy team to compete to earn the most points for a designated contest period (e.g., single day, week, season). In the step 102, the user selects/generates a second competition. For example, the user joins a real-time competition. More specifically, the user joins a real-time competition involving one or more of the Sunday football games related to the fantasy football. In another example, the user is a game operator who generates real-time competitions for other users to join. In addition to selecting the competition, participating in/operating the competition also occurs. For example, the user predicts the outcome of the next event (e.g., run, pass, first down, and others), whether a team will score, and/or any other options in real-time before the play occurs. In addition to generating the separate competitions, the game operator enables entry into both competitions (e.g., daily fantasy and real-time). In the step 104, one or more servers process the separate selections/gaming information (e.g., the daily fantasy information and the real-time game play). The servers are able to be dedicated servers for each task such as a daily fantasy server for processing the daily fantasy information and a real-time server for processing the real-time game information. A third server might be utilized to process the competition based on the combined performance. The servers communicate with each other as well to confirm that the payments and/or selections have been made. Processing the gaming information includes generating scores for the participants and/or ranking the participants of the competitions, including combining the scores and/or combining the rankings of each participant to generate a combined score/ranking. In some embodiments, the first competition and the second competition are related. For example, the first competition involves daily fantasy picks related to a first set of games, and the second competition involves real-time picks related to at least one game of the first set of games. In some embodiments, the first competition and the second competition involve at least some overlap in time (e.g., while the first competition is ongoing, the second competition takes place). Processing the gameplay also includes determining and generating results, depending on the game. For example, as described herein, users receive scores based on their selections for the daily fantasy competition and/or the real-time competition. The scores are able to be used to generate rankings in the competitions. The scores and/or rankings of the separate competitions are then used to determine a combined score and/or ranking for those participants of the multiple competitions (e.g., daily fantasy and real-time). In some embodiments, fewer or additional steps are implemented. In some embodiments, the order of the steps is modified. In some embodiments, the results of the two separate competitions are computed in real-time while the underlying events are underway. The combined standings are computed in real-time and displayed only to those who have entered the separate combined competition.



FIG. 2 illustrates a block diagram of an exemplary computing device configured for implementing the method of generating multiple contests of skill or chance from two independent events according to some embodiments. The computing device 200 is able to be used to acquire, store, compute, process, communicate and/or display information. In general, a hardware structure suitable for implementing the computing device 200 includes a network interface 202, a memory 204, a processor 206, I/O device(s) 208, a bus 210 and a storage device 212. The choice of processor is not critical as long as a suitable processor with sufficient speed is chosen. The memory 204 is able to be any conventional computer memory known in the art. The storage device 212 is able to include a hard drive, CDROM, CDRW, DVD, DVDRW, High Definition disc/drive, ultra-HD drive, flash memory card or any other storage device. The computing device 200 is able to include one or more network interfaces 202. An example of a network interface includes a network card connected to an Ethernet or other type of LAN. The I/O device(s) 208 are able to include one or more of the following: keyboard, mouse, monitor, screen, printer, modem, touchscreen, button interface and other devices. Multiple contest application(s) 230 used to perform the method of generating multiple contests are likely to be stored in the storage device 212 and memory 204 and processed as applications are typically processed. More or fewer components shown in FIG. 2 are able to be included in the computing device 200. In some embodiments, multiple contest hardware 220 is included. Although the computing device 200 in FIG. 2 includes applications 230 and hardware 220 for the method of generating multiple contests, the method of generating multiple contests is able to be implemented on a computing device in hardware, firmware, software or any combination thereof. For example, in some embodiments, the multiple contest applications 230 are programmed in a memory and executed using a processor. In another example, in some embodiments, the multiple contest hardware 220 is programmed hardware logic including gates specifically designed to implement the method of generating multiple contests.


In some embodiments, the multiple contest application(s) 230 include several applications and/or modules. In some embodiments, modules include one or more sub-modules as well. In some embodiments, fewer or additional modules are able to be included.


Examples of suitable computing devices include a personal computer, a laptop computer, a computer workstation, a server, a mainframe computer, a handheld computer, a personal digital assistant, a cellular/mobile telephone, a smart appliance, a gaming console, a digital camera, a digital camcorder, a camera phone, a smart phone, a portable music player, a tablet computer, a mobile device, a video player, a video disc writer/player (e.g., DVD writer/player, high definition disc writer/player, ultra high-definition disc writer/player), a television, a home entertainment system, an augmented reality device, a virtual reality device, smart jewelry (e.g., smart watch) or any other suitable computing device.



FIG. 3 illustrates a network of devices for implementing the method of generating multiple contests of skill or chance from two independent events according to some embodiments. The network of devices 300 is able to include any number of devices. For example, the network of devices 300 includes a computing device 302, a television 304, a smart phone 306, one or more servers 308 and a network 310. The devices are able to communicate through a network 310 such as the Internet or directly to each other. A user is able to use the computing device 302, the television 304, the smart phone 306 and/or another device to perform tasks such as joining the competitions, providing selections for the competitions, watching the events and/or any other tasks. The information provided by the user is sent to the one or more servers 308. Additionally, the one or more servers 308 communicate to retrieve and process gaming/event information (e.g., number of touchdowns scored by Football Player X). For example, the one or more servers 308 include: a daily fantasy league server which provides/processes data (e.g., statistics, user interface, results) regarding the daily fantasy contest; a real-time server which provides/processes data (e.g., real-time questions/submissions via a user interface, results) regarding the real-time contest, and the real-time server communicates with a game server to determine if the correct entry fee(s) have been paid and/or selections have been made; and a data management server which manages the combined performance of the players who have entered the combined contest system. Furthering the example, there is a dedicated server for daily fantasy competitions, a separate, dedicated server for real-time competitions and another separate, dedicated server for handling data for users who have selected to participate in both competitions. In some embodiments, instead of the third dedicated server acting separately, the third dedicated server uses shared information from the daily fantasy server and the real-time server. In some embodiments, the real-time server is configured specifically to be able to process data in real-time (e.g., utilizing a real-time operating system or an operating system capable of implementing real-time threads), whereas the daily fantasy league server and/or the combined competition server may be implemented without real-time capabilities.


In some embodiments, the devices and/or servers are optimized to implement the separate contests of skill for multiple events. For example, data that is accessed more frequently is stored on faster access storage (e.g., RAM as opposed to slower storage devices). Furthering the example, the data relevant for the current week is stored on faster access storage, and data from past weeks is stored on slower storage devices. In another example, when a user selects a competition/contest, information related to that competition/contest is moved to local storage for faster access.


For the real-time competition, latency issues could possibly give some users an unfair advantage. The latency issues are solved through a system and method to effectively equalize systemic propagation delay variances to a required level dictated by the demands and rules of a particular game, so that a material competitive advantage is not obtained, and the user experience is optimized for all players.


The solution includes first determining how each viewer is receiving their television signal (e.g. via an over the air broadcast in a metropolitan area, via a particular cable system or a particular satellite system, via streaming). All subscribers to a particular service provider or who are receiving an over the air broadcast in a specific metropolitan area will receive the signal at their location at the same time. It is also able to be determined if there is further processing of the signal within the homes, office, bar and others, which could further increase the total length of the propagation delay. Examples would be the use of a DVR, such as TiVo™. A variety of methodologies are able to be utilized to determine the time difference between the reception of the television picture being utilized by the central game production facility where “lock out” signals are generated and each separate group of viewers around the country or around the world.


One approach is to survey the delays encountered through the various delivery systems such as cable, over the air or satellite in various geographic areas and adjust the synchronization of the game control information for all players to optimize the game play experience while defeating cheating enabled by receiving late lock outs to questions.


In another approach, the total viewing population for a telecast is divided into segments or blocks of viewers referred to as “cohorts.” For example, the 2 million inhabitants of the San Francisco Bay Area would be divided into approximately 1 over the air broadcast, 3 satellite independent providers and several cable “head ends” or central broadcast points serving a “cohort.” This information would be gathered at a central game server, and all players registered to play in a particular contest would be assigned to a specific cohort of viewers.


The following are some other methodologies for determining the delays experienced by various cohorts who are able to be used in combination or separately.


In one methodology, upon joining the service and prior to initial game play, subscribers and competitors are required to identify the method by which they receive their television signal and identify the cable or satellite service provider and answer questions relative to whether or not they subscribe to an analog or digital high definition service or utilize a DVR. This information is able to be verified by sending questions to their cellular phones concerning commercials, station breaks and the precise time they are viewed or utilizing other information only seen by members of that cohort.


In another methodology, a routine is established upon first entry into a game where the individual viewer is asked to mark the precise time a predetermined audio or visual event in the television program occurs, such as the initial kickoff, which would establish the deviation of their receipt of their television picture from the television signal utilized by the game producers. While some viewers might attempt to cheat by delaying their input, the earliest entries from the cohorts in this group would be averaged to establish the accurate delta between the receipt of the telecast/stream by the production crew and those in each discrete sub-group of viewers.


In another methodology, the GPS function in the cellular phone is used to determine the physical location of a viewer which is matched to a database of cable lead ends or over the air broadcast stations available to a consumer in that precise location.


In another methodology, employees of the game producer who are members of the subgroups which constitute the competitors/viewers, e.g. a subscriber to Comcast Cable in San Francisco, are utilized by the game service provider. These individuals would provide the current propagation delay information sent to the game server utilizing their identification of a recognizable event they observe on their television set, such as the initial snap of the ball.


In another methodology, audio or video artifacts or information done in cooperation with the television signal provider are inserted which must be immediately responded to by the competitor to verify the source of their television signal or monitored at cooperative viewers' television sets.


In another methodology, the various delays through an automated system linked to the game server, which continuously samples the audio or video track of the underlying satellite, cable or over the air broadcast television signals are established around the country to provide the information of the precise arrival of the underlying television picture.


Utilizing software resident in the game control server, game control data for each set of viewers/competitors of the game in progress who are receiving their television picture or streaming content through the same source are batched together by the game control server, and the appropriate delay is either time stamped on the game “lock out” signals, or is imposed on the entire data stream so that competitors receiving their content slightly behind or ahead of others gain no material competitive advantage. Another method is for the game control server to send all the game control data to all of the viewers/competitors of the game at the same time, and the client software is able to delay the presentation of the game data based on the viewers' cohort.


Utilizing these methodologies to measure the delays in each cohort, each cohort of viewers would have artificial time delays on the game control information imposed by the game control server, which would substantially equalize the receipt of “lock out” data relative to the event triggering the “lock out,” based on the underlying television programming, for example, the snap of the football. Players receiving the television signals or streaming content in advance of the one with the slowest receipt of the television signal or streaming content would receive “lock out” signals slightly delayed or time stamped with a slightly later time as described in U.S. Pat. No. 4,592,546. By providing a correspondingly delayed lock out to a viewer receiving their signal later, a potential advantage is mitigated.


Alternatively, this time equalization from cohort to cohort could, for example, involve artificially delaying the transmission of the game control data stream sent to all competitors' cell phones or other mobile devices by the appropriate amount of seconds, to sufficiently minimize the advantage a player with a few more seconds of television-based (or streaming-based) information would have. For example, by time stamping the “lock out” signal at an earlier event, such as when the team breaks from the huddle, the chance of some cohorts seeing the actual beginning of the play is eliminated and the discrepancy in propagation delay provides little or no advantage.


In some embodiments, a method of and system for conducting multiple competitions of skill for a single performance are described herein. User-generated competition groups and system-generated competition groups allow users to participate in multiple competitions at once based on answering the same questions or making the same selections related to a single event or multiple events. The users are informed of the availability of each competition either via email, text message or when logging into the network via a website. The users select which competitions groups to join. After joining the desired groups, the users then make their selections related to the event which are transmitted to the network where results are tabulated and transmitted back to the users. The results are separated for each competition group, so that users continually know where they stand in each separate competition. With multiple competition groups, users are able to have varying success from the same performance in multiple competitions.


When used in conjunction with the methods and systems described herein, a user is able to participate in multiple competitions simultaneously. For example, instead of the user participating in a single daily fantasy competition and/or a single real-time competition, the user is able to participate in multiple daily fantasy competitions and/or multiple real-time competitions based on a single performance. Furthering the example, the user joins multiple daily fantasy competitions which all use a single set of selections (e.g., Andrew Luck as QB, Murray as RB, Beckham Jr. as WR and so on). Instead of having to select the QB for each competition, the same set of selections is used for multiple competitions. Similarly, a user is able to associate a real-time performance with multiple competitions. In one example, the user joins three real-time competitions based on the 49ers vs. Eagles game (one competition is a friendly competition, a second competition is for $5 against a group of 10 players, and a third competition is for $1000 against a group of 100 players). In another example, the real-time competition selections and results are able to be applied to multiple combined results. For example, instead of a basic 1-to-1 selection of one daily fantasy football team and one real-time competition which results in one combined result, the user selects a daily fantasy football team applied to three separate competitions (e.g., friendly, group of 10 and group of 100), and the user selects three real-time competitions (e.g., selecting Run/Pass/more for 49ers vs. Eagles, Patriots vs. Bills, Broncos vs. Raiders) to be combined with the daily fantasy competitions for a total of nine separate competitions/results. Furthering the example, the result of the user's performance (of selecting, Run/Pass/Fumble/Interception and other real-time selections for the 49ers vs. Eagles is combined separately with the friendly competition, the group of 10 competition and the group of 100 competition, giving the user a first set of 3 opportunities to win. Additionally, the user's real-time performance for the Patriots vs. Bills is also combined with the friendly competition, the group of 10 competition and the group of 100 competition, giving the user a second set of 3 opportunities to win. Finally, the user's real-time performance for the Broncos vs. the Raiders is also combined with the friendly competition, the group of 10 competition and the group of 100 competition, giving the user a third set of 3 opportunities to win, which results in a total of 9 opportunities to win but only providing one set of selections for the daily fantasy competition and one set of selections (e.g., Run/Pass/more) for each of the three real-time competitions.


Although the method and system have been described in reference to real-time games of skill and chance, the method and system are able to be utilized with any event such as card games, dice games, trivia games, esports (e.g., video game competitions), television competitions (e.g., reality shows, quiz shows) and/or any other games/competitions/events.


In some embodiments, the competitions and/or any other aspects described herein are implemented using object oriented programming such as classes. For example, a real-time class is generated, and a daily fantasy competition is generated. Each of the classes is able to have specific data field descriptions/attributes such as questions, answers, scores, and participants. The objects are able to represent real world aspects in a non-abstract form.


In some embodiments, in addition to or instead of receiving video content (e.g., a television broadcast), a user device receives statistical information (e.g., live sports data feeds from a source such as Stats.com). For example, the statistical information is received on the user device which updates text and/or graphical information such as the number of runs, hits, outs, strikes/balls, and so on for each baseball team. The user device receiving the statistical information is able to be the same device or a different device than the one for participating in the game of skill or chance.


In some implementations, the statistical information may be received before the video content (e.g., the statistical information is received at a user device within 1 second from when it actually occurs live, and the video content is received at the user device in 7 seconds from when it occurred live). In some embodiments, the difference in receipt time is computed (similar to the calculation of other delays described herein) to account for such a difference. For example, if the difference between video receipt and statistical information receipt is 6 seconds (7 seconds−1 second), then a system (e.g., server, other network device, user device or a combination thereof) is able to delay transmission and/or display of the statistical information. For example, the game server receives the statistical information and then holds the statistical information for 6 seconds before passing the statistical information on to the user device so that the statistical information and the video content arrive at the same time (or approximately the same time). In another example, the user device receives the statistical information in 1 second, but then the user device (e.g., the game application) holds the statistical information and does not display the statistical information until another 6 seconds have passed so that the video content and statistical information are displayed at the same time (or approximately the same time). In some embodiments, the statistical information is delayed to be displayed before or after the video content. For example, in some implementations, the statistical information is not updated and displayed until 2 seconds after the video content is displayed. In some embodiments, the delay amount of the statistical information is static, and in some embodiments, the delay amount is dynamic. For example, a producer is able to adjust the delay amount based on analyzing the video propagation delays. The delay amount is able to be different depending on varying factors such as how the video content is received (e.g., cable, satellite, over the air) or the location of the user device (e.g., rural versus urban or State X versus State Y). Thus, the game server is able to distribute the statistical information accordingly to each cohort or group of users. The amount of delay could be based on other factors as well. In some embodiments, the amount of delay is automatically detected and/or the statistical information is synchronized with the video content. For example, using any of the synchronization implementations described in U.S. Pat. No. 8,705,195, which is hereby incorporated by reference in its entirety for all purposes, such as watermarking, footprints, and/or automatic content recognition, the server and/or the user device synchronize the statistical information with the video content. For example, the server determines using automatic content recognition that a strike was just called with Player X batting, so the statistical information of a strike is updated/displayed.


In some embodiments, a lockout signal is sent or triggered based on the receipt of the statistical information. For example, when the statistical information is received at a user device, a lockout signal is triggered. Furthering the example, the earliest receipt of the statistical information triggers the lockout signal (e.g., a lockout signal is sent to all user devices and/or an application prevents a selection of a response after the lockout is triggered).



FIG. 4 illustrates a flowchart of a method of utilizing statistical information with the multiple contests of skill or chance according to some embodiments. In the step 400, statistical information is received. The statistical information is able to be received from any source such as stats.com. The statistical information is received at any device such as a server and/or user devices. In the step 402, timing information related to the statistical information is computed. Computing the timing information is able to include computing the time from when video content is received and when the statistical information is received at user devices. Computing the timing information is able to include computing the time from when a live action occurs (e.g., a pitch called a strike) to when the statistical information is received at the server or the user devices (or specific user devices). For example, the statistical information may be received at different user devices at different times. In the step 404, an action is taken based on the timing information related to the statistical information. For example, transmission of the statistical information from the server to the user devices is delayed (possibly different amounts of delay for different devices), or display of the statistical information on the user devices is delayed. In another example, lockout signals are based on the timing information and/or when the statistical information is received at user devices. In some embodiments, fewer or additional steps are implemented. In some embodiments, the order of the steps is modified.


To address the many problems facing distributed gaming as described herein, many companies have implemented various technological solutions such as limiting the number of users permitted to play at a certain time or providing faster servers or other networking equipment. Time-sensitive distributed gaming faces additional problems such as ensuring players do not have any unfair competitive advantages such as providing answers/selections after a designated time. Others have addressed the timing problems by asking questions well in advance, so that the users answer the questions or make their selections well before any advantageous information is revealed. By utilizing time-sensitive lockouts as described herein, which lock out players based on some threshold (e.g., a time, a detected action, a user-triggered action), improper competitive advantages and cheating are avoided. Efficiently locating participants is another challenge of distributed gaming. As described herein, social networking is able to be utilized to efficiently find and invite participants to the distributed game. By utilizing social networking, users with common interests are able to be invited which increases the likelihood of participation which also reduces the amount of network traffic as there will be fewer people who are contacted who reject or disregard the invitation. A solution to the problem of large amounts of network data involves utilizing multiple servers which are able to be positioned appropriately to serve users based on geographic proximity, as described herein. Another solution is to utilize distributed computing such as enabling the end user devices to process results and scoring, as described herein. For distributed gaming based on received external content (e.g., a telecast) where users may receive the external content at slightly different times (e.g., based on transmission delays due to technological issues such as timing differences of servers, switches, routers or distribution devices), a way of equalizing the differences using technological solutions (e.g., calculating a delay based on timestamps of when content is sent and received, or comparing receipt times of content for different devices) ensures the game is executed fairly and properly. Furthermore, a game in which a group of participants is at a complete disadvantage (e.g., they receive data 7 seconds later than everyone else) may lose a substantial number of participants, as no one wants to participate in an unfair game. Therefore, implementations described herein of equalizing the receipt of content in any manner such as by adding delays or providing lockouts at appropriate times based on transmission differences are technological solutions to technological problems.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims
  • 1. A method programmed in a non-transitory memory of a device comprising: providing a real-time competition, wherein providing the real-time competition includes: determining an amount of delay for participants of the real-time competition; andsending a lockout signal at a time based on the amount of delay to prevent the participants from submitting a response to the real-time competition;wherein the real-time competition comprises a plurality of real-time selections;providing a non-real-time competition, wherein the non-real-time competition comprises a plurality of non-real-time selections, wherein the real-time competition and the non-real-time competition are distinct and separate but related to a same one or more events; andscoring a separate competition based on averaging results of the real-time competition and the non-real-time competition, to determine winners of the separate competition, wherein the separate competition is based on the same one or more events, wherein the participants participate in the same real-time competition, the same non-real-time competition and the same separate competition.
  • 2. The method of claim 1 wherein the one or more events comprise a set of events and a subset of the set of events.
  • 3. The method of claim 1 wherein the real-time competition and the non-real-time competition occur on a same day.
  • 4. The method of claim 1 wherein for a user participant to participate in the non-real-time competition, the participant selects the non-real-time competition before the real-time competition begins.
  • 5. The method of claim 1 wherein combining the scores from each of the real-time competition and the non-real-time competition includes averaging final standings from each of the real-time competition and the non-real-time competition to generate a single score used to determine a separate combined winner of the separate competition.
  • 6. The method of claim 1 further comprising verifying the scores for the real-time competition and the non-real-time competition by comparing results maintained on a mobile device.
  • 7. The method of claim 1 wherein real-time updates of combined results are sent only to devices of participants entered into the separate competition.
  • 8. The method of claim 1 wherein the one or more events include: a live sports competition, an esport competition, or a television based competition.
  • 9. The method of claim 1 wherein the real-time competition comprises a contest of skill.
  • 10. The method of claim 1 wherein the non-real time competition comprises a contest of skill.
  • 11. The method of claim 1 wherein responses to the non-real-time competition are locked with the beginning of the real-time competition.
  • 12. The method of claim 1 wherein the non-real-time competition comprises a fantasy based game of skill and the real-time competition comprises a prediction-based contest based on a live event.
  • 13. The method of claim 1 wherein one of the real-time competition and the non-real-time competition is weighted more than the other.
  • 14. The method of claim 1 wherein scoring the separate competition is based on averaging the results of the real-time competition and the non-real-time competition, to determine the winners of the separate competition is performed by a server.
  • 15. The method of claim 1 wherein the non-real-time competition comprises a game of chance.
  • 16. The method of claim 1 wherein scoring the separate competition based on averaging results of the real-time competition and the non-real-time competition comprises averaging a first result from the real-time competition for a participant, wherein the first result comprises a first percentile and a second result from the non-real-time competition for the participant wherein the second result comprises a second percentile, such that the averaged first result and second result generate a total result which comprises a third percentile.
  • 17. The method of claim 1 wherein eligibility for one of the real-time competition, non-real-time competition and the separate competition is based on a geographic location of a participant.
  • 18. The method of claim 1 wherein the real-time competition comprises a contest of skill and the non-real-time competition comprises a contest of skill.
  • 19. The method of claim 1 wherein the real-time competition comprises a contest of chance and the non-real-time competition comprises a contest of skill.
  • 20. The method of claim 1 wherein the real-time competition comprises a contest of skill and the non-real-time competition comprises a contest of chance.
  • 21. The method of claim 1 wherein the real-time competition comprises a contest of chance and the non-real-time competition comprises a contest of chance.
  • 22. A device comprising: a non-transitory memory for storing an application, the application for:providing a real-time competition, wherein the real-time competition comprises a plurality of real-time selections; providing a non-real-time competition, wherein the non-real-time competition comprises a plurality of non-real-time selections, wherein the real-time competition and the non-real-time competition are related to a same event, wherein providing the real-time competition includes: determining an amount of delay for participants of the real-time competition; andsending a lockout signal at a time based on the amount of delay to prevent the participants from submitting a response to the real-time competition; andscoring the real-time competition and the non-real-time competition, including averaging scores from each of the real-time competition and the non-real-time competition to generate a separate competition, wherein the separate competition is based on the same event, wherein the participants participate in the same real-time competition, the same non-real-time competition and the same separate competition; anda processor for processing the application.
  • 23. The device of claim 22 wherein the same event includes a set of events for the non-real-time competition and a subset of the set of events for the real-time competition.
  • 24. The device of claim 22 wherein the real-time competition occurs over a duration of a set period of time, and wherein the non-real-time competition is separately scored based on events occurring in real time.
  • 25. The device of claim 22 wherein for a user participant to participate in the non-real-time competition, the participant selects the non-real-time competition before the real-time competition begins.
  • 26. The device of claim 22 wherein current standings in the real-time competition and the non-real-time competition are completed and displayed in real-time only to devices of participants in the separate competition.
  • 27. The device of claim 22 further comprising verifying the scores for the real-time competition and the non-real-time competition by comparing mobile device information at a central server.
  • 28. The device of claim 27 wherein the mobile device information comprises a cellular phone number.
  • 29. The device of claim 22 wherein the same event includes at least one of a live sports competition, an esport competition, or a television based competition.
  • 30. The device of claim 22 wherein the real-time competition comprises a contest of skill.
  • 31. The device of claim 22 wherein the non-real time competition comprises a contest of skill or a game of chance.
  • 32. The device of claim 22 wherein responses to the non-real-time competition are locked with the beginning of the real-time competition.
  • 33. The device of claim 22 wherein the non-real-time competition comprises a fantasy based game of skill and the real-time competition comprises a prediction-based contest based on a live event.
  • 34. The device of claim 22 wherein one of the real-time competition and the non-real-time competition is weighted more than the other.
  • 35. The device of claim 22 wherein the device comprises an end user device.
  • 36. The device of claim 22 wherein eligibility for one of the real-time competition, non-real-time competition and the separate competition is based on a geographic location of a participant.
  • 37. The device of claim 22 wherein the real-time competition comprises a contest of skill and the non-real-time competition comprises a contest of skill.
  • 38. The device of claim 22 wherein the real-time competition comprises a contest of chance and the non-real-time competition comprises a contest of skill.
  • 39. The device of claim 22 wherein the real-time competition comprises a contest of skill and the non-real-time competition comprises a contest of chance.
  • 40. The device of claim 22 wherein the real-time competition comprises a contest of chance and the non-real-time competition comprises a contest of chance.
  • 41. A network of devices comprising: a non-real-time server for managing a daily fantasy competition, wherein the daily fantasy competition includes participants selecting players to form a team, wherein the team is used to compete against other participants, wherein the daily fantasy competition comprises a plurality of non-real-time daily fantasy selections;a real-time server for managing a real-time skill-based competition, wherein the real-time skill-based competition comprises a plurality of real-time selections, wherein managing the real-time skill-based competition includes: determining an amount of delay for participants of the real-time competition; andsending a lockout signal at a time based on the amount of delay to prevent the participants from submitting a response to the real-time skill-based competition; andone or more third servers for managing a combined competition, wherein the combined competition includes the daily fantasy competition and the real-time skill-based competition, including averaging scores from each of the real-time skill-based competition and the daily fantasy competition, wherein the combined competition is based on a same one or more events, wherein the participants participate in the same daily fantasy competition, the same real-time skill-based competition and the same combined competition.
  • 42. The network of devices of claim 41 wherein the daily fantasy competition occurs over a duration of a set period of time, and wherein the real-time competition is separately scored based on events occurring in real time.
  • 43. The network of devices of claim 41 wherein for a participant to participate in the real-time competition, the participant selects the non-real-time competition before the daily fantasy competition begins.
  • 44. The network of devices of claim 41 wherein current standings in the real-time skill-based competition and the non-real-time daily fantasy competition are computed and displayed in real-time only to devices of participants in the combined competition.
  • 45. The network of devices of claim 41 further comprising verifying the scores for the daily fantasy competition and the real-time skill-based competition by comparing Internet-connected device information of an Internet-connected device at a server where data of the combined competition is maintained.
  • 46. The network of devices of claim 45 wherein the Internet-connected device includes a mobile phone, a laptop, a personal computer, a smart television or a video game console.
  • 47. The network of devices of claim 41 wherein the real-time server sends statistical information received from another device to a user participant device.
  • 48. The network of devices of claim 41 wherein the same one or more events includes at least one of: a live sports competition, an esport competition, or a televised competition.
  • 49. The network of devices of claim 41 wherein the real-time skill-based competition comprises a contest of skill.
  • 50. The network of devices of claim 41 wherein the non-real time daily fantasy competition comprises a contest of skill.
  • 51. The network of devices of claim 41 wherein responses to the non-real-time daily fantasy competition are locked with the beginning of the real-time skill-based competition.
  • 52. The network of devices of claim 41 wherein the non-real-time daily fantasy competition comprises a fantasy based game of skill and the real-time skill-based competition comprises a prediction-based contest based on a live event.
  • 53. The network of devices of claim 41 wherein one of the real-time skill-based competition and the non-real-time daily fantasy competition is weighted more than the other.
  • 54. The network of devices of claim 41 wherein eligibility for one of the real-time skill-based competition, non-real-time daily fantasy competition and the combined competition is based on a geographic location of a participant.
  • 55. A method programmed in a non-transitory memory of a device comprising: providing a first competition, wherein providing the first competition includes: determining an amount of delay for participants of the first competition; andsending a lockout signal at a time based on the amount of delay to prevent the participants from submitting a response to the first competition, wherein the first competition comprises a plurality of real-time selections;providing a second competition, wherein the second competition comprises a plurality of non-real-time selections, and further wherein the first competition and the second competition are distinct and separate but related to a same one or more events; andscoring a separate third competition based on averaging results of the first competition and the second competition together, to determine winners of the separate third competition, wherein the separate third competition is based on the same one or more events, wherein the participants participate in the same first competition, the same second competition and the same separate third competition.
  • 56. The method of claim 55 wherein the first competition is a real-time competition, and the second competition is a non-real-time competition which comprises pre-competition chance-based wagers, further wherein the non-real-time competition is closed when the real-time competition begins.
  • 57. The method of claim 55 wherein the first competition is a real-time competition, and the second competition is a non-real-time competition which comprises pre-competition daily fantasy selections, further wherein the non-real-time competition is closed when the real-time competition begins.
  • 58. The method of claim 55 wherein scoring the separate third competition is based on averaging the results of the first competition and the second competition, to determine the winners of the separate third competition is performed by a server.
  • 59. A network of devices comprising: a non-real-time server for managing a daily fantasy competition, wherein the daily fantasy competition comprises a plurality of non-real-time daily fantasy selections;a real-time server for managing a real-time skill-based competition, wherein the real-time skill-based competition comprises a plurality of real-time selections, wherein managing the real-time skill-based competition includes: determining an amount of delay for participants of the real-time competition; andsending a lockout signal at a time based on the amount of delay to prevent the participants from submitting a response to the real-time skill-based competition; andwherein the non-real-time server, the real-time server or any combination thereof is configured for managing a combined competition, wherein the combined competition includes the daily fantasy competition and the real-time skill-based competition, including averaging scores from each of the real-time skill-based competition and the daily fantasy competition, wherein the combined competition is based on a same one or more events, wherein the participants participate in the same daily fantasy competition, the same real-time skill-based competition and the same combined competition.
  • 60. The network of devices of claim 59 wherein the daily fantasy competition occurs over a duration of a set period of time, and wherein the real-time skill-based competition is separately scored based on events occurring in real time.
  • 61. The network of devices of claim 59 wherein for a participant to participate in the real-time skill-based competition, the user participant selects the non-real-time competition before the daily fantasy competition begins.
  • 62. The network of devices of claim 59 wherein current standings in the real-time skill-based competition and the daily fantasy competition are computed and displayed in real-time only to devices of participants in the combined competition.
  • 63. The network of devices of claim 59 further comprising verifying the scores for the daily fantasy competition and the real-time skill-based competition by comparing Internet-connected device information of an Internet-connected device at a server where data of the combined competition is maintained.
  • 64. The network of devices of claim 63 wherein the Internet-connected device includes a mobile phone, a laptop, a personal computer, a smart television or a video game console.
  • 65. The network of devices of claim 59 wherein the real-time server sends statistical information received from another device to a participant device.
  • 66. The network of devices of claim 59 wherein the same one or more events includes at least one of: a live sports competition, an esport competition, or a televised competition.
  • 67. The network of devices of claim 59 wherein one of the real-time skill-based competition and the daily fantasy competition is weighted more than the other.
  • 68. The network of devices of claim 59 wherein eligibility for one of the real-time skill-based competition, daily fantasy competition and the combined competition is based on a geographic location of a participant.
  • 69. A server comprising: a non-transitory memory for storing an application, the application for: finding and inviting users to be participants for a real-time competition and a non-real-time competition using social networking based on one or more common interests of the users;providing the real-time competition, wherein the real-time competition comprises a plurality of real-time selections;providing the non-real-time competition, wherein the non-real-time competition comprises a plurality of non-real-time selections, wherein the real-time competition and the non-real-time competition are related to a same one or more events, wherein providing the real-time competition includes: determining an amount of delay for the participants of the real-time competition; andsending a lockout signal at a time based on the amount of delay to prevent the participants from submitting a response to the real-time competition; andscoring the real-time competition and the non-real-time competition, including averaging scores from each of the real-time competition and the non-real-time competition to generate a separate third competition, wherein the separate third competition is based on the same one or more events, wherein a prize pool distribution for the separate third competition is based upon average scores of the real-time competition and the non-real-time competition, wherein scoring the real-time competition includes separating the real-time competition into a plurality of separate sub-competitions and averaging the scores from the separate sub-competitions to generate an averaged real-time score, wherein the server is positioned in relation to users based on a geographic proximity of the server with the users such that the server nearest the users serves the users, wherein the real-time competition includes selecting an in-play outcome including run, pass, first down, and touchdown and further wherein the participants participate in the same real-time competition, the same non-real-time competition and the same separate third competition; anda processor for processing the application.
  • 70. The server of claim 69 wherein the same one or more events includes a set of events for the non-real-time competition and a subset of the set of events for the real-time competition.
  • 71. The server of claim 69 wherein the real-time competition occurs over a duration of a set period of time, and wherein the non-real-time competition is separately scored based on the same one or more events occurring in real time.
  • 72. The server of claim 69 wherein for a participant to participate in the non-real-time competition, the participant selects the non-real-time competition before the real-time competition begins.
  • 73. The server of claim 69 wherein current standings in the real-time competition and the non-real-time competition are completed and displayed in real-time only to devices of participants in the separate third competition.
  • 74. The server of claim 69 further comprising verifying the scores for the real-time competition and the non-real-time competition by comparing mobile device information at a central server.
  • 75. The server of claim 74 wherein the mobile device information comprises a cellular phone number.
  • 76. The server of claim 69 wherein the same one or more events include at least one of a live sports competition, an esport competition, or a television based competition.
  • 77. The server of claim 69 wherein the real-time competition comprises a contest of skill.
  • 78. The server of claim 69 wherein the non-real time competition comprises a contest of skill.
  • 79. The server of claim 69 wherein responses to the non-real-time competition are locked with the beginning of the real-time competition.
  • 80. The server of claim 69 wherein the non-real-time competition comprises a fantasy based game of skill and the real-time competition comprises a prediction-based contest based on a live event.
  • 81. The server of claim 69 wherein one of the real-time competition and the non-real-time competition is weighted more than the other.
  • 82. The server of claim 69 wherein eligibility for one of the real-time competition, non-real-time competition and the separate third competition is based on a geographic location of a participant.
  • 83. The server of claim 69 wherein the real-time competition comprises a contest of skill and the non-real-time competition comprises a contest of skill.
  • 84. The server of claim 69 wherein the real-time competition comprises a contest of chance and the non-real-time competition comprises a contest of skill.
  • 85. The server of claim 69 wherein the real-time competition comprises a contest of skill and the non-real-time competition comprises a contest of chance.
  • 86. The server of claim 69 wherein the real-time competition comprises a contest of chance and the non-real-time competition comprises a contest of chance.
RELATED APPLICATION(S)

This Patent Application claims priority under 35 U.S.C. § 119(e) of the co-pending, co-owned U.S. Provisional Patent Application No. 62/364,768, filed Jul. 20, 2016, and entitled “A METHOD OF GENERATING SEPARATE CONTESTS OF SKILL OR CHANCE FROM TWO INDEPENDENT EVENTS” which is also hereby incorporated by reference in its entirety.

US Referenced Citations (600)
Number Name Date Kind
2831105 Parker Apr 1958 A
3562650 Gossard et al. Feb 1971 A
4141548 Everton Feb 1979 A
4270755 Willhide et al. Jun 1981 A
4386377 Hunter, Jr. May 1983 A
4496148 Morstain et al. Jan 1985 A
4521803 Gittinger Jun 1985 A
4592546 Fascenda et al. Jun 1986 A
4816904 McKenna et al. Mar 1989 A
4918603 Hughes et al. Apr 1990 A
4930010 MacDonald May 1990 A
5013038 Luvenberg May 1991 A
5018736 Pearson et al. May 1991 A
5035422 Berman Jul 1991 A
5073931 Audebert et al. Dec 1991 A
5083271 Thatcher et al. Jan 1992 A
5083800 Lockton Jan 1992 A
5119295 Kapur Jun 1992 A
5120076 Luxenberg et al. Jun 1992 A
5213337 Sherman May 1993 A
5227874 Von Kohorn Jul 1993 A
5256863 Ferguson Oct 1993 A
5263723 Pearson et al. Nov 1993 A
5283734 Von Kohorn Feb 1994 A
5327485 Leaden Jul 1994 A
5343236 Koppe et al. Aug 1994 A
5343239 Lappington et al. Aug 1994 A
5417424 Snowden May 1995 A
5462275 Lowe et al. Oct 1995 A
5479492 Hofstee et al. Dec 1995 A
5488659 Millani Jan 1996 A
5519433 Lappington May 1996 A
5530483 Cooper Jun 1996 A
5553120 Katz Sep 1996 A
5566291 Boulton et al. Oct 1996 A
5585975 Bliss Dec 1996 A
5586257 Perlman Dec 1996 A
5589765 Ohmart et al. Dec 1996 A
5594938 Engel Jan 1997 A
5618232 Martin Apr 1997 A
5628684 Jean-Etienne May 1997 A
5636920 Shur et al. Jun 1997 A
5638113 Lappington Jun 1997 A
5643088 Vaughn et al. Jul 1997 A
5663757 Morales Sep 1997 A
5759101 Won Kohorn Jun 1998 A
5761606 Wolzien Jun 1998 A
5762552 Vuong et al. Jun 1998 A
5764275 Lappington et al. Jun 1998 A
5794210 Goldhaber et al. Aug 1998 A
5805230 Staron Sep 1998 A
5813913 Berner et al. Sep 1998 A
5818438 Howe et al. Oct 1998 A
5828843 Grimm Oct 1998 A
5838774 Weisser, Jr. Nov 1998 A
5838909 Roy Nov 1998 A
5846132 Junkin Dec 1998 A
5848397 Marsh et al. Dec 1998 A
5860862 Junkin Jan 1999 A
5870683 Wells et al. Feb 1999 A
5894556 Grimm Apr 1999 A
5916024 Von Kohorn Jun 1999 A
5970143 Schneier et al. Oct 1999 A
5971854 Pearson et al. Oct 1999 A
5987440 O'Neil et al. Nov 1999 A
6009458 Hawkins et al. Dec 1999 A
6015344 Kelly et al. Jan 2000 A
6016337 Pykalisto Jan 2000 A
6038599 Black Mar 2000 A
6042477 Addink Mar 2000 A
6064449 White May 2000 A
6104815 Alcorn et al. Aug 2000 A
6110041 Walker et al. Aug 2000 A
6117013 Elba Sep 2000 A
6126543 Friedman Oct 2000 A
6128660 Grimm Oct 2000 A
6135881 Abbott et al. Oct 2000 A
6154131 Jones, II Nov 2000 A
6174237 Stephenson Jan 2001 B1
6182084 Cockrell et al. Jan 2001 B1
6193610 Junkin Feb 2001 B1
6222642 Farrell et al. Apr 2001 B1
6233736 Wolzien May 2001 B1
6251017 Leason et al. Jun 2001 B1
6263447 French Jul 2001 B1
6267670 Walker Jul 2001 B1
6287199 McKeown et al. Sep 2001 B1
6293868 Bernard Sep 2001 B1
6312336 Handelman et al. Nov 2001 B1
6343320 Fairchild Jan 2002 B1
6345297 Grimm Feb 2002 B1
6371855 Gavriloff Apr 2002 B1
6373462 Pan Apr 2002 B1
6411969 Tam Jun 2002 B1
6416414 Stadelmann Jul 2002 B1
6418298 Sonnenfeld Jul 2002 B1
6425828 Walker et al. Jul 2002 B2
6434398 Inselberg Aug 2002 B1
6446262 Malaure et al. Sep 2002 B1
6470180 Kotzin et al. Oct 2002 B1
6475090 Gregory Nov 2002 B2
6524189 Rautila Feb 2003 B1
6527641 Sinclair et al. Mar 2003 B1
6530082 Del Sesto et al. Mar 2003 B1
6536037 Guheen et al. Mar 2003 B1
6578068 Bowman-Amuah Jun 2003 B1
6594098 Sutardja Jul 2003 B1
6604997 Saidakovsky et al. Aug 2003 B2
6610953 Tao et al. Aug 2003 B1
6611755 Coffee Aug 2003 B1
6648760 Nicastro Nov 2003 B1
6659860 Yamamoto et al. Dec 2003 B1
6659861 Faris Dec 2003 B1
6659872 Kaufman et al. Dec 2003 B1
6690661 Agarwal et al. Feb 2004 B1
6697869 Mallart Feb 2004 B1
6718350 Karbowski Apr 2004 B1
6752396 Smith Jun 2004 B2
6758754 Lavanchy et al. Jul 2004 B1
6758755 Kelly et al. Jul 2004 B2
6760595 Inselberg Jul 2004 B2
6763377 Belknap et al. Jul 2004 B1
6766524 Matheny et al. Jul 2004 B1
6774926 Ellis et al. Aug 2004 B1
6785561 Kim Aug 2004 B1
6801380 Sutardja Oct 2004 B1
6806889 Malaure et al. Oct 2004 B1
6807675 Millard et al. Oct 2004 B1
6811482 Letovsky Nov 2004 B2
6811487 Sengoku Nov 2004 B2
6816628 Sarachik et al. Nov 2004 B1
6817947 Tanskanen Nov 2004 B2
6824469 Allibhoy et al. Nov 2004 B2
6837789 Garahi et al. Jan 2005 B2
6837791 McNutt et al. Jan 2005 B1
6840861 Jordan et al. Jan 2005 B2
6845389 Sen Jan 2005 B1
6846239 Washio Jan 2005 B2
6857122 Takeda et al. Feb 2005 B1
6863610 Vancraeynest Mar 2005 B2
6870720 Iwata et al. Mar 2005 B2
6871226 Ensley et al. Mar 2005 B1
6873610 Noever Mar 2005 B1
6884166 Leen et al. Apr 2005 B2
6884172 Lloyd et al. Apr 2005 B1
6887159 Leen et al. May 2005 B2
6888929 Saylor May 2005 B1
6893347 Zilliacus et al. May 2005 B1
6898762 Ellis et al. May 2005 B2
6899628 Leen et al. May 2005 B2
6903681 Faris Jun 2005 B2
6908389 Puskala Jun 2005 B1
6942574 LeMay et al. Sep 2005 B1
6944228 Dakss et al. Sep 2005 B1
6960088 Long Nov 2005 B1
6978053 Sarachik et al. Dec 2005 B1
7001279 Barber et al. Feb 2006 B1
7029394 Leen et al. Apr 2006 B2
7035626 Luciano, Jr. Apr 2006 B1
7035653 Simon et al. Apr 2006 B2
7058592 Heckerman et al. Jun 2006 B1
7076434 Newnam et al. Jul 2006 B1
7085552 Buckley Aug 2006 B2
7116310 Zvans et al. Oct 2006 B1
7117517 Milazzo et al. Oct 2006 B1
7120924 Katcher et al. Oct 2006 B1
7124410 Berg Oct 2006 B2
7125336 Anttila et al. Oct 2006 B2
7136871 Ozer et al. Nov 2006 B2
7144011 Asher et al. Dec 2006 B2
7169050 Tyler Jan 2007 B1
7185355 Ellis Feb 2007 B1
7187658 Koyanagi Mar 2007 B2
7191447 Ellis et al. Mar 2007 B1
7192352 Walker et al. Mar 2007 B2
7194758 Waki et al. Mar 2007 B1
7228349 Barone, Jr. et al. Jun 2007 B2
7231630 Acott et al. Jun 2007 B2
7233922 Asher et al. Jun 2007 B2
7240093 Danieli et al. Jul 2007 B1
7244181 Wang et al. Jul 2007 B2
7249367 Bove, Jr. et al. Jul 2007 B2
7254605 Strum Aug 2007 B1
7260782 Wallace et al. Aug 2007 B2
RE39818 Slifer Sep 2007 E
7283830 Buckley Oct 2007 B2
7288027 Overton Oct 2007 B2
7341517 Asher et al. Mar 2008 B2
7343617 Katcher et al. Mar 2008 B1
7347781 Schultz Mar 2008 B2
7351149 Simon et al. Apr 2008 B1
7367042 Dakss et al. Apr 2008 B1
7379705 Rados et al. May 2008 B1
7389144 Osorio Jun 2008 B1
7430718 Gariepy-Viles Sep 2008 B2
7452273 Amaitis et al. Nov 2008 B2
7460037 Cattone et al. Dec 2008 B2
7461067 Dewing et al. Dec 2008 B2
7502610 Maher Mar 2009 B2
7510474 Carter, Sr. Mar 2009 B2
7517282 Pryor Apr 2009 B1
7534169 Amaitis et al. May 2009 B2
7543052 Cesa Klein Jun 2009 B1
7562134 Fingerhut et al. Jul 2009 B1
7602808 Ullmann Oct 2009 B2
7610330 Quinn Oct 2009 B1
7614944 Hughes et al. Nov 2009 B1
7630986 Herz et al. Dec 2009 B1
7693781 Asher et al. Apr 2010 B2
7699707 Bahou Apr 2010 B2
7702723 Dyl Apr 2010 B2
7711628 Davie et al. May 2010 B2
7729286 Mishra Jun 2010 B2
7753772 Walker Jul 2010 B1
7753789 Walker et al. Jul 2010 B2
7780528 Hirayama Aug 2010 B2
7828661 Fish Nov 2010 B1
7835961 Davie et al. Nov 2010 B2
7860993 Chintala Dec 2010 B2
7886003 Newman Feb 2011 B2
7907211 Oostveen et al. Mar 2011 B2
7907598 Anisimov Mar 2011 B2
7909332 Root Mar 2011 B2
7925756 Riddle Apr 2011 B1
7926810 Fisher et al. Apr 2011 B2
7937318 Davie et al. May 2011 B2
7941482 Bates May 2011 B2
7941804 Herington May 2011 B1
7976389 Cannon et al. Jul 2011 B2
8002618 Lockton Aug 2011 B1
8006314 Wold Aug 2011 B2
8025565 Leen et al. Sep 2011 B2
8028315 Barber Sep 2011 B1
8082150 Wold Dec 2011 B2
8086445 Wold et al. Dec 2011 B2
8086510 Amaitis et al. Dec 2011 B2
8092303 Amaitis et al. Jan 2012 B2
8092306 Root Jan 2012 B2
8105141 Leen et al. Jan 2012 B2
8107674 Davis et al. Jan 2012 B2
8109827 Cahill et al. Feb 2012 B2
8128474 Amaitis et al. Mar 2012 B2
8147313 Amaitis et al. Apr 2012 B2
8149530 Lockton et al. Apr 2012 B1
8155637 Fujisawa Apr 2012 B2
8162759 Yamaguchi Apr 2012 B2
8176518 Junkin et al. May 2012 B1
8186682 Amaitis et al. May 2012 B2
8204808 Amaitis et al. Jun 2012 B2
8219617 Ashida Jul 2012 B2
8240669 Asher et al. Aug 2012 B2
8246048 Asher et al. Aug 2012 B2
8267403 Fisher et al. Sep 2012 B2
8342924 Leen et al. Jan 2013 B2
8342942 Amaitis et al. Jan 2013 B2
8353763 Amaitis et al. Jan 2013 B2
8396001 Jung Mar 2013 B2
8397257 Barber Mar 2013 B1
8465021 Asher et al. Jun 2013 B2
8473393 Davie et al. Jun 2013 B2
8474819 Asher et al. Jul 2013 B2
8535138 Amaitis et al. Sep 2013 B2
8538563 Barber Sep 2013 B1
8543487 Asher et al. Sep 2013 B2
8555313 Newman Oct 2013 B2
8556691 Leen et al. Oct 2013 B2
8585490 Amaitis et al. Nov 2013 B2
8632392 Shore et al. Jan 2014 B2
8634943 Root Jan 2014 B2
8638517 Lockton et al. Jan 2014 B2
8641511 Ginsberg et al. Feb 2014 B2
8659848 Lockton et al. Feb 2014 B2
8672751 Leen et al. Mar 2014 B2
8708789 Asher et al. Apr 2014 B2
8727352 Amaitis et al. May 2014 B2
8734227 Leen et al. May 2014 B2
8771058 Alderucci et al. Jul 2014 B2
8805732 Davie et al. Aug 2014 B2
8814664 Amaitis et al. Aug 2014 B2
8849225 Choti Sep 2014 B1
8849255 Choti Sep 2014 B2
8858313 Selfors Oct 2014 B1
9069651 Barber Jun 2015 B2
9076303 Park Jul 2015 B1
9098883 Asher et al. Aug 2015 B2
9111417 Leen et al. Aug 2015 B2
9289692 Barber Mar 2016 B2
9306952 Burman et al. Apr 2016 B2
9355518 Amaitis et al. May 2016 B2
9406189 Scott et al. Aug 2016 B2
9430901 Amaitis et al. Aug 2016 B2
9536396 Amaitis et al. Jan 2017 B2
9556991 Furuya Jan 2017 B2
9716918 Lockton et al. Jul 2017 B1
9805549 Asher et al. Oct 2017 B2
9878243 Lockton Jan 2018 B2
9881337 Jaycobs et al. Jan 2018 B2
9901820 Lockton Feb 2018 B2
10089815 Asher et al. Oct 2018 B2
10096210 Amaitis et al. Oct 2018 B2
10248290 Galfond Apr 2019 B2
10279253 Lockton May 2019 B2
10360767 Russell et al. Jul 2019 B2
10569175 Kosai et al. Feb 2020 B2
10981070 Isgreen Apr 2021 B2
20010004609 Walker et al. Jun 2001 A1
20010005670 Lahtinen Jun 2001 A1
20010013067 Koyanagi Aug 2001 A1
20010013125 Kitsukawa et al. Aug 2001 A1
20010020298 Rector, Jr. et al. Sep 2001 A1
20010032333 Flickinger Oct 2001 A1
20010036272 Hirayama Nov 2001 A1
20010036853 Thomas Nov 2001 A1
20010044339 Cordero Nov 2001 A1
20010054019 de Fabrega Dec 2001 A1
20020010789 Lord Jan 2002 A1
20020018477 Katz Feb 2002 A1
20020026321 Faris Feb 2002 A1
20020029381 Inselberg Mar 2002 A1
20020035609 Lessard Mar 2002 A1
20020037766 Muniz Mar 2002 A1
20020069265 Bountour Mar 2002 A1
20020042293 Ubale et al. Apr 2002 A1
20020046099 Frengut et al. Apr 2002 A1
20020054088 Tanskanen et al. May 2002 A1
20020055385 Otsu May 2002 A1
20020056089 Houston May 2002 A1
20020059094 Hosea et al. May 2002 A1
20020059623 Rodriguez et al. May 2002 A1
20020069076 Faris Jun 2002 A1
20020076084 Tian Jun 2002 A1
20020078176 Nomura et al. Jun 2002 A1
20020083461 Hutcheson Jun 2002 A1
20020091833 Grimm Jul 2002 A1
20020094869 Harkham Jul 2002 A1
20020095333 Jokinen et al. Jul 2002 A1
20020097983 Wallace et al. Jul 2002 A1
20020099709 Wallace Jul 2002 A1
20020100063 Herigstad et al. Jul 2002 A1
20020103696 Huang et al. Aug 2002 A1
20020105535 Wallace et al. Aug 2002 A1
20020107073 Binney Aug 2002 A1
20020108112 Wallace et al. Aug 2002 A1
20020108125 Joao Aug 2002 A1
20020108127 Lew et al. Aug 2002 A1
20020112249 Hendricks et al. Aug 2002 A1
20020115488 Berry et al. Aug 2002 A1
20020119821 Sen Aug 2002 A1
20020120930 Yona Aug 2002 A1
20020124247 Houghton Sep 2002 A1
20020132614 Vanlujit et al. Sep 2002 A1
20020133817 Markel Sep 2002 A1
20020133827 Newnam et al. Sep 2002 A1
20020142843 Roelofs Oct 2002 A1
20020144273 Reto Oct 2002 A1
20020147049 Carter, Sr. Oct 2002 A1
20020157002 Messerges et al. Oct 2002 A1
20020157005 Brunk Oct 2002 A1
20020159576 Adams Oct 2002 A1
20020162031 Levin et al. Oct 2002 A1
20020162117 Pearson Oct 2002 A1
20020165020 Koyama Nov 2002 A1
20020165025 Kawahara Nov 2002 A1
20020177483 Cannon Nov 2002 A1
20020184624 Spencer Dec 2002 A1
20020187825 Tracy Dec 2002 A1
20020198050 Patchen Dec 2002 A1
20030002638 Kaars Jan 2003 A1
20030003997 Vuong et al. Jan 2003 A1
20030013528 Allibhoy et al. Jan 2003 A1
20030023547 France Jan 2003 A1
20030040363 Sandberg Feb 2003 A1
20030054885 Pinto et al. Mar 2003 A1
20030060247 Goldberg et al. Mar 2003 A1
20030066089 Anderson Apr 2003 A1
20030069828 Blazey et al. Apr 2003 A1
20030070174 Solomon Apr 2003 A1
20030078924 Liechty et al. Apr 2003 A1
20030086691 Yu May 2003 A1
20030087652 Simon et al. May 2003 A1
20030088648 Bellaton May 2003 A1
20030114224 Anttila et al. Jun 2003 A1
20030115152 Flaherty Jun 2003 A1
20030125109 Green Jul 2003 A1
20030134678 Tanaka Jul 2003 A1
20030144017 Inselberg Jul 2003 A1
20030154242 Hayes et al. Aug 2003 A1
20030165241 Fransdonk Sep 2003 A1
20030177167 Lafage et al. Sep 2003 A1
20030177504 Paulo et al. Sep 2003 A1
20030189668 Newnam et al. Oct 2003 A1
20030195023 Di Cesare Oct 2003 A1
20030195807 Maggio Oct 2003 A1
20030208579 Brady et al. Nov 2003 A1
20030211856 Zilliacus Nov 2003 A1
20030212691 Kuntala et al. Nov 2003 A1
20030216185 Varley Nov 2003 A1
20030216857 Feldman et al. Nov 2003 A1
20030228866 Pezeshki Dec 2003 A1
20030233425 Lyons et al. Dec 2003 A1
20040005919 Walker et al. Jan 2004 A1
20040014524 Pearlman Jan 2004 A1
20040015442 Hmlinen Jan 2004 A1
20040022366 Ferguson et al. Feb 2004 A1
20040025190 McCalla Feb 2004 A1
20040056897 Ueda Mar 2004 A1
20040060063 Russ et al. Mar 2004 A1
20040073915 Dureau Apr 2004 A1
20040088729 Petrovic et al. May 2004 A1
20040093302 Baker et al. May 2004 A1
20040152454 Kauppinen May 2004 A1
20040107138 Maggio Jun 2004 A1
20040117831 Ellis et al. Jun 2004 A1
20040117839 Watson et al. Jun 2004 A1
20040125877 Chang Jul 2004 A1
20040128319 Davis et al. Jul 2004 A1
20040139158 Datta Jul 2004 A1
20040139482 Hale Jul 2004 A1
20040148638 Weisman et al. Jul 2004 A1
20040152517 Hardisty Aug 2004 A1
20040152519 Wang Aug 2004 A1
20040158855 Gu et al. Aug 2004 A1
20040162124 Barton Aug 2004 A1
20040166873 Simic Aug 2004 A1
20040176162 Rothschild Sep 2004 A1
20040178923 Kuang Sep 2004 A1
20040183824 Benson Sep 2004 A1
20040185881 Lee Sep 2004 A1
20040190779 Sarachik et al. Sep 2004 A1
20040198495 Cisneros et al. Oct 2004 A1
20040201626 Lavoie Oct 2004 A1
20040203667 Schroder Oct 2004 A1
20040203898 Bodin et al. Oct 2004 A1
20040210507 Asher et al. Oct 2004 A1
20040215756 VanAntwerp Oct 2004 A1
20040216161 Barone, Jr. et al. Oct 2004 A1
20040216171 Barone, Jr. et al. Oct 2004 A1
20040224750 Ai-Ziyoud Nov 2004 A1
20040242321 Overton Dec 2004 A1
20040266513 Odom Dec 2004 A1
20050003878 Updike Jan 2005 A1
20050005303 Barone, Jr. et al. Jan 2005 A1
20050021942 Diehl et al. Jan 2005 A1
20050026699 Kinzer et al. Feb 2005 A1
20050028208 Ellis Feb 2005 A1
20050043094 Nguyen et al. Feb 2005 A1
20050076371 Nakamura Apr 2005 A1
20050077997 Landram Apr 2005 A1
20050060219 Ditering et al. May 2005 A1
20050097599 Potnick et al. May 2005 A1
20050101309 Croome May 2005 A1
20050113164 Buecheler et al. May 2005 A1
20050131984 Hofmann et al. Jun 2005 A1
20050138668 Gray et al. Jun 2005 A1
20050144102 Johnson Jun 2005 A1
20050155083 Oh Jul 2005 A1
20050177861 Ma et al. Aug 2005 A1
20050210526 Levy et al. Sep 2005 A1
20050216838 Graham Sep 2005 A1
20050235043 Teodosiu et al. Oct 2005 A1
20050239551 Griswold Oct 2005 A1
20050255901 Kreutzer Nov 2005 A1
20050256895 Dussault Nov 2005 A1
20050266869 Jung Dec 2005 A1
20050267969 Poikselka et al. Dec 2005 A1
20050273804 Preisman Dec 2005 A1
20050283800 Ellis et al. Dec 2005 A1
20050288080 Lockton et al. Dec 2005 A1
20050288101 Lockton et al. Dec 2005 A1
20050288812 Cheng Dec 2005 A1
20060020700 Qiu Jan 2006 A1
20060025070 Kim et al. Feb 2006 A1
20060046810 Tabata Mar 2006 A1
20060047772 Crutcher Mar 2006 A1
20060053390 Gariepy-Viles Mar 2006 A1
20060058103 Danieli Mar 2006 A1
20060059161 Millett et al. Mar 2006 A1
20060063590 Abassi et al. Mar 2006 A1
20060082068 Patchen Apr 2006 A1
20060087585 Seo Apr 2006 A1
20060089199 Jordan et al. Apr 2006 A1
20060094409 Inselberg May 2006 A1
20060101492 Lowcock May 2006 A1
20060111168 Nguyen May 2006 A1
20060135253 George et al. Jun 2006 A1
20060148569 Beck Jul 2006 A1
20060156371 Maetz et al. Jul 2006 A1
20060160597 Wright Jul 2006 A1
20060174307 Hwang et al. Aug 2006 A1
20060183547 McMonigle Aug 2006 A1
20060183548 Morris et al. Aug 2006 A1
20060190654 Joy Aug 2006 A1
20060205483 Meyer et al. Sep 2006 A1
20060205509 Hirota Sep 2006 A1
20060205510 Lauper Sep 2006 A1
20060217198 Johnson Sep 2006 A1
20060236352 Scott, III Oct 2006 A1
20060248553 Mikkelson et al. Nov 2006 A1
20060248564 Zinevitch Nov 2006 A1
20060256865 Westerman Nov 2006 A1
20060256868 Westerman Nov 2006 A1
20060269120 Nehmadi et al. Nov 2006 A1
20060285586 Westerman Dec 2006 A1
20070004516 Jordan et al. Jan 2007 A1
20070013547 Boaz Jan 2007 A1
20070019826 Horbach et al. Jan 2007 A1
20070028272 Lockton Feb 2007 A1
20070037623 Romik Feb 2007 A1
20070054695 Huske et al. Mar 2007 A1
20070078009 Lockton et al. Apr 2007 A1
20070083920 Mizoguchi et al. Apr 2007 A1
20070086465 Paila et al. Apr 2007 A1
20070087832 Abbott Apr 2007 A1
20070093296 Asher Apr 2007 A1
20070101358 Ambady May 2007 A1
20070106721 Schloter May 2007 A1
20070107010 Jolna et al. May 2007 A1
20070129144 Katz Jun 2007 A1
20070147870 Nagashima et al. Jul 2007 A1
20070162328 Reich Jul 2007 A1
20070183744 Koizumi Aug 2007 A1
20070197247 Inselberg Aug 2007 A1
20070210908 Putterman et al. Sep 2007 A1
20070219856 Ahmad-Taylor Sep 2007 A1
20070222652 Cattone et al. Sep 2007 A1
20070226062 Hughes et al. Sep 2007 A1
20070238525 Suomela Oct 2007 A1
20070243936 Binenstock et al. Oct 2007 A1
20070244570 Speiser et al. Oct 2007 A1
20070244585 Speiser et al. Oct 2007 A1
20070244749 Speiser et al. Oct 2007 A1
20070265089 Robarts Nov 2007 A1
20070294410 Pandya Dec 2007 A1
20080005037 Hammad Jan 2008 A1
20080013927 Kelly et al. Jan 2008 A1
20080051201 Lore Feb 2008 A1
20080066129 Katcher et al. Mar 2008 A1
20080076497 Kiskis et al. Mar 2008 A1
20080104630 Bruce May 2008 A1
20080146337 Halonen Jun 2008 A1
20080169605 Shuster et al. Jul 2008 A1
20080222672 Piesing Sep 2008 A1
20080240681 Fukushima Oct 2008 A1
20080248865 Tedesco Oct 2008 A1
20080270288 Butterly et al. Oct 2008 A1
20080288600 Clark Nov 2008 A1
20090011781 Merrill et al. Jan 2009 A1
20090094632 Newnam et al. Apr 2009 A1
20090103892 Hirayama Apr 2009 A1
20090186676 Amaitis et al. Jul 2009 A1
20090163271 George et al. Sep 2009 A1
20090228351 Rijsenbrij Sep 2009 A1
20090234674 Wurster Sep 2009 A1
20090264188 Soukup Oct 2009 A1
20090271512 Jorgensen Oct 2009 A1
20090325716 Harari Dec 2009 A1
20100099421 Patel et al. Apr 2010 A1
20100099471 Feeney et al. Apr 2010 A1
20100107194 McKissick et al. Apr 2010 A1
20100120503 Hoffman et al. May 2010 A1
20100137057 Fleming Jun 2010 A1
20100203936 Levy Aug 2010 A1
20100279764 Allen et al. Nov 2010 A1
20100296511 Prodan Nov 2010 A1
20110016224 Riley Jan 2011 A1
20110053681 Goldman Mar 2011 A1
20110065490 Lutnick Mar 2011 A1
20110081958 Herrmann Apr 2011 A1
20110116461 Holt May 2011 A1
20110130197 Bythar et al. Jun 2011 A1
20110227287 Reabe Sep 2011 A1
20110269548 Barclay et al. Nov 2011 A1
20120115585 Goldman May 2012 A1
20120157178 Lockton Jun 2012 A1
20120264496 Behrman et al. Oct 2012 A1
20120282995 Allen et al. Nov 2012 A1
20130005453 Nguyen et al. Jan 2013 A1
20130029765 Parks Jan 2013 A1
20140100011 Gingher Apr 2014 A1
20140128139 Shuster et al. May 2014 A1
20140279439 Brown Sep 2014 A1
20140309001 Root Oct 2014 A1
20140378212 Sims Dec 2014 A1
20150024814 Root Jan 2015 A1
20150067732 Howe et al. Mar 2015 A1
20150238873 Arnone et al. Aug 2015 A1
20150356831 Osibodu Dec 2015 A1
20160023116 Wire Jan 2016 A1
20160217653 Beyer Jul 2016 A1
20160271501 Balsbaugh Sep 2016 A1
20170098348 Odom Apr 2017 A1
20170103615 Theodospoulos Apr 2017 A1
20170128840 Croci May 2017 A1
20170243438 Merati Aug 2017 A1
20170249801 Malek Aug 2017 A1
20170266564 Choudhuri Sep 2017 A1
20170345260 Strause Nov 2017 A1
20180071637 Baazov Mar 2018 A1
20180190077 Hall Jul 2018 A1
20190143225 Baazov May 2019 A1
Foreign Referenced Citations (25)
Number Date Country
2252074 Nov 1997 CA
2252021 Nov 1998 CA
2279069 Jul 1999 CA
2287617 Oct 1999 CA
0649102 Jun 1996 EP
2364485 Jan 2002 GB
11-46356 Feb 1999 JP
11-239183 Aug 1999 JP
2000-165840 Jun 2000 JP
2000-217094 Aug 2000 JP
2000-358255 Dec 2000 JP
2001-28743 Jan 2001 JP
2000-209563 Jul 2008 JP
330242 Oct 1989 NZ
01039506 May 2001 WO
0165743 Sep 2001 WO
0203698 Oct 2002 WO
2005064506 Jul 2005 WO
2006004855 Jan 2006 WO
2006004856 Jan 2006 WO
2007002284 Jan 2007 WO
2007016575 Feb 2007 WO
2007041667 Apr 2007 WO
2008027811 Mar 2008 WO
2008115858 Sep 2008 WO
Non-Patent Literature Citations (19)
Entry
Fantasy sport—Wikipedia.pdf, https://en.wikipedia.org/w/index.php?title=Fantasy_sport&oldid=685260969 (Year: 2015).
Two Way TV Patent and Filing Map www.twowaytv.com/version4/technologies/tech_patents.asp.
‘Ark 4.0 Standard Edition, Technical Overview ’ www.twowaytv.com/version4/technologies/tech_ark_professionals.asp.
“Understanding the Interactivity Between Television and Mobile commerce”, Robert Davis and David Yung, Communications of the ACM, Jul. 2005, vol. 48, No. 7, pp. 103-105.
“Re: Multicast Based Voting System” www.ripe.net/ripe/maillists/archives/mbone-eu-op/1997/msg00100html.
“IST and Sportal.com: Live on the Internet Sep. 14, 2004 by Clare Spoonheim”, www.isk.co.usk/NEWS/dotcom/ist_sportal.html.
“Modeling User Behavior in Networked Games byTristan Henderson and Saleem Bhatti”, www.woodworm.cs.uml.edu/rprice/ep/henderson.
“SMS Based Voting and Survey System for Meetings”, www.abbit.be/technology/SMSSURVEY.html.
“PurpleAce Launches 3GSM Ringtone Competition”, www.wirelessdevnet.com/news/2005/jan/31/news6html.
“On the Perfomance of Protocols for collecting Responses over a Multiple-Access Channel”, Mostafa H. Ammar and George N. Rouskas, IEEE Incomform '91, pp. 1490-1499, vol. 3, IEEE, New York, NY.
Merriam-Webster, “Game” definition, <http://www.merriam-webster.com/dictionary/agme.pg.1.
Ducheneaut et al., “The Social Side of Gaming: A Study of Interaction Patterns in a Massively Multiplayer Online Game”, Palo Alto Research Center, Nov. 2004, vol. 6, Issue 4, pp. 360-369.
http://help.yahoo.com/help/us/tourn/tourn-03.html.
Pinnacle, “The basics of reverse line movement,” Jan. 19, 2018, Retrieved on Jan. 22, 2020 , http://www.pinnacle.com/en/betting-articles educational/basics-of-reverse-line-movement/QAH26XGGQQS7M3GD.
GAMBLING Commission, “Virtual currencies, eSports and social casino gaming-position paper,” Mar. 2017, Retrieved on Jan. 22, 2020, http://gamblingcomission.gov.uk/PDF/Virtual-currencies-eSports-and-social-casino-gaming.pdf.
Sipko et al., “Machine learning for the prediction of professional tennis matches,” In: MEng computing-final year project, Imperial College London, Jun. 15, 2015, http://www.doc.ic.ac.uk/teaching/distinguished-projects/2015/m.sipko.pdf.
Winview Game Producer, “Live TV Sports Play Along App WinView Games Announces Sponsorship With PepsiCo to Start This Holiday Season,” In Winview Games. Dec. 21, 2016, Retrieved on Jan. 21, 2020 from , http://www.winviewgames./press-release/live-tv-sports-play-along-app-winview-games-announces-sponsorship-pepsico-start-holiday-season/.
International Search Report and the Written Opinion for the PCT/US2019/054859 dated Feb. 4, 2020.
International Preliminary Report dated Apr. 22, 2021 for the application PCT/US2019/054859.
Related Publications (1)
Number Date Country
20180025586 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
62364768 Jul 2016 US