The present invention relates to a plasma generator for forming a plasma jet with improved treatment of large surface area targets.
Non-thermal atmospheric plasma jets (APPJ) based on dielectric barrier discharge (DBD) have attracted considerable interest in the recent decades [1-3]. Multiple research groups have studied these plasma sources for various applications like surface modification [5, 6], decontamination [6-9], cancer treatment [10-12], including plasma-induced immunotherapy and direct tumor ablation, and others, as well as their thorough diagnostics to understand chemical and physical characteristics. One of the important challenges and limitations of existing one dimensional (1D) plasma jets is their relatively low area of treatment [13-19] which results from the small size of the plasma jet. This invention is designed to address this problem and offer possibility to generate two dimensional (2D) plasma jets that allow fast treatment of large surface area targets.
Many reports have shown that plasma jets propagate via so-called “plasma bullets”, or a train of discrete surface ionization waves traveling along a dielectric surface (sometimes to address the ionization wave reconnection to the “parent” dielectric barrier discharge (DBD) plasma, they are called “pulsed atmospheric-pressure plasma streams (PAPS)”). Although the physics of the propagation of 1D jets and plasma “bullets” has been described [20-30], the connection between the processes in the DBD plasma and “bullet” initiation is still not clearly understood.
Recent studies, including both in vitro and in vivo experiments, have shown that cold atmospheric plasma is a promising tool for cancer therapy [35-37]. In [36], it was shown that by optimizing the parameters of plasma to induce local immunogenic cell death in tumors, it is possible to systemically trigger specific, protective immune responses. The observed cellular responses are mainly due to various plasma-originated reactive species, including hydrogen peroxide, singlet oxygen, superoxide, NO2-, ONOO—, NO and others [35]. Plasma “bullets” originate from the initial anode glow (surface discharge) in DBD that precedes volumetric streamer discharge and propagates along the surface of dielectric to later form the jet upon exiting outside of the discharge chamber into the atmosphere. Based on this concept, the inventors have altered the classic 1D tube configuration used to generate APPJ's to provide a 2D plasma jet.
Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy.
Cancer treatment strategies in the past have focused on reducing tumor burden through delivery of cytotoxic agents. These methods often do not rely on the patient's adaptive immune responses for the resolution of cancer. Thus, once cells escape treatment, they continue to grow, resulting in tumor recurrence and resistance to therapy. [38-40] Immunogenic cell death (ICD), initially described by Zitvogel, Kroemer, and co-workers, is a modality of death where dying cells stimulate immune responses against dead-cell antigens. [41-43] In cancer therapy, this is advantageous as tumor cells undergoing ICD activate an anti-tumor immune response that is specific for that cancer. Therefore, developing treatments that elicit immunogenic cell death and facilitate the active participation of the patient's adaptive immune system, offer the potential to improve clinical outcomes of cancer therapy.
Plasma, the fourth state of matter, is ionized gas composed of charged particles, active neutral gas species, electric fields, and low amounts of ultraviolet (UV) light. [44-48] Development of plasma systems that can be sustained in atmospheric pressure and at room temperature has opened doors for biomedical applications, including, but not limited to, cancer therapy. [49-51] Mounting evidence demonstrates that these ‘non-thermal plasmas’ (NTP) can be optimized to destroy tumors with minimal damage to neighboring healthy tissue. [51-54] Decreased tumor burden and prolonged animal survival following direct plasma treatment have been reported, suggesting that plasma should be further explored as a viable candidate for cancer treatment. [55]
The potential of NTP to induce immunogenic cancer cell death is only recently being explored. Bekeschus, et al. has demonstrated that NTP treatment of two murine cell lines in vitro, the B16F10 melanoma cells and the CT26 colorectal cancer cells, increased immunogenic cell surface molecules such as major histocompatibility complex I (MHC-I) and surface exposed calreticulin (ecto-CRT). [56-57] We have reported successful in vitro ICD induction in two human cell lines, a radiation resistant primary nasopharyngeal carcinoma cell line (CNE-1) and the A549 lung carcinoma cell line in response to NTP exposure. [58-59]
The mechanism is postulated to be reactive oxygen and nitrogen species (RONS) dependent. NTP-generated RONS rapidly change the oxidative status of cells and induce endoplasmic reticulum (ER) stress pathways in these cells. [56-59] Upregulation of two proteins associated with ER stress and upstream of CRT emission, activating transcription factor 4 (ATF4) and stanniocalcin (STC2), was also demonstrated. [58] Moreover, abrogation of NTP-generated and cell-stimulated RONS tempered the effect of NTP on CRT emission. These reports indicate that NTP-induced ICD is not specific to a single cancer cell type, and merits further investigation into its clinical relevance as an anti-cancer modality. Plasma treatment in animal models of cancers is needed to assess if plasma-induced ICD could benefit patient outcome.
In a first aspect, present invention relates to a plasma generator for forming a plasma jet includes a dielectric body comprising four sides and two ends defining a cavity located within the dielectric body, the cavity having a length extending from a first end of the body to a second end of the body, a height extending from a first side of the body to a second side of the body, the second side located opposite the first, and a width measured orthogonal to the length and height, and the width of the cavity is greater than the height of the cavity. The dielectric body includes at least one aperture in the second end of the dielectric body, a high voltage electrode located proximate to the first side of the dielectric body and having a surface facing toward the cavity, a grounded electrode located proximate to said second side of the dielectric bo dy and having a surface facing toward the surface of the high voltage electrode, and a distance between the surface of the grounded electrode and the surface of the high voltage having a variability of no greater than 10%, at least one gas inlet formed proximate to the first end of the dielectric body, and a power supply connected to said high voltage electrode, wherein the power supply is configured to provide an alternating energy to said high voltage electrode.
In the foregoing embodiment, the plasma generator may have a distance between the high voltage electrode and the grounded electrode measured through air outside of the dielectric body of greater than a distance that would permit an electrical connection between the high voltage electrode and the grounded electrode when the plasma generator is in operation.
In each of the foregoing embodiments, the plasma generator may have a volume and velocity of a gas entering the at least one gas inlet sufficient to prevent air from entering the cavity through the aperture.
In each of the foregoing embodiments, the plasma generator may have a width of the aperture of less than a width of the high voltage electrode as measured in the same direction as the width of the aperture. Alternatively, in each of the foregoing embodiments, the plasma generator may have a width of the aperture of greater than a width of the high voltage electrode as measured in the same direction as the width of the aperture. Also, in each of the foregoing embodiments, the plasma generator may have a width of the aperture within 10% of a width of the high voltage electrode as measured in the same direction as the width of the aperture. In the foregoing embodiments, the plasma generator may have a width of the aperture of at least 1 cm, or from 1 cm to 1.5 m, or from 1 cm to 3 cm.
In each of the foregoing embodiments, the plasma generator may have a ratio of a width of the aperture to a height of the aperture of at least 3:1.
In each of the foregoing embodiments, the plasma generator may have an aperture with a rectangular shape.
In each of the foregoing embodiments, the plasma generator may have gas introduced into the cavity through the at least one gas inlet which gas may have at least 90% by volume of a noble gas or at least 90% by volume of a mixture of noble gases, or at least 95% by volume of a noble gas or at least 95% by volume of a mixture of noble gases.
In a second aspect, the present invention relates to a method of generating a plasma jet utilizing the plasma generator as set forth in each of the foregoing embodiments, including steps of: feeding a carrier gas into the cavity to cause the carrier gas to flow from the at least one gas inlet through the aperture; and applying a pulsed voltage at a regulated frequency to the high voltage electrode while feeding the carrier gas.
The planar plasma jet generated by the present invention may be used for cancer therapy, including plasma-induced immunotherapy. For therapeutic use, the plasma jet may be operated within one or more of the following ranges of parameters: a treatment time of from 5 to 300 s, an excitation voltage of from 5 to 40 kV, a pulse repetition frequency of from 50 to 3000 Hz, and a pulse width of from 20 ns to 20 μs.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
Additional details and advantages of the disclosure will be set forth in the description which follows, and/or may be learned by practice of the disclosure. The details and advantages of the disclosure may be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
For illustrative purposes the principles of the present invention are described by referencing various exemplary embodiments thereof. Although certain embodiments of the invention are specifically described herein, one of ordinary skill in the art will readily recognize that the same principles are equally applicable to, and can be employed in other apparatuses and methods. Before explaining the disclosed embodiments of the present invention in detail, it is to be understood that the invention is not limited in its application to the details of any particular embodiment shown. The terminology used herein is for the purpose of description and not of limitation. Further, although certain methods are described with reference to certain steps that are presented herein in certain order, in many instances, these steps may be performed in any order as may be appreciated by once skilled in the art, and the methods are not limited to the particular arrangement of steps disclosed herein.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. The terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
Disclosed herein is a plasma generator for forming a plasma jet and methods of generating and using the plasma jet.
The present invention relates to a plasma generator for forming a plasma jet which may include two electrodes, a high voltage electrode and a grounded electrode. The high voltage electrode and the grounded electrode are located on opposite side of a dielectric body, and the surfaces of each electrode face towards each other, as well as facing the inside of the cavity in the dielectric body. The electrodes may have any shape, but the surfaces should be substantially equidistant from each other.
Preferably, substantially equidistant means that the distance between the surfaces varies by less than 10% over the surfaces. More preferably, the distance between surfaces does not vary more than 5%, and most preferably the distance varies less than 3%.
The high voltage electrode is preferably located proximate to the first side of the dielectric body and the grounded electrode is preferably located proximate to the second side of the dielectric body. The surfaces of the high voltage and grounded electrode face the cavity. A power supply is connected to the high voltage electrode, and the power supply is configured to provide an alternating energy to the high voltage electrode. Preferably, the energy is a pulsed energy.
When pulsed energy is applied to the high voltage electrode an electric field is produced and an ionization wave is formed along the surface of the cavity adjacent to the high voltage electrode. The plasma jet formed by this action then propagates along that surface towards the second end of the cavity, and exits the dielectric body through the aperture. Upon exit, the plasma jet takes the shape of the aperture. As such, the shape of the plasma jet can be controlled through the use of differently shaped apertures. Additionally, differently shaped electrodes and cavities may be used alone or in conjunction with the shape of the aperture to further influence the shape of the plasma jet. Any shape for the electrodes and cavity may be used, so long as the sides of the cavity do not block the forward propagation of the plasma jet. Most preferably, the dielectric body is cuboid, the electrodes are substantially flat with rectangular surfaces, and the aperture is also rectangular.
The preferred rectangular aperture, preferably has a width and height measured in the same direction as the width and height of the dielectric body. In a preferred embodiment, the aperture has a width to height ratio of at least 3:1. Also, preferably, the width of the aperture is at least 1 cm, and more preferably, the width ranges from 1 cm to 3 cm. Although preferable dimensions are provided above for the width of the aperture, it is known that any width is possible, so long as enough power is supplied to the electrodes to form a sufficient plasma plume.
The at least one gas inlet is located proximate to the first end of the dielectric body, which is the end opposite from the aperture. One or more gas inlets can be located within the first end, or may be located on one or more of the sides at a location close to the first end. The number, location, and size of the gas inlets, as well as the rate of gas flow is adjusted to prevent air from entering the aperture. These gas flow parameters may also be adjusted to control the plasma jet discharge through the aperture and the mixing with air at the aperture exit.
Preferably, the gas entering the cavity through the at least one gas inlet is contains at least 90% by volume of a noble gas, or at least 90% by volume of a mixture of two or more noble gases, or at least 95% by volume of a noble gas, or at least 95% by volume of a mixture of two or more noble gases.
The length of the dielectric body is variable, but must be sufficiently long for the ionization wave to be formed and propagate. The width of the dielectric body is dependent on the desired shape and aperture size. An aperture with a larger width requires a dielectric body with a larger width, and in most cases wider electrodes. However, the width of the electrodes does not have to be equal to the width of the aperture, and may be either larger or smaller than the aperture width. Preferably, the width of the electrodes is substantially similar to the width of the aperture, or the widths of the electrodes and aperture are within about 10% of each other.
The height of the dielectric body has a minimum and a maximum. The height should be sufficient to help ensure that there is sufficient distance to prevent electrical contact of the high voltage electrode and the ground electrode through the air around the dielectric body. The maximum the height can be is the distance at which an electric field will no longer be created. These distances are dependent on the power being supplied to the electrodes, as well as their size and shape, along with the other dimensions and shape of the dielectric body and can be determined by a skilled person.
Based on the controllable size and shape of the plasma jet that can be created with the present invention, many different applications are possible, for example, removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint removal. In addition to these listed applications, the present device and method of creating a plasma jet would be suitable for use with newly developed applications, as it allows for the adjustment of the size and shape of the plasma jet to allow it to be used with any surface and for any purpose known or learned by those in the art to be a useful application of plasma jets.
One embodiment of the present plasma generator is shown in
A plasma generator 100 for forming a plasma jet according to the present invention comprises two electrodes, a high voltage electrode 130 and a grounded electrode 132. The high voltage electrode 130 and the grounded electrode 132 are located on opposite sides of a dielectric body 110, and the surfaces 134 and 136 of each electrode are facing towards each other, as well as the inside of the cavity in the dielectric body 110. The electrodes may have any shape, but the surfaces should be substantially equidistant from each other. Preferably, substantially equidistant means that the distance (ed) between the surfaces varies by less than 10% over the surfaces. More preferably, the distance between surfaces does not vary more than 5%, and most preferably the distance varies less than 3%.
The high voltage electrode 130 is preferably located proximate to the first side 116 of the dielectric body 110 and the grounded electrode 132 is preferably located proximate to the second side 118 of the dielectric body 110. The surfaces 134 and 136 of the high voltage and grounded electrode face the cavity. A power supply 140 is connected to the high voltage electrode 130, and the power supply 140 is configured to provide an alternating energy to the high voltage electrode 130. Preferably, the energy supplied is a pulsed energy.
When pulsed energy is applied to the high voltage electrode an electric field is produced and an ionization wave (plasma jet) is formed along the surface of the cavity adjacent to the high voltage electrode 142. The plasma jet formed by this action then propagates along the surface towards the first end 112 of the cavity, and exits the dielectric body 110 through the aperture 122. Upon exiting, the plasma jet takes the shape of the aperture. As such, the shape of the jet can be controlled through the use of differently shaped apertures. Additionally, differently shaped electrodes and cavities may be used alone or in conjunction with the differently shaped apertures to further influence the shape of the plasma jet. Any shape for the electrodes and cavity may be used, so long as the sides of the cavity do not block the forward propagation of the plasma jet. Most preferably, the dielectric body is cuboid, the electrodes are substantially flat with rectangular surfaces, and the aperture is also rectangular.
The preferred rectangular aperture 122, preferably has a width (aw) and height (ah) measured in the same direction as the width (cw) and height (ch) of the cavity defined by the dielectric body 110. In a preferred embodiment, the aperture 122 has a width to height ratio of at least 3:1. Also, preferably, the width of the aperture is at least 1 cm, more preferably, the width ranges from 1 cm to 1.5 m, and most preferably, the width ranged from 1 cm to 3 cm. Although preferable dimensions are provided above for the width of the aperture, it is known that any width is possible, so long as enough power is supplied to the electrodes to form a sufficient plasma plume.
The at least one gas inlet 120 is located proximate to the second end 114 of the dielectric body, which is the end opposite from the aperture 122. One or more gas inlets 120 can be located within the second end 114, or may be located on one or more of the sides at a location close to the second end. The number, location, and size of the gas inlets, as well as the rate of gas flow is adjusted to prevent air from entering the aperture. These gas flow parameters may also be adjusted to control the plasma jet discharge through the aperture and the mixing with air at the aperture exit.
Preferably, the gas entering the cavity through the at least one gas inlet is comprise of at least 90% of a noble gas, or at least 90% of a mixture of two or more noble gases.
The length (cl) of the cavity defined by the dielectric body is variable, but must be sufficiently long for the ionization wave to be formed and propagate. The width (cw) of the cavity defined by the dielectric body is dependent on the desired shape and aperture size. An aperture 122 with a larger width (aw) requires a dielectric body with a larger width (cw), and in most cases wider electrodes 130 and 132. However, the width of the electrodes does not have to be equal to the width of the aperture, and may be either larger or smaller than the aperture width. Preferably, the width of the electrodes is substantially similar to the width of the aperture, or that the widths are within 10% of each other.
The height of the cavity (ch) defined by the dielectric body has a minimum and a maximum. The minimum the height can be is the distance that will prevent electrical contact of the high voltage electrode and the ground electrode through the air around the dielectric body. The maximum the height can be is the distance at which an electric field will no longer be created. These distances are dependent on the power being supplied to the electrodes, as well as their size and shape, along with the other dimensions and shape of the dielectric body.
Based on the controllable size and shape for the plasma jet that can be created with the present invention, many different applications are possible, for example, removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint removal. In addition to these listed applications, the present device and method of creating a plasma jet is usable with any newly developed application, as it allows for the adjustment of the size and shape of the plasma to allow it to be used with any surface and for any purpose known or learned by those in the art to be a useful application of plasma jets.
The present invention also relates to a method of generating a plasma jet utilizing the plasma generator as set forth above. The method includes steps of: feeding a carrier gas into the cavity to cause the carrier gas to flow from the at least one gas inlet through the aperture; and applying a pulsed voltage at a regulated frequency to the high voltage electrode while feeding the carrier gas.
The planar plasma jet generated by the present invention may be used for cancer therapy, including plasma-induced immunotherapy. For therapeutic use, the plasma jet may be operated within one or more of the following ranges of parameters: a treatment time of from 5 to 300 s, an excitation voltage of from 5 to 40 kV, a pulse repetition frequency of from 50 to 3000 Hz, and a pulse width of from 20 ns to 20 μs.
Non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This is evidence that non-thermal plasma induces immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.
In these examples, the CT26 murine colorectal tumor model was used to explore the potential of NTP to induce ICD in vivo. NTP generated by a nanosecond-pulsed dielectric barrier discharge (nspDBD) plasma system induced the expression of two key surrogate markers of ICD in these cancer cells: ecto-calreticuline (ecto-CRT) and secreted adenosine triphosphate (ATP). A vaccination assay, used to determine if a stimulus is an ICD inducer, showed partial protective immunity against tumor challenge in syngeneic Balb/c mice immunized with NTP treated CT26 cells. Furthermore, treatment of subcutaneous colorectal tumors expressing the cancer antigen guanylyl cyclase C (GUCY2C) resulted in higher expression of ICD markers in tumors, recruitment of antigen presenting cells (APCs), and generation of more GUCY2C-specific T cells. This establishes that plasma may be used for cancer immunotherapy via ICD
To measure cell death in response to nspDBD plasma, the CT26 colorectal carcinoma cell line was exposed to several plasma energies. Cell viability, quantified with a Muse Cell Analyzer 24 hours after plasma treatment, decreased in an energy dependent manner (
Immunogenicity of dying cancer cells is strongly dictated by surface exposure of CRT. [61] Normally located on the ER membrane, exposed CRT on the cell surface acts as an ‘eat me’ DAMP signal that facilitates recognition, engulfment, and processing of tumor cells by APCs, [62-64] a critical step for the initiation of an adaptive anti-cancer response. [65-67] Surface-exposure of CRT in response to 10 second plasma exposure was measured 24 hours after treatment. Intact cells were labeled with anti-CRT antibodies, stained with fluorescent secondary antibodies and analyzed using flow cytometry. Our results show that the emission of ecto-CRT on CT26 cells increased in an energy dependent manner, suggesting plasma may increase the immunogenicity of tumor cells (
ATP, the most abundant intracellular molecule required for metabolism, is secreted from cells undergoing ICD. [68] It has been suggested that secretion of ATP follows overlapping pathways with externalization of CRT. [69] Once ATP reaches the extracellular space, it becomes another hallmark of ICD and functions as a ‘find me’ DAMP signal for recruitment and activation of APCs. [69-71] To detect this secreted DAMP signal by cells exposed to plasma, the cell culture media was collected 10 minutes after treatment and extracellular ATP was quantified. ATP levels were low at baseline (8.2 nM) and increased 70-fold (582.1 nM) following 300 mJ plasma treatment (
The following examples are illustrative, but not limiting of the methods and compositions of the present disclosure.
A microsecond-pulsed high voltage power supply with an output of 20 kV peak-to-peak, a pulse duration of ˜8 μs (
Two different discharge chambers were used for generation and imaging of DBD, surface ionization waves, plasma “bullets” and a rectangular plasma jet. Both chambers were made of two 1 mm thick 75×75 mm glass slides separated by a 5 mm thick dielectric to form a rectangular cuboid with a cavity therein. The first setup, used to study DBD development and propagation of surface ionization waves, employed a 1 mm thick glass slide glued on the side of the chamber to visualize the discharge from the side (
A fast imaging technique using an ICCD camera triggered by the high voltage pulse was used. Since during the high voltage pulse the discharge reignites several times (a series of breakdowns), the camera was focused only on the first illumination that appeared. At first, the DBD starts with development of a series of avalanches traveling from the grounded electrode towards the powered anode. As the avalanches reach the anode, the presence of the dielectric causes accumulation of the charge leading to generation of electron densities (and local electric fields) sufficient for formation of a surface discharge that appears as a bright anode glow region (
Because the anode glow region can be viewed as a second capacitor (third “electrode” near the anode), high electric fields at its edges facilitate development of a surface wave propagating along the surface of the dielectric. This phenomenon is clearly seen in
The relationship between formation of a surface ionization wave in DBD and plasma “bullets” has been shown. This configuration is able to generate a 2D ionization surface wave and thus the inventive configuration of the APPJ is able to generate rectangular plasma jets. For that purpose, the second discharge chamber was used with an exit gas opening in a form of a long rectangular slit. In these experiments, similar to the first case, propagation of the ionization wave inside the chamber along the dielectric surface can be clearly seen (
The shape of the output gas opening is not limited to a straight rectangular slit. Rather, the output gas opening can be a more complex shape (for example, a wave-shaped slit). By changing the shape of the outlet gas opening, it is possible to generate plasma jets of various complex 2D or 3D profiles. Similarly, the width of the plasma jet can be controlled by, for example, adjusting the distance of the gas outlet from the electrodes and, in general, is limited only by the magnitude of the pulse energy provided by the power supply. It is possible, therefore, to generate jets with any suitable width to accommodate treatment of large targets.
Photographs shown in
In conclusion, it was found that:
Plasma jets with complex 2D or 3D geometries open new possibilities in the areas of large surface material processing and plasma medicine.
Vaccination with Plasma-Induced ICD Cells Provides Protection Against Tumor Challenge in Mice
To ascertain whether the DAMP signals elicited by plasma could enhance immune responses against cancer, a vaccination assay was performed. Balb/c mice were immunized with CT26 cells treated in vitro with plasma at the ICD-inducing regime (29 kV, 30 Hz, 1 mm gap distance, 10 seconds). Cells were prepared for inoculation and injected into the left flank as a whole-cell vaccine to allow an immune response to develop. One week after immunization, mice were challenged with live CT26 cancer cells on the opposite flank and tumor growth was monitored twice a week until day 26 when the study was terminated as a subset of the animals reached IACUC-approved endpoints (
Challenge tumors in the media and Cisplatin groups grew rapidly while tumors in the plasma group developed relatively slowly (
To directly validate whether plasma could induce ICD in vivo, CT26 colorectal tumors were established subcutaneously in Balb/c mice and exposed to plasma when they became palpable (
Based on the results of these safety studies, the 10 second plasma treatment over five days was investigated to determine if it induced ICD in the subcutaneous tumors. Tumors were exposed to plasma using three different treatment procedures: i) the same area each day (Plasma 1 Spot), ii) two areas of the tumor each day (Plasma 2 Spots), or iii) different areas of the tumor each day (Plasma Multiple Spots). Three days after the last plasma treatment, tumors were resected, fixed, and sectioned. Immunofluorescence microscopy was performed on tumor sections to identify ICD markers. CRT expression increased in all plasma treatment groups (
To determine if emitted DAMPs stimulated the recruitment of immune cells into the tumor environment, the sample was stained for CD45+ (leukocytes) and CD11c+ (APCs) immune cells. Indeed, increased CRT and HMGB1 were associated with more CD45+ (2.0±0.4 fold, p<0.05) and CD11c+ cells (1.8±0.2 fold, p<0.05) following the Plasma Multiple Spots regimen (
Altogether, Plasma Multiple Spots treatments enhanced both emission of DAMPs and recruitment of immune cells in the tumor compared to the other application methods. Therefore, treatment of different spots may be more beneficial compared to repeat treatment of the same area. This treatment condition was used to investigate plasma-induced ICD effects on downstream T-cell response.
To analyze whether plasma-induced ICD could stimulate an adaptive anti-tumor response, subcutaneous CT26 tumors expressing the colorectal cancer antigen GUCY2C42,43 (CT26-GUCY2C) in Balb/c mice were treated. Mice were treated with either plasma alone or with plasma in combination with the Ad5-GUCY2C-S1 vaccine. The Ads-GUCY2C-S1 vaccine was previously shown to safely induce GUCY2C-specific immune responses and antitumor immunity in mice [81-88] and has been translated to human clinical trials. [89] Mice were treated with plasma for five consecutive days and one group was vaccinated with the Ad5-GUCY2C-S1 vaccine, one week after the last plasma treatment (
Splenic GUCY2C-specific T-cell responses were analyzed by IFNγ ELISpot assay 28 days after the initial tumor inoculation. Plasma treatment alone had a marginal effect on GUCY2C-specific responses (22.1±11.9 spots vs 3.0±1.8 spots in Untreated; p=ns). However, plasma treatment prior to vaccination amplified GUCY2C-specific T-cell responses (167.8±41.5 spots vs 109.7±22.3 spots with vaccine alone, p<0.05) (
Although significant advancement in conventional tumor-targeted cancer therapies (e.g. surgery, chemotherapy, radiation therapy, etc.) has reduced cancer related morbidity and mortality, this comes at the cost of significant toxicity. Another major challenge is relapse from cells that escape treatment and eventually develop resistance to therapy. [95-97] In contrast, immunotherapy aims to activate the patient's natural defenses to selectively target tumors for resolution of cancer [97-100] with reduced non-specific damage to normal tissue. While current strategies (e.g. adoptive T-cell transfer, checkpoint inhibitors, etc.) are clinically efficacious, several instances of serious adverse effects, including pneumonitis and enterocolitis, have been reported. [101-102] To address these, an ICD-mediated immunotherapy approach may be employed. These treatments stimulate the release of DAMP signals in cancer cells which engage APCs to expose neoantigens and facilitate the initiation of adaptive immune responses. [103-104] The methods to induce ICD include certain chemotherapeutic agents, irradiation, photodynamic therapy with hypericin (PDT-hypericin), and high hydrostatic pressure. [105]
It has been demonstrated that non-thermal plasma may be operated for ICD induction and utilized in immunotherapeutic strategies. In vitro, nspDBD plasma elicited CRT emission and secretion of ATP from CT26 colon carcinoma cells. The vaccination study showed that mice immunized with cancer cells treated with ICD-inducing plasma were partially protected against tumor challenge. In agreement with in vitro studies, in vivo plasma treatment of subcutaneous tumors in mice induced immunogenic cancer cell death. The treatment of multiple spots within the tumor elicited the greatest emission of DAMPs and recruitment of APCs into the tumor area. This treatment condition also led to a tumor-antigen-specific T-cell response.
Overall, these results highlight the potential of plasma development for cancer immunotherapy. Further optimization of plasma parameters (applied voltage, pulse frequency, application time, etc.) and treatment schedules is improve efficacy. It has been reported that antitumor effects of plasma are associated with plasma-generated RONS, but the link to immunogenic cell death has not been made. [53] In vitro, RONS produced by plasma were demonstrated to be the major effectors for eliciting ecto-CRT and ATP secretion in cancer cells, although potential synergy with the associated pulsed electric fields or UV radiation should not be discounted. [60] In 2018, a comprehensive review on the molecular mechanisms of cell death was published by the Nomenclature Committee on Cell Death (NCCD). [106] Twelve major cell death subroutines (intrinsic apoptosis, extrinsic apotosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, and immunogenic cell death) were defined from morphological, biochemical, molecular, and functional perspectives. To date, six DAMPs have been linked with cell death that is immunogenic [CRT, ATP, HMGB1, type I interferon (IFN), cancer cell-derived nucleic acids, and annexin A1], but not all the underlying mechanisms are clear, and some are dependent on the specific ICD-inducer. [107-113]
The scheduling of plasma treatment will also influence clinical outcome, as plasma may also induce bystander effects on other resident or recruited cells in the tumor environment (e.g. macrophages, dendritic cells, effector T cells, etc.). Indeed, in a separate study where mini pigs were exposed to plasma, recruited myeloid cells were detected in the treated areas of the skin one week later, [114] suggesting that local plasma exposure may influence immune cells even in the absence of cancer. Furthermore, several studies have demonstrated that within a defined range of treatment parameters, plasma may stimulate immune cell function (e.g. migration, secretion of cytokines, etc.) in vitro. [58 & 115-118] This could potentially provide an advantage over radiation or PDT, known ICD inducers, as they are reported to be detrimental to immune cells. [119-121] An indicator that plasma may be immunomodulatory at physiologically safe doses was reported in a study where Drosophila exposure to plasma caused differentiation of hematocytes without affecting development or fecundity of the organism.[122]
For superficial cancers such as melanomas, administration of plasma is relatively straight-forward, as cancerous tumors/lesions are easily accessible for direct deposition of plasma-generated RONS. However, treatment of non-superficial cancers is a challenge for the plasma medicine field. One approach to deliver plasma species to deep tumors is through the use of plasma treated liquid (PTL), [123-124] in which media is treated with NTP to enrich dissolved RONS and injected locally in the tumor or perfused through body cavities.[125-126] Utsumi and co-workers demonstrated that injection of PTL locally into subcutaneous tumors can inhibit growth of malignant tumors in mice though the anti-tumor effects are not as prominent as direct plasma treatment. [126] This is likely due to the instability of plasma-dissolved species in the media and the animals' antioxidant capacity.[127]
A more direct, but invasive approach may involve intraoperative plasma treatment following surgical tumor excision to eliminate cancer cells remaining in the surgical margins. Physicists and engineers are designing different plasma sources and geometries for a less invasive and more focused approach to deliver plasma inside the body. [128-130] Plasma has been shown to propagate along tubes up to several meters in length and with diameters as small as 15 μm. [128-129]. The effectiveness of some of these endoscopic plasma devices is being tested in an in vivo pancreatic cancer model. [130] For successful clinical application with this approach, a detailed understanding of the RONS delivered to the target from the plasma aperture is critical.
Finally, as we show here, immunization with a plasma-created whole-cell vaccine provided protective anti-tumor effects. With optimization of vaccine development and delivery this could be a feasible strategy for plasma-mediated cancer control where plasma acts as an adjuvant.
The data suggests that combining plasma with other immunotherapeutic agents may provide additional clinical value (
A new paradigm of plasma treatment for cancer may be ‘plasma onco-immunotherapy’. [132] This approach not only debulks tumors, but also engages the innate immune system via ICD to initiate adaptive immune responses. [132-133]
Non-thermal plasma was generated in vitro by applying high voltage pulses to a dielectric barrier discharge (DBD) electrode. DBD electrodes used in this study were fabricated with a quartz dielectric covering a copper electrode. This prevents current build-up and creates an electrically safe plasma without heating surrounding gas and tissue. A nanosecond pulser (FPG-20-05NM, FID GmbH, Germany) was used to generate high voltage pulses, characterized in our previous work. [45] The system produced: 29 kV pulses, 2 ns rise times, 20 ns total pulse duration and a 0.9 mJ/pulse.
Colorectal cancer cell line CT26.WT was obtained from ATCC (CRL-2638). Generation of CT26-GUCY2C cells was described previously. [134] Cells were cultured in complete media: DMEM with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (Corning Life Sciences, USA). All cells were grown in a humidified environment at 37° C. with 5% CO2 (Panasonic, MCO-19AICUVH-PA, USA). Cells were plated one day prior to plasma treatment in 24-well plates at 3.0×105 cells/mL (0.5 mL/well). Before treatment with plasma, media was removed from each well and cells were washed twice with phosphate buffered saline (PBS). PBS from the second wash was removed from the well right before cells were exposed to plasma in the absence of any liquid. Fresh, complete media (0.5 mL) was immediately added back into the well following exposure to plasma. For treatment with plasma, a DBD electrode (1.3 cm diameter) was placed 1 mm above cells in the 24-well plate on top of a grounded metal plate with a z-positioner. Since all liquid was removed, plasma was generated in the gap between the electrode and the plate, directly on the cells by applying high voltage pulses from the nanosecond pulser. Treatment time was fixed to 10 seconds, and pulse frequency was controlled by an external function generator (TTi, TG5011LXT, USA). A range of pulse frequencies were used (50, 15, 30 and 75 Hz), and the combination of plasma treatment parameters produced in the following plasma treatment energies: 50, 100, 300 and 700 mJ, respectively. [45]
Balb/c mice were obtained from Jackson Laboratory (USA), and animal protocols were approved by The Thomas Jefferson University Institutional Animal Care and Use Committee. Subcutaneous tumors were established by injecting 1×105 CT26-GUCY2C cells in the flanks of mice, and monitored for growth. Prior to plasma treatment, hair over the tumor area was removed using a chemical depilatory agent to avoid obstruction of plasma generation and treatment. Tumors were treated once daily with plasma beginning on day 7 (for effector T cell development studies) or day 18 (for ICD and recruitment studies) and continued for 5 consecutive days. A smaller DBD electrode (3 mm diameter) was fabricated and used for treatment of mouse tumors. The nanosecond pulser and function generator used for in vitro treatment were also used here. Pulse frequency was adjusted to 750 Hz and treatment time was 10, 25 or 50 seconds. Mice were anesthetized with 5% isoflurane and treated on the grounding plate with the electrode positioned approximately 1 mm above the tumor with the z-positioner. Tumor volumes were monitored by measuring 3 orthogonal diameters and calculated using 43π×r1×r2×r3.
Cell viability was determined 24 hours after plasma treatment using a Muse Cell Analyzer (Millipore, USA). Cell suspensions were collected, diluted 1:20 with Muse Count & Viability Reagent (Millipore, USA) and analyzed according to the manufacturer's instructions. The percent viability was determined for each sample.
Cell supernatant was collected 10 minutes after plasma treatment and extracellular ATP was measured using a luciferin and luciferase-based chemiluminescent kit (Sigma-Aldrich, USA). All procedures were performed and reagents were prepared following manufacturer instructions. Luminescence value was measured by a Photon-Master luminometer (LuminUltra, USA) which was calibrated with the provided UltraClear calibration solution. The measured relative light units were converted into ATP concentration (pgATP/mL). Data were represented at ATP concentration (nM).
CT26 cells were collected 24 hours after plasma treatment and washed twice with blocking buffer (PBS+1% heat-inactivated FBS). Cells were then incubated with rabbit anti-mouse calreticulin antibody (ThermoFisher Scientific, USA) in blocking buffer (1:200) for 30 minutes in the dark at room temperature. Following incubation, cells were washed twice with blocking buffer and stained with Alexa Fluor 488 conjugated goat anti-rabbit IgG secondary antibody (ThermoFisher Scientific, USA) at 1:500 in blocking buffer. Cells were incubated at room temperature, in the dark, for 40 minutes. Following staining, cells were washed and fixed with 4% PFA and analyzed by FACS.
To prepare the whole-cell vaccine, CT26 cells were treated with either: 1) 300 mJ of plasma, 2) Cisplatin (50 μM) or 3) complete media. Plasma-created vaccine was prepared from cells treated in 24-plates with plasma and cultured in regular media for 24 hours. Cisplatin-vaccine was prepared from cells incubated for 24 hours in Cisplatin media. Media-Vaccine was prepared from cells cultured in regular, complete media for 24 hours. Cisplatin- and media-vaccines were used as controls.
After a 24-hour incubation 3×106 cells in 100 μL of PBS were inoculated subcutaneously into the left flank of Balb/c mice. Seven days later, mice were challenged with 3×105 live CT26 cells subcutaneously injected into the right flank. Tumors were measured twice weekly with calipers and all mice were euthanized on day 28.
Tumors, with overlaying skin, were resected 1 or 3 days after the final plasma treatment and fixed in 10% formalin for at least 48 hours. Tissue was then paraffin-embedded, sectioned with a microtome, deparaffinized and stained with hematoxylin and eosin. Images of stained sections were captured using the EVOS FL Auto Cell imaging system. Sections were evaluated for damaged by a blinded pathologist.
Tumor sections from day 3 after final plasma treatment were used for fluorescence detection of DAMP signals and immune cell recruitment. For antigen retrieval, slides were transferred to a Dako Target Retrieval buffer pH9 (1:10 dilution in H2O) and boiled for 15 min in a pressure cooker. Slides were then cooled and blocked with blocking solution (10% milk in PBS+0.3% v/v TritonX+15 μL Fab donkey anti-mouse IgG (H+L) fragments) for 1 hour at room temperature in a humidified chamber. Following blocking, tumor sections were stained the following antibodies (1:100 in blocking solution) overnight at 4° C. in a humidified environment: anti-mouse CRT (PA3-900, ThermoFisher Scientific, USA) and anti-mouse HMGB1 (MA5-16,264, ThermoFisher Scientific, USA) or anti-mouse CD45 (103,101, Biolegend, USA) and anti-mouse CD11c (33,483, Abcam, USA). Tissue samples were then washed four times with PBS+0.1% v/v Tween (PBST). Secondary antibodies (1:1000 in blocking bluffer) were added: donkey anti-rabbit IgG Alexa Fluor 594 for CRT (A21207, Life Technologies, USA), goat anti-mouse IgG Alexa Fluor 488 for HMGB1 (115-545-205, Jackson Immuno, USA), donkey anti-rat IgG (H+L) Alexa Fluor 594 for CD45 (A21209, Life Technologies, USA) and goat anti-armenian hamster IgG (H+L) Alexa Fluor 488 for CD11c (127-545-160, Jackson Immuno, USA). Tissue sections were stained for 1.5 hours at room temperature in a humidified environment, protected from light. Following secondary staining, tissue sections were washed four times with PBST and mounted with DAPI (P36935, Molecular Probes, USA). A glass cover slip was placed on top of each tissue section and cured overnight. Sections were viewed under an EVOS FL Auto Imaging System (Life Technologies, USA). Using ImageJ software, mean fluorescence intensity of DAMPs and CD45+/CD11c+ signals were determined by measuring the intensity of three representative areas on the tissue. Data are presented as normalized mean fluorescence intensity of individual resected tumors.
IFNγ ELISpot assays were previously described. [134] Briefly, on Day 1, multiscreen filtration plates (Millipore, MSIPS4W10) plates were coated with 100 uL per well of anti-IFNγ antibody (BD Biosciences, USA; clone R4-6A2; 10 ug/mL) overnight at 4° C. On day 2, the coating antibody was discarded, the plate washed and blocked. Splenocyes were isolated via mechanical disruption with RBC lysis and added at 1×106 cells per well in cRPMI. The following stimulators were added: DMSO (negative control), 10 μg/mL GUCY2C254-262 peptide (JPT, Germany) or 10 μg/mL AH-1 peptide (AnaSpec, USA) for 24 hours in cRPMI. Plates were incubated at 37° C., 5% CO2 for 24 hours and spots were developed with 2 μg/mL biotinylated anti-IFNγ detection antibody (BD Biosciences, USA; clone XMG1.2) and 2 μg/mL alkaline phosphatase-conjugated streptavidin (ThermoFisher Scientific, USA), followed by NBT/BCIP substrate (ThermoFisher Scientific, USA). Spot forming cells were enumerated using the S6 Universal-V Analyzer automated reader system, software ImmunoSpot v5 (Cellular Technology Limited, USA). Spot parameters were established using automated gating and quantification. Data are presented as antigen-specific spots (normalized by subtracting the DMSO baseline negative control values).
The following references may be useful in understanding some of the principles discussed herein:
This application claims the benefit of U.S. Provisional Application No. 62/632,788, filed on Feb. 20, 2018, the entire disclosure of which is hereby incorporated by reference as if set forth fully herein.
This invention was made with government support under Contract No. DE-SC0016492 awarded by the Department of Energy. The Government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/018689 | 2/20/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62632788 | Feb 2018 | US |