Method of Genotyping Blood Cell Antigens and Kit Suitable for Genotyping Blood Cell Antigens

Information

  • Patent Application
  • 20080050727
  • Publication Number
    20080050727
  • Date Filed
    March 31, 2005
    19 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
A method of genotyping blood cell antigens comprising subjecting DNA from an individual of a mammalian species to a multiplex Polymerase Chain Reaction (PCR) to amplify and detectably label a region of the locus of at least two different blood cell antigens which contains the site of nucleotide polymorphism of said blood cell antigen and using the thus amplified and labeled DNA fragments to determine the genotype for each of said blood cell antigens. The multiplex PCR -comprises the use of at least one pair of blood cell antigen-specific chimeric primers for each blood cell antigen to be genotyped and at least one detectably labeled universal primer, preferably a pair of detectably labeled universal primers. The universal primer(s) have a unique sequence not occurring in the DNA of said mammalian species. Each chimeric primer pair comprises a left chimeric primer and a right chimeric primer, Each of them comprising a blood cell antigen-specific part at the 3′ end and a universal part at the 5′ end. The base sequence of the universal part of the chimeric primers corresponds to the base sequence of said at least one universal primer. The blood cell antigen-specific parts of the chimeric primer pair enclose a region of the locus of the blood cell antigen which contains the site of nucleotide polymorphism of said blood cell antigen. A kit for genotyping blood cell antigens by this method. A set of blood cell antigen-specific chimeric primer pairs and a set of blood cell antigen allele-specific oligonucleotide probes.
Description
FIELD OF THE INVENTION

This invention is in the field of genotyping of blood cell antigens, more particularly antigens on red blood cells (blood group antigens), blood platelets (platelet antigens) and leukocytes (leukocyte antigens).


The present invention provides a method of genotyping blood cell antigens and a kit suitable for genotyping blood cell antigens, and provides sets of primers and probes useful for genotyping blood cell antigens.


BACKGROUND OF THE INVENTION

When blood, or a blood fraction, such as red blood cells (erythrocytes or red cells), platelets (thrombocytes) and white blood cells (leukocytes), derived from a donor are administered to another person (or more generally to another mammalian individual), serious adverse reactions may occur when the donor blood or blood fraction does not match properly with the blood of the recipient. Well known are transfusion reactions (agglutination) occurring when for example blood from a donor of blood group A is given to a person of blood group B (blood group antigens A and B belong to the AB0 system). When blood of a rhesus D (RhD) positive donor is given to a RhD negative patient there is a high chance that alloantibody formation occurs. RhD antibodies will lead to rapid destruction of RhD-positive red cells and to transfusion reactions. Furthermore, when a woman with red cell or platelet antibodies becomes pregnant, those antibodies can cross the placenta and can destruct the red cells or the platelets of the unborn child. This can lead to severe hemolysis resulting in anaemia, jaundice (after birth) and if not treated it can be fatal or lead to cerebral damage. Thus, to avoid transfusion reactions, the current blood transfusion policy is to transfuse only AB0 and RhD matched red cells. To avoid alloantibody formation with possible complications during pregnancy for women in childbearing age only AB0, RhD and K1 matched red cells are transfused. Possibly, in the future, also Rhc and RhE matched red cells will be given to women in childbearing age.


Various other blood group antigens (red cell antigens) exist, however, and these may also cause serious problems when non-matching donor blood is given to a recipient with alloantibodies. Typing of platelet-specific antigens is important for the diagnosis and therapy of the patients since different alloimmune thrombocytopenic syndromes can occur. If a woman has developed anti-platelet antigen antibodies (in most cases Human Platelet Antigen (HPA) type 1a antibodies) and mostly developed during a pregnancy, these antibodies can lead to fetal platelet destruction with an increased bleeding tendency in the unborn. In a number of cases this will lead to intracranial bleeding. To prevent bleeding, HPA-1a-negative platelets need to be transfused.


Platelets are usually transfused without previous typing of platelet antigens [human platelet antigens (HPA) in humans] of the donor and the recipient. Transfusions of non-matching blood or blood fractions may cause the generation of alloantibodies, especially in patients who need frequent or recurrent red cell or platelet (or leukocyte) transfusions. If multiple alloantibodies have formed, or if the alloantibodies are directed against high-frequency antigens, it can be a problem to find compatible red cells or platelets. According to a published study (Seltsam et al., 2003), transfusion support was unsatisfactory in about one-third of the hospitalized patients with antibodies to high-frequency antigens.


The classical method of testing for blood group antigens and antibodies is phenotyping by the hemagglutination test. The technique of this serological test is simple and inexpensive, but its costs and difficulties increase when multiple assays need to be done for complete typing and it requires availability of a large number of specific antisera. In The Netherlands alone, the total number of blood donors is in the order of magnitude of 500,000 people and it is estimated that the number of donors increases each year with about 60,000 new donors. For red cells, there are at least 29 blood group antigen systems (each with a number of different alleles). Furthermore, it will be relevant to type for high-frequency antigens and low-frequency antigens. The number of clinically relevant blood cell antigen systems is about 60. Complete phenotyping of all blood donors is therefore expensive, laborious, time consuming and not feasible due to lack of sufficient typing reagents.


The molecular basis for most blood cell antigen systems is known. Most blood group antigens, platelet antigens and neutrophil antigens are bi-allelic and are the result of a single nucleotide polymorphism (SNP). These SNPs may be used for genotyping. Innumerable DNA-based assays have been described in the scientific literature for the genotyping of blood groups and platelet antigens. These include PCR-RFLP, allele-specific PCR, sequence specific PCR as single or multiplex assays, real-time quantitative PCR, a single-nucleotide dye terminator extension method and high-throughput bead technology (reviewed by Reid, 2003). Semiautomated methods using a mass spectrophotometer or pyrosequencer may also be used for genotyping.


For example, Randen et al. (2003) recently disclosed a genotyping of the human platelet antigens 1, 2, 3, 4, 5 and Gov (recently called HPA-15, Metcalfe et al., 2003) by melting curve analysis using LightCycler technology. The biallelic systems HPA-1 through 5 and Gov are the ones most frequently involved in disease (Berry et al., 2000), making them important targets for genotyping. The LightCycler technology involves an amplification of relevant fragments of donor DNA by PCR using a specific primer pair for each of the above mentioned platelet antigens. By using fluorescent hybridization probes and melting curve analysis it was possible to achieve a simultaneous detection of both alleles of a platelet antigen in the same capillary, without a need of the laborious and time consuming gel electrophoresis of earlier genotyping methodology.


However, as with all other described blood cell antigen genotyping methods, also the LightCycler technology is not capable of performing the enormous task of a complete genotyping of blood donors, which would require methodology which is suitable for high-throughput screening. Typing each year 60,000 donors after two different donations for 60 blood group and platelet antigens would involve more than 7 million typing tests per year or about 140,000 typing tests per week. A suitable high-throughput method, which is rapid and reliable, is highly desirable for this task.


Multiplex Polymerase Chain Reaction


The technique of Polymerase Chain Reaction (PCR) has developed much since it was introduced in the 1980's. Chamberlain et al. (1988) taught multiplex PCR as a general technique for the amplification of multiple loci in (genomic) DNA. Herein, instead of one primer pair for the amplification of one locus, more primer pairs are added in one reaction mixture. However, the development of such multiplex PCRs is limited by the complexity of the amplification reaction. Reaction components and cycling conditions must be adjusted for each extra pair of primers. Shuber et al. (1995) introduced ‘chimeric’ sequence-specific primers to circumvent this problem. These primers are complementary to the template DNA and contain an unrelated 20-nucleotide tag at the 5′ end (universal sequence). Although the primers were designed in such a way that their predicted melting temperatures are similar to those of the other primers and have a calculated AG for primer duplexing below −10 kcal/mole, the concentration of the primers still needs to be adjusted to obtain similar yields of PCR product. To circumvent this problem and to also reduce primer-dimer formation further, Belgrader et al. (1996) applied only a limited amount of chimeric primer (2 pmol) and added an overload of universal primer after 15 PCR cycles. Thermal cycling proceeded then for another 25 cycles at a lower annealing temperature. Brownie et al. (1997) included the universal primer already in the PCR reaction mixture at the start. After 4 cycles of PCR the annealing temperature is raised from 60° C. to 74° C. and another 35 cycles of PCR is performed. Further, a nested PCR is taught by Heath et al. (2000) who applies in the second PCR two (complementary) universal primers, one of them carrying a fluorescent tag attached to the 5′ end.


So far, multiplex PCR has only been used with relatively small sets of primer pairs for allele-specific amplification. Neither the feasibility of using a multiplex PCR in a method of genotyping a large number of blood cell antigens, nor the nature of the PCR conditions and the primer mixtures that are suitable for such blood cell antigen genotyping, nor a practical, rapid and reliable method for analyzing the products of the amplification to assign the clinically relevant blood cell antigen genotypes have been described in the prior art.


DNA Microarrays


Several approaches using microarray technology are known in the general field of genotyping. One of these approaches is the so-called mini-sequencing method, which includes an allele-specific extension either on the microarray or in solution (Pastinen et al., 1997; Fan et al., 2000). A difficulty in this approach is the occurrence of non-specific primer extension and further optimization of primers or the extension method itself is necessary (Pastinen et al., 2000; Lindroos et al., 2002). Moreover, this method requires laborious steps of enzymatic treatment and purification.


Another approach is called allele-specific oligonucleotide hybridization (ASO) on microarrays. This approach relies on the thermal stability of the target and short oligonucleotide probes for genotype determination (Hacia et al., 1996; Wang et al., 1998). The first light-generated oligonucleotide arrays were developed in 1991 (Fodor et al.). The method has been used for the determination of new SNPs or for resequencing. It has also been used for genotyping (Evans et al., 2002) by spotting the PCR amplification products derived from patient samples into an array and contacting the array with allele-specific oligos to discriminate the alleles of the patient. Many variations have been described, using different kinds of tools, like enzymes, nanoparticle probes, artificial nucleotides, thermal gradients, flow-through arrays, blocking oligonucleotides, for improving the sensitivity or specificity (Lu et al., 2002; Park et al., 2002; Prix et al., 2002; Kajiyama et al., 2003; Jobs et al., 2003; Van Beuningen et al., 2001; Iwasaki et al., 2002). Wen et al., 2000, made a comparison of the sensitivity and specificity of an oligonucleotide array analysis of TP53 mutations with conventional DNA sequence analysis. The oligonucleotide array used contained a plurality of probes per SNP. To immobilize the oligos to the matrix support, usually a glass slide, the probes may be provided with a spacer and an amine group (Guo et al., 2001; Wen et al., 2003). Various microarray formats have been described, for example slides with a 96-microarray format containing 250 spots per array to improve throughput (Huang et al., 2001). Flow-through systems have been described in order to reduce the hybridization time and thereby increase throughput (Cheek et al., 2001; Van Beuningen et al., 2001).


So far, DNA microarray methods have not been applied to genotyping of blood cell antigens and neither the feasibility of using a DNA microarray in a method of genotyping a large number of blood cell antigens, nor the nature of the oligonucleotide probes and microarray formats that are suitable for such blood cell antigen genotyping, nor a practical, rapid and reliable method for analyzing the hybridization results to assign the clinically relevant blood cell antigen genotypes have been described in the prior art.


SUMMARY OF THE INVENTION

An object of the present invention is to provide methods and means allowing a practical, rapid and reliable genotyping of a large number of blood cell antigens.


Another object of the invention is to develop a high-throughput technique which allows genotyping of the whole existing donor cohort and/or the donor cohort increase for a number of blood cell antigens in the order of magnitude of 20 and ultimately even some 60 blood cell antigen systems, to thereby facilitate the selection of correct donor blood and improve the safety of blood transfusion.


Again another object of the invention is to achieve an essentially complete and reliable genotyping, at least covering the majority of clinically relevant blood cell antigen systems, using simple apparatus, in a short time, such as less than 30 hours, or less than 24 hours, preferably less than 6 hours and more preferably less than 2 hours or even less than 1 hour, on a single DNA sample subjected to one PCR reaction in a single reaction tube to simultaneously amplify and detectably label relevant DNA fragments.


These objects are achieved by the present invention which provides, in one aspect, a method of genotyping blood cell antigens comprising subjecting DNA from an individual of a mammalian species to a multiplex Polymerase Chain Reaction (PCR) to amplify and detectably label a region of the locus of at least two different blood cell antigens which contains the site of nucleotide polymorphism of said blood cell antigen and using the thus amplified and labeled DNA fragments to determine the genotype for each of said blood cell antigens, said multiplex PCR comprising the use of at least one pair of blood cell antigen-specific chimeric primers for each blood cell antigen to be genotyped and at least one detectably labeled universal primer, wherein said at least one universal primer has a unique sequence not occurring in the DNA of said mammalian species, and wherein each chimeric primer pair comprises a left chimeric primer and a right chimeric primer, each of them comprising a blood cell antigen-specific part at the 3′ end and a universal part at the 5′ end, wherein the base sequence of the universal part of the chimeric primers corresponds to the base sequence of said at least one universal primer, and wherein said blood cell antigen-specific parts of the chimeric primer pair enclose a region of the locus of the blood cell antigen which contains the site of nucleotide polymorphism of said blood cell antigen.


In the method of the invention, it is preferred that a pair of detectably labeled universal primers with a unique sequence not occurring in the DNA of said mammalian species is used and that for each chimeric primer pair the base sequence of the universal part of one member of the chimeric primer pair corresponds to the base sequence of one member of the universal primer pair and the base sequence of the universal part of the other member of the chimeric primer pair corresponds to the base sequence of the other member of the universal primer pair.


Further, it is strongly preferred in the present invention that the genotype for each of said blood cell antigens is determined by hybridizing the products of the multiplex PCR amplification, after denaturation, to blood cell antigen allele-specific oligonucleotide probes contained in a DNA array or presented in any other form, such as supported on beads, and analyzing the hybridization pattern.


In another aspect, the present invention provides a kit for genotyping blood cell antigens by a method as defined herein, comprising at least one pair of blood cell antigen-specific chimeric primers for each blood cell antigen to be genotyped and one pair of detectably labeled universal primers, both as defined herein.


This invention further provides a set of blood cell antigen-specific chimeric primer pairs useful in a multiplex PCR, and a set of blood cell antigen allele-specific oligonucleotide probes useful for genotyping blood cell antigens.




BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 depicts the results of a multiplex PCR of 19 blood group antigens with or without the presence of universal MAPH primers. Very little amount of PCR product is amplified during the first amplification cycles (lane 2), but enough to be used as template by the universal MAPH primers in the following cycles. The MAPH primers perform the actual amplification (lane 3), so adjustments of primer concentrations are hardly necessary and similar yields of PCR product are obtained.



FIG. 2 depicts the pattern obtained with ABI capillary sequencer from the multiplex PCR of 19 blood group antigens as described in this invention.



FIG. 3 depicts the scan results of the hybridisation of 6 donor samples, each comprising the 6 human platelet antigen 1 through 5 and Gov PCR products. The PCR products of one sample were hybridised to two arrays, that is 4 blocks. The original scans have red spots and a black background. For better visualisation this is changed to grayscale and inverted.




DETAILED DESCRIPTION OF THE INVENTION

The invention provides a method of genotyping blood cell antigens comprising subjecting DNA from an individual of a mammalian species to a multiplex Polymerase Chain Reaction (PCR) to amplify and detectably label a region of the locus of at least two different blood cell antigens which contains the site of nucleotide polymorphism of said blood cell antigen and using the thus amplified and labeled DNA fragments to determine the genotype for each of said blood cell antigens, said multiplex PCR comprising the use of at least one pair of blood cell antigen-specific chimeric primers for each blood cell antigen to be genotyped and at least one detectably labeled universal primer, wherein said at least one universal primer has a unique sequence not occurring in the DNA of said mammalian species, and wherein each chimeric primer pair comprises a left chimeric primer and a right chimeric primer, each of them comprising a blood cell antigen-specific part at the 3′ end and a universal part at the 5′ end, wherein the base sequence of the universal part of the chimeric primers corresponds to the base sequence of said at least one universal primer, and wherein said blood cell antigen-specific parts of the chimeric primer pair enclose a region of the locus of the blood cell antigen which contains the site of nucleotide polymorphism of said blood cell antigen.


More particularly, the invention provides a method of genotyping blood cell antigens comprising subjecting DNA from an individual of a mammalian species to a multiplex Polymerase Chain Reaction (PCR) to amplify and detectably label a region of the locus of at least two different blood cell antigens which contains the site of nucleotide polymorphism of said blood cell antigen and using the thus amplified and labeled DNA fragments to determine the genotype for each of said blood cell antigens, said multiplex PCR comprising the use of at least one pair of blood cell antigen-specific chimeric primers for each blood cell antigen to be genotyped and one pair of detectably labeled universal primers, wherein said pair of universal primers comprises a forward universal primer and a reverse universal primer each having a unique sequence not occurring in the DNA of said mammalian species, and wherein each chimeric primer pair comprises a left chimeric primer and a right chimeric primer, each of them comprising a blood cell antigen-specific part at the 3′ end and a universal part at the 5′ end, wherein the base sequence of the universal part of one of these chimeric primers corresponds to the base sequence of one of the universal primers and the base sequence of the universal part of the other chimeric primer corresponds to the base sequence of the other of the universal primers, and wherein said blood cell antigen-specific parts of the chimeric primer pair enclose a region of the locus of the blood cell antigen which contains the site of nucleotide polymorphism of said blood cell antigen.


The invention involves a particular sequence of steps that in combination allows to achieve the above mentioned objects. This sequence of steps comprises isolation of DNA from a sample which is to be subjected to the genotyping analysis of this invention, followed by one of the key aspects of the present invention, a multiplex PCR of gene fragments carrying the single nucleotide polymorphisms (SNPs) that are responsible for blood cell antigen differences. This multiplex PCR applies a mixture of different primers, including two or more pairs of chimeric primers and in addition including a labelled universal primer or a pair of labelled universal primers. Then the thus amplified and labelled DNA fragments are denatured (such as by heating) and are contacted with a set of probes, preferably contained in a microarray comprising a multitude of allele-specific probes, under conditions which support hybridisation between matching sequences. In the next step, the presence of labelled fragments is measured for each spot in the microarray, and finally the signals measured are interpreted to type the sample. The probes may be presented also in other formats, for example as probes supported on beads (glass beads, polystyrene beads, etc.), or probes attached to the wall of a suitable container, etc. An array format is however the most preferred embodiment.


Species


The invention allows the genotyping of blood cell antigens not only of humans, but of all animals with a blood cell antigen system. For all practical purposes, genotyping will relate to blood cell antigens of mamnmals, including for example farm animals and pets, wild-life animals and generally all animals of economic, emotional or wild life preservation value. Most preferably, however, the invention concerns the genotyping of human blood cell antigens.


Blood Cell Antigens


The blood cell antigens that may be genotyped by the present invention include typical blood group antigens, such as Kidd, Duffy, Kell and Rhesus. The blood group antigens of the AB0 system may be genotyped by the present invention as well, although it may be necessary, because of their extreme importance, to perform the existing and well-accepted serological test. Other blood group antigens that may be genotyped by the present invention comprise antigen variants and or gene variants leading to gene silencing of the blood group systems MNSs, Rhesus (Rh), Kell, Kidd, Duffy, Colton, Diego, Dombrock, Lutheran, Lewis, Cartwright, Landsteiner Wiener (LW), Cromer, Knops, Kx, Indian, Gerbich, Hh, Chido/Rodgers, GIL, I, JMH, OK, P-related, RAPH-MER, Scianna, Xg, YT, etc.


In addition to the blood group antigens, also platelet and leukocyte (especially neutrophil) antigens may be genotyped by the method of this invention. The clinically most relevant platelet antigens, at least in the Western world, comprise HPA-1, HPA-2, HPA-3, HPA-4, HPA-5 and Gov (or HPA-15). Other platelet antigens that may be genotyped by the present invention, even though they are considered of lesser importance, comprise for example human platelet antigens 6 through 14 and 16. Examples of typical Human Neutrophil Antigens that may be genotyped by the method of the invention include HNA-1, 4 and 5. Others, such as HNA-2 and 3, can be genotyped as soon as their molecular basis has been elucidated.


It is conceived that the present invention is useful even when only a restricted number of blood cell antigens is genotyped. It may for some purposes be sufficient that only the red cell antigens are genotyped, or only the platelet antigens, or only a selected group of antigens which is relevant in a certain context. The minimum number of blood cell antigens to be genotyped by the present invention is two blood cell antigens, for example the blood cell antigen RhD and the RHD gene variant RhDΨ, or the blood cell antigen JK1/2 (Jka/Jkb) and the blood cell antigen FY1/2 (Fya/Fyb). Genotyping of a larger number of blood cell antigens is clearly preferred, for example three, four, five, and especially six or more. For most purposes, however, a more or less complete genotyping, at least covering most of the clinically relevant blood cell antigens, is preferred. Most preferred, the invention includes at least six different chimeric primer pairs specific for HPA's 1 through 5 and HPA-15, and at least 10 or 11 or 12 chimeric primer pairs specific for red cell antigens, such as the various Kidd, Duffy, Kell and Rhesus antigens.


The DNA


The DNA subjected to the multiplex PCR will usually be genomic DNA of the individual whose blood cell antigens are to be genotyped The donor DNA may be obtained from any suitable source, for example from EDTA, heparin or citrate treated blood samples or buffy coats, using isolation procedures and means well known to the skilled person, such as for example the commercially available Qiagen Blood DNA extraction kit, use of a salting-out method, such as by the standard protocol of Miller et al. (1988), or use of the Roche Magnapure.


Universal Primers


The method of the invention uses at least one universal primer carrying a detectable label, preferably a pair of universal primers both carrying a detectable label. The sequence of the universal primer(s) corresponds with the sequence of the universal part at the 5′ end of the chimeric primers. It is possible to use only one universal primer. In that case, all chimeric primers have an identical base sequence at their 5′ end, i.e. the universal part at the 5′ end of the chimeric primers corresponds with the sequence of said single universal primer. Practically, however, it was found preferable to use two different universal primers (i.e. a pair of universal primers). In that case, each pair of chimeric primers contains a primer with a universal part corresponding to one of the universal primers and a primer with a universal part corresponding to the other universal primer.


It is important that the universal primer(s) do not hybridize to the DNA which is to be genotyped. Assuming that the DNA to be genotyped is human genomic DNA, the universal primer(s) (and the corresponding parts of the chimeric primers) should not hybridize with human genomic DNA and therefore have a unique sequence not occurring in said DNA. Preferably, the sequence of the universal primer(s) differs significantly from any sequence occurring in the human genome. Further, it is strongly preferred that the universal primer(s) are designed such that there Tm value is similar to the Tm value of the blood cell antigen specific part of the chimeric primers. Preferably, the Tm value of the universal primer(s) is between 50 and 70° C., more preferably between 56 and 68° C. It is also preferred that the universal primer(s) have a length of between 12 and 30 bases, more preferably between 15 and 25 or even between 16 and 20 bases.


Very good results were obtained with universal primers disclosed in White et al., 2002, with the sequences ggccgcgggaattcgatt (SEQ ID NO:1, forward MAPH), with a Tm of 67.55° C., and gccgcgaattcactagtg (SEQ ID NO:2, reverse MAPH) with a Tm of 57.94° C.


Detectable Labels


The universal primer(s) carry a detectable label. The label may be any label suitable for the purpose, such as a radioactive atom or group, an enzyme, such as an enzyme catalyzing a measurable conversion of a substrate thereof, a dye, a fluorescent substance, a chemiluminescent substance, biotin, etc. Most preferably, the label is a fluorescent group, of which many are known to the person skilled in the art. Examples thereof are Cy3, Cy5, Fluorescein (FITC), Phycoerythrin (PE), Rhodamine, Hex, Tet, Fam, etc.


Most preferably, the invention uses the fluorescent group Cy5, which is a sulfoindocyanine dye (Mujumdar et al., 1993).


Usually, in particular when the label is a moiety attached to the oligonucleotide, it will be attached to the 5′ end of the oligonucleotide sequence of the universal primer(s).


Because the universal primer(s) are labeled, while the chimeric primers are not labelled, the invention achieves very efficient labeling simultaneous with amplification, while the various chimeric primers can be used without previous labeling.


Chimeric Primers


The chimeric primers used in this invention have a universal part at their 5′ end and a blood cell antigen-specific part at their 3′ end. The oligonucleotide sequence of the universal part corresponds with the sequence of the universal primer(s) and requires no further elucidation here.


As to the blood cell antigen-specific part of the chimeric primers, it is most preferable that these parts have similar Tm values, both in comparison with blood cell antigen-specific parts of other chimeric primers in the mixture, and in comparison with the universal primers used. Thus, it is preferred that these blood cell antigen-specific parts of the chimeric primers have Tm values between 50 and 70° C., more preferably between 55 and 65° C. and most preferably between 56 and 62° C. It is also preferred that the blood cell antigen-specific parts of the chimeric primers have a length of betveen 12 and 35 bases, more preferably between 15 and 30 or even between 16 and 25 bases.


It is further preferred that the blood cell antigen-specific parts of the chimeric primers are selected in such a way that the PCR amplification results in oligonucleotide products with a length of between 50 and 800, preferably between 80 and 500, most preferably between 100 and 400 or 300 nucleotides. A product length of from 100 to 200 nucleotides would be ideal.


Various software products are available that can be used to design suitable blood cell antigen-specific parts of the chimeric primers. On the basis of the publicly available DNA sequences of the blood cell antigen-encoding genes, the software product Primer3 (http://www.broad.mit.edu/cgi-bin/primer/primer3 www.cgi) allows to design primers. To check for any unspecific genomic DNA binding the CELERA database can be used and to check for any primer-dimer formation the Oligo6 software (Medprobe) can be used. It is preferred to select primers having a calculated ΔG below −10 kcal/mole.


A list of preferred chimeric primers includes the following:

HPA1-leftgccgcgaattcactagtgcttcaggtcacagcgaggtSEQ ID NO:3HPA1-rightggccgcgggaattcgattgctccaatgtacggggtaaaSEQ ID NO:4HPA2-leftgccgcgaattcactagtgtgaaaggcaatgagctgaagSEQ ID NO:5HPA2-rightggccgcgggaattcgattagccagactgagcttctccaSEQ ID NO:6HPA3-leftgccgcgaattcactagtggcctgaccactcctttgcSEQ ID NO:7HPA3-rightggccgcgggaattcgattggaagatctgtctgcgatccSEQ ID NO:8HPA4-leftgccgcgaattcactagtgatccgcaggttactggtgagSEQ ID NO:9HPA4-rightggccgcgggaattcgattccatgaaggatgatctgtggSEQ ID NO:10HPA5-leftgccgcgaattcactagtgtccaaatgcaagttaaattaccagSEQ ID NO:11HPA5-rightggccgcgggaattcgattacagacgtgctcttggtaggtSEQ ID NO:12HPA15-leftgccgcgaattcactagtgtgtatcagttcttggttttgtgatgSEQ ID NO:13HPA15-rightggccgcgggaattcgattaaaaccagtagccacccaagSEQ ID NO:14JK1/2-leftgccgcgaattcactagtggtctttcagccccatttgagSEQ ID NO:15JK1/2-rightggccgcgggaattcgattgttgaaaccccagagtccaaSEQ ID NO:16FY1/2-leftgccgcgaattcactagtggaattcttcctatggtgtgaatgaSEQ ID NO:17FY1/2-rightggccgcgggaattcgattaagaagggcagtgcagagtcSEQ ID NO:18GATAbox-leftgccgcgaattcactagtgggccctcattagtccttggSEQ ID NO:19GATAbox-rightggccgcgggaattcgattgaaatgaggggcatagggataSEQ ID NO:20Fyx-leftgccgcgaattcactagtgtcatgcttttcagacctctcttcSEQ ID NO:175Fyx-rightggccgcgggaattcgattcaagacgggcaccacaatSEQ ID NO:176KEL1/2-leftgccgcgaattcactagtgaagggaaatggccatactgaSEQ ID NO:21KEL1/2-rightggccgcgggaattcgattagctgtgtaagagccgatccSEQ ID NO:22KEL3/4-leftgccgcgaattcactagtggcctcagaaactggaacagcSEQ ID NO:23KEL3/4-rightggccgcgggaattcgattagcaaggtgcaagaacactctSEQ ID NO:24KLBL6/7-leftgccgcgaattcactagtggcagcaccaaccctatgttcSEQ ID NO:177KEL6/7-rightggccgcgggaattcgatttcaggcacaggtgagcttcSEQ ID NO:178RHCEex2forgccgcgaattcactagtgcgtctgcttccccctccSEQ ID NO:25RHex2revggccgcgggaattcgattctgaacagtgtgatgaccaccSEQ ID NO:26RHDex3-leftgccgcgaattcactagtgtcctggctctccctctctSEQ ID NO:179RHCEex3-rightggccgcgggaattcgatttttttcaaaaccccggaagSEQ ID NO:180RHCEex5-leftgccgcgaattcactagtgggatgttctggccaagtgSEQ ID NO:27RHex5revggccgcgggaattcgattggctgtcaccacactgactgSEQ ID NO:28RHDΨ-leftggccgcgggaattcgattgtagtgagctggcccatcaSEQ ID NO:29RHDΨ-rightgccgcgaattcactagtgtgtctagtttcttaccggcaagtSEQ ID NO:30RHD-leftBgccgcgaattcactagtgttataataacacttgtccacagggSEQ ID NO:31RHD-rightCggccgcgggaattcgattcggctccgacggtatcSEQ ID NO:32BigC-leftgccgcgaattcactagtgggccaccaccatttgaaSEQ ID NO:33BigC-rightintron2ggccgcgggaattcgattccatgaacatgccacttcacSEQ ID NO:34RhDVI-left (fw)ggccgcgggaattcgattctttgaattaagcacttcacagaSEQ ID NO:181RhDVI-right (rev)gccgcgaattcactagtggccagaatcacactcctgctSEQ ID NO:182MN-leftgccgcgaattcactagtgtgagggaatttgtcttttgcaSEQ ID NO:35MN-rightggccgcgggaattcgattcagaggcaagaattcctccaSEQ ID NO:36Ss-leftgccgcgaattcactagtgtttttctttgcacatgtctttSEQ ID NO:183Ss-rightggccgcgggaattcgatttctttgtctttacaatttcgtgtgSEQ ID NO:184U-leftgccgcgaattcactagtgcgctgatgttatctgtcttatttttcSEQ ID NO:37U-rightggccgcgggaattcgattgatcgttccaataataccagccSEQ ID NO:38DO-leftggccgcgggaattcgatttgatccctccctatgagctgSEQ ID NO:185DO-rightgccgcgaattcactagtgttatatgtgctcaggttcccagtSEQ ID NO:186JO-leftgccgcgaattcactagtgcctggcttaaccaaggaaaaSEQ ID NO:39JO-rightggccgcgggaattcgatttcatactgctgtggagtcctgSEQ ID NO:40Colton-leftgccgcgaattcactagtggccacgaccctctttgtctSEQ ID NO:187Colton-rightggccgcgggaattcgatttacatgagggcacggaagatSEQ ID NO:188Diego-leftgccgcgaattcactagtgacttattcacgggcatccagSEQ ID NO:189Diego-rightggccgcgggaattcgattaagctccacgttcctgaagaSEQ ID NO:190Wr-leftgccgcgaattcactagtgggcttcaaggtgtccaactcSEQ ID NO:636Wr-rightggccgcgggaattcgattaggatgaagaccagcagagcSEQ ID NO:637Yt-leftggccgcgggaattcgattccttcgtgcctgtggtagatSEQ ID NO:638Yt-rightgccgcgaattcactagtgttctgggacttctgggaatgSEQ ID NO:639Lu-leftgccgcgaattcactagtgggacccagagagagagagactgSEQ ID NO:640Lu-rightggccgcgggaattcgattgggagtccagctggtatgg.SEQ ID NO:641


Most preferred are the chimeric primers with SEQ ID NOS:3 to 40.


The above mentioned software products would allow the skilled person to design additional primers for other blood cell antigens. The present invention encompasses the use of a set of similar chimeric primers having the same blood cell antigen-specific part but a different universal part.


Proportions of the Primers


To achieve the aims of the invention, and in particular to avoid the occurrence of primer-dimers as much as possible, it is important that only a minimal proportion of the chimeric primers is used and that amplification is due to a large extent to elongation of the universal primers. Practically, it is preferred that the universal primers are used in a molar amount which is at least 10 times, more preferably at least 40 times the molar amount of each chimeric primer. Per amplification reaction 5 nM of each chimeric primer and 0.2 μM of each universal primer per chimeric primer pair is preferred. Per microliter reaction volume, an amount of 5 femtomol (5*10−15 mol) of each chimeric primer would be preferred, while about 0.2 pmol (0.2*10−12 mol) of each universal primer is used per chimeric primer pair.


Multiplex PCR Conditions


The multiplex PCR in the method of this invention uses a mixture of universal and chimeric primers which are present from the beginning of the reaction. The PCR as used in this invention does not distinguish between a separate first part in which only chimeric primers are extended, and a second part in which only universal primers are extended. The present invention applies an annealing or primer extension temperature in the later cycles of the PCR which is the same as the annealing or primer extension temperature used in the first few cycles of the PCR. The inventors found that a change of reaction conditions in order to switch from chimeric primer extension to universal primer extension is not required.


The DNA polymerase used in the multiplex PCR is preferably a heat-resistant DNA polymerase, such as Taq DNA polymerase. Other heat-resistant DNA polymerases are useful as well, and even heat-sensitive DNA polymerases, although this may require repeated addition of a fresh amount of DNA polymerase. Suitable DNA polymerases are commercially available, for example as a component of multiplex PCR kits, like the Qiagen multiplex kit. Such kits also contain other necessary components, such as the required dNTP's and a suitable buffer system.


Apparatus for carrying out PCR thermocycling is commercially available as well, for example the MWG AG Biotech PrimusHT thermal cycler.


The amplification of the invention usually starts with a heat treatment to activate the DNA polymerase, for example 15 min at 95° C. Subsequently, the thermal cycling begins. Each cycle includes a heat denaturation step, an annealing step (to bind primer by hybridization to its template) and a primer extension or elongation step. In the invention, it is preferred that the heat denaturation step involves heating at a temperature of 90 to 98° C., more preferably at about 94 or 95° C., and takes a time of from 15 to 60 seconds (shorter and especially longer times are allowable), more preferably about 30 seconds. In the invention, it is further preferred that the annealing step involves heating at a temperature of 54 to 60° C., more preferably at about 57° C., and takes a time of from 60 to 120 seconds (shorter and especially longer times are allowable), more preferably about 90 seconds. In the invention, it is further preferred that the primer extension step involves heating at a temperature of 68 to 76° C., more preferably at about 72° C., and takes a time of from 60 to 120 seconds (shorter and especially longer times are allowable), more preferably about 90 seconds. A final treatment at the temperature of the primer extension step for a much longer time, for example 10 minutes, may conclude the thermal cycling.


The total number of cycles may be chosen at will, depending on the available time and the precision sought. A total of 30 cycles may be enough, but 40 or 45 or 50 cycles or more is preferable.


Genotyping


The result of the multiplex PCR is a mixture of labelled amplification products, in which ideally each product essentially comprises a region of the locus of different blood cell antigens which contains the site of nucleotide polymorphism of said blood cell antigen. In most cases of blood cell antigen polymorphisms that are presently known, the nucleotide polymorphism is a single nucleotide polymorphism (SNP), but polymorphism sites covering more than one nucleotide are encompassed as well.


To analyse the SNP's present in the mixture of labelled amplification products, various strategies are available, including sequencing of the products, but many of these are not suitable for rapid and reliable high-throughput genotyping. The present invention therefore preferably applies the special step of contacting the products of the multiplex PCR with a DNA array which contains blood cell antigen allele-specific oligonucleotide probes. Said contacting is done after denaturation, for example by heating, of the oligonucleotidic products of thie amplification and under conditions suitable for hybridization of these products to corresponding probes in the array. Purification of the products, of the amplification before contacting them with the probes is not necessary and will usually be omitted.


Probes


The probes are oligonucleotides including the site of the nucleotide polymorphism. Thereby, they are allele-specific. Although their length may vary from only 8 or 10 nucleotides up to several hundreds of nucleotides, it is preferred in this invention to use probes with a length of from 15 to 40 nucleotides, more preferably 16 or 17 to 29 or 30 nucleotides. Preferably, all probes have similar Tm values, in particular in a range of 55 to 75° C., more preferably in the range of 60 to 70° C. or especially in the range of 60 to 65° C.


Although in principle it is possible to use only one probe for each allele of each blood cell antigen, the invention applies several probes for each allele of each blood cell antigen, thereby increasing the reliability of the method. According to this invention, the array contains for each allele of each blood cell antigen at least two, preferably at least five, different sense probes and at least two, preferably at least five, antisense probes, each of them covering the site of the nucleotide polymorphism but at varying positions. Preferably, these positions are in or near the centre of the oligos.


Various software products, as mentioned above for the blood cell antigen-specific parts of the primers, are available that can be used to design suitable blood cell antigen allele-specific probes (in particular the sofware product Primer3).


A list of preferred probes includes the following (SNPs are highlighted):

HPA1-allele a:HPA-1aatacaggccctgcctctgggSEQ ID NO:41HPA-1abaggccctgcctctgggctSEQ ID NO:42HPA-1acccctgcctctgggctcaccSEQ ID NO:43HPA-1adtgcctctgggctcacctcgSEQ ID NO:44HPA-1aectctgggctcacctcgctgSEQ ID NO:45HPA-1aa CRcagcgaggtgagcccagagSEQ ID NO:46HPA-1ab CRcgaggtgagcccagaggcaSEQ ID NO:47HPA-1ac CRggtgagcccagaggcagggSEQ ID NO:48HPA-1ad CRagcccagaggcagggcctSEQ ID NO:49HPA-1ae CRcccagaggcagggcctgtaSEQ ID NO:50HPA1-allele b:HPA-1batacaggccctgcctccgggSEQ ID NO:51HPA-1bbaggccctgcctccgggctSEQ ID NO:52HPA-1bcccctgcctccgggctcacSEQ ID NO:53HPA-1bdctgcctccgggctcacctSEQ ID NO:54HPA-1bectccgggctcacctcgctSEQ ID NO:55HPA-1ba CRagcgaggtgagcccggagSEQ ID NO:56HPA-1bb CRaggtgagcccggaggcagSEQ ID NO:57HPA-1bc CRgtgagcccggaggcagggSEQ ID NO:58HPA-1bd CRagcccggaggcagggcctSEQ ID NO:59HPA-1be CRcccggaggcagggcctgtaSEQ ID NO:60HPA2-allele a:HPA-2aactgacgcccacacccaagSEQ ID NO:61HPA-2abctcctgacgcccacacccSEQ ID NO:62HPA-2acggctcctgacgcccacacSEQ ID NO:63HPA-2adagggctcctgacgcccacSEQ ID NO:64HPA-2aeccagggctcctgacgcccSEQ ID NO:65HPA-2aa CRcttgggtgtgggcgtcagSEQ ID NO:66HPA-2ab CRgggtgtgggcgtcaggagSEQ ID NO:67HPA-2ac CRgtgtgggcgtcaggagccSEQ ID NO:68HPA-2ad CRgtgggcgtcaggagccctSEQ ID NO:69HPA-2ae CRgggcgtcaggagccctggSEQ ID NO:70HPA2-allele b:HPA-2bacctgatgcccacacccaagSEQ ID NO:71HPA-2bbctcctgatgcccacacccaSEQ ID NO:72HPA-2bcggctcctgatgcccacaccSEQ ID NO:73HPA-2bdagggctcctgatgcccacaSEQ ID NO:74HPA-2beccagggctcctgatgcccSEQ ID NO:75HPA-2ba CRcttgggtgtgggcatcaggSEQ ID NO:76HPA-2bb CRtgggtgtgggcatcaggagSEQ ID NO:77HPA-2bc CRggtgtgggcatcaggagccSEQ ID NO:78HPA-2bd CRtgtgggcatcaggagccctSEQ ID NO:79HPA-2be CRgggcatcaggagccctggSEQ ID NO:80HPA3-allele a:HPA-3aaccatccccagcccctcccSEQ ID NO:81HPA-3abgcccatccccagcccctcSEQ ID NO:82HPA-3acctgcccatccccagccccSEQ ID NO:83HPA-3ad1gctgcccatccccagcccSEQ ID NO:84HPA-3adggctgcccatccccagccSEQ ID NO:85HPA-3ad2gggctgcccatccccagcSEQ ID NO:86HPA-3aeggggctgcccatccccaSEQ ID NO:87HPA-3aa CRgggaggggctggggatggSEQ ID NO:88HPA-3ab CRgaggggctggggatgggcSEQ ID NO:89HPA-3ac CRggggctggggatgggcagSEQ ID NO:90HPA-3ad1 CRgggctggggatgggcagcSEQ ID NO:91HPA-3ad CRggctggggatgggcagccSEQ ID NO:92HPA-3ad2 CRgctggggatgggcagcccSEQ ID NO:93HPA-3ae CRtgggatgggcagccccSEQ ID NO:94HPA3-allele b:HPA-3baccagccccagcccctccSEQ ID NO:95HPA-3bbgcccagccccagcccctSEQ ID NO:96HPA-3bcctgcccagccccagcccSEQ ID NO:97HPA-3bd1gctgcccagccccagccSEQ ID NO:98HPA-3bdggctgcccagcccagcSEQ ID NO:99HPA-3bd2gggctgcccagccccagSEQ ID NO:100HPA-3beggggctgcccagccccaSEQ ID NO:101HPA-3ba CRggaggggctggggctggSEQ ID NO:102HPA-3bb CRaggggctggggctgggcSEQ ID NO:103HPA-3bc CRgggctggggctgggcagSEQ ID NO:104HPA-3bd1 CRggctggggctgggcagcSEQ ID NO:105HPA-3bd CRgctggggctgggcagccSEQ ID NO:106HPA-3bd2 CRctggggctgggcagcccSEQ ID NO:107HPA-3be CRtggggctgggcagccccSEQ ID NO:108HPA4-allele a:HPA-4aagccacccagatgcgaaagSEQ ID NO:109HPA-4abcacccagatgcgaaagctSEQ ID NO:110HPA-4accccagatgcgaaagctcaSEQ ID NO:111HPA-4adcagatgcgaaagctcaccSEQ ID NO:112HPA-4aegatgcgaaagctcaccagSEQ ID NO:113HPA-4aa CRctggtgagctttcgcatcSEQ ID NO:114HPA-4ab CRggtgagctttcgcatctgSEQ ID NO:115HPA-4ac CRtgagctttcgcatctgggSEQ ID NO:116HPA-4ad CRagctttcgcatctgggtgSEQ ID NO:117HPA-4ae CRctttcgcatctgggtggcSEQ ID NO:118HPA4-allele b:HPA-4bagccacccagatgcaaaagSEQ ID NO:119HPA-4bbccacccagatgcaaaagctSEQ ID NO:120HPA-4bcacccagatgcaaaagctcacSEQ ID NO:121HPA-4bdcagatgcaaaagctcaccaSEQ ID NO:122HPA-4begatgcaaaagctcaccagtaaSEQ ID NO:123HPA-4ba CRttactggtgagcttttgcatcSEQ ID NO:124HPA-4bb CRtggtgagcttttgcatctgSEQ ID NO:125HPA-4bc CRgtgagcttttgcatctgggtSEQ ID NO:126HPA-4bd CRagcttttgcatctgggtggSEQ ID NO:127HPA-4be CRcttttgcatctgggtggcSEQ ID NO:128HPA5-allele a:HPA-5aagagtctacctgtttactatcaaagaggSEQ ID NO:129HPA-5abagtctacctgttactatcaaagaggtaSEQ ID NO:130HPA-5acgtctacctgtttactatcaaagaggtaaSEQ ID NO:131HPA-5adctacctgtttactatcaaagaggtaaaaSEQ ID NO:132HPA-5aeacctgtttactatcaaagaggtaaaaaSEQ ID NO:133HPA-5aa CRtttttacctctttgatagtaaacaggtSEQ ID NO:134HPA-5ab CRttttacctctttgatagtaaacaggtagSEQ ID NO:135HPA-5ac CRttacctctttgatagtaaacaggtagacSEQ ID NO:136HPA-5ad CRtacctctttgatagtaaacaggtagactSEQ ID NO:137HPA-5ae CRcctctttgatagtaaacaggtagactcSEQ ID NO:138HPA5-allele b:HPA-5bagagtctacctgtttactatcaaaaaggSEQ ID NO:139HPA-5bbagtctacctgtttactatcaaaaaggtaSEQ ID NO:140HPA-5bcgtctacctgtttactatcaaaaaggtaaSEQ ID NO:141HPA-5adctacctgtttactatcaaaaaggtaaaaSEQ ID NO:142HPA-5beacctgtttactatcaaaaaggtaaaaaSEQ ID NO:143HPA-5ba CRtttttacctttttgatagtaaacaggtSEQ ID NO:144HPA-5bb CRttttacctttttgatagtaaacaggtagSEQ ID NO:145HPA-5bc CRttacctttttgatagtaaacaggtagacSEQ ID NO:146HPA-5bd CRtacctttttgatagtaaacaggtagactSEQ ID NO:147HPA-5be CRcctttttgatagtaaacaggtagactcSEQ ID NO:148HPA15-allele a:Gov-aattattatcttgacttcagttacaggatttSEQ ID NO:149Gov-abtcttgacttcagttacaggatttaccSEQ ID NO:150Gov-actgacttcagttacaggatttaccaaSEQ ID NO:151Gov-adcttcagttacaggatttaccaagaatSEQ ID NO:152Gov-aecagttacaggatttaccaagaatttgSEQ ID NO:153Gov-aa CRcaaattcttggtaaatcctgtaactgSEQ ID NO:154Gov-ab CRattcttggtaaatcctgtaactgaagSEQ ID NO:155Gov-ac CRtggtaaatcctgtaactgaagtcaaSEQ ID NO:156Gov-ad CRggtaaatcctgtaactgaagtcaagaSEQ ID NO:157Gov-ae CRaaatcctgtaactgaagtcaagataataaSEQ ID NO:158HPA15-allele b:Gov-batatcttgacttcagttccaggattSEQ ID NO:159Gov-bbcttgacttcagttccaggatttacSEQ ID NO:160Gov-bcgacttcagttccaggatttaccaSEQ ID NO:161Gov-bdttcagttccaggatttaccaagSEQ ID NO:162Gov-becagttccaggatttaccaagaattSEQ ID NO:163Gov-ba CRaattcttggtaaatcctggaactgSEQ ID NO:164Gov-bb CRcttggtaaatcctggaactgaaSEQ ID NO:165Gov-bc CRggtaaatcctggaactgaagtcaSEQ ID NO:166Gov-bd CRgtaaatcctggaactgaagtcaagSEQ ID NO:167Gov-be CRaatcctggaactgaagtcaagataSEQ ID NO:168Colton-a-allele:Co.a.1aacaaccagacggcggtSEQ ID NO:191Co.a.2accagacggcggtccagSEQ ID NO:192Co.a.3cagacggcggtccaggaSEQ ID NO:193Co.a.4gacggcggtccaggacaaSEQ ID NO:194Co.a.5cggcggtccaggacaacSEQ ID NO:195Co.a.1.crgttgtcctggaccgccgtSEQ ID NO:196Co.a.2.crtcctggaccgccgtctgSEQ ID NO:197Co.a.3.crctggaccgccgtctggtSEQ ID NO:198Co.a.4.crggaccgccgtctggttgSEQ ID NO:199Co.a.5.craccgccgtctggttgttSEQ ID NO:200Colton-b-allele:Co.b.1ggaacaaccagacggtggtSEQ ID NO:201Co.b.2acaaccagacggtggtccagSEQ ID NO:202Co.b.3accagacggtggtccaggaSEQ ID NO:203Co.b.4gacggtggtccaggacaacgSEQ ID NO:204Co.b.5cggtggtccaggacaacgSEQ ID NO:205Co.b.1.crcgttgtcctggaccaccgtSEQ ID NO:206Co.b.2.crttgtcctggaccaccgtctgSEQ ID NO:207Co.b.3.crctggaccaccgtctggttgtSEQ ID NO:208Co.b.4.crggaccaccgtctggttgttcSEQ ID NO:209Co.b.5.craccaccgtctggttgttccSEQ ID NO:210Diego-a-allele:Di.a.1gtgaagtccacgccggcSEQ ID NO:211Di.a.2gaagtccacgccggcctSEQ ID NO:212Di.a.3agtccacgccggcctccSEQ ID NO:213Di.a.4tccacgccggcctccctSEQ ID NO:214Di.a.5acgccggcctccctggccSEQ ID NO:215Di.a.1.crgccagggaggccggcgtSEQ ID NO:216Di.a.2.cragggaggccggcgtggaSEQ ID NO:217Di.a.3.crggaggccggcgtggactSEQ ID NO:218Di.a.4.craggccggcgtggacttcSEQ ID NO:219Di.a.5.crggccggcgtggacttcaSEQ ID NO:220Diego-b-allele:Di.b.1ggtgaagtccacgctggcSEQ ID NO:221Di.b.2gtgaagtccacgctggcctSEQ ID NO:222Di.b.3tgaagtccacgctggcctccSEQ ID NO:223Di.b.4gaagtccacgctggcctccctSEQ ID NO:224Di.b.5acgctggcctccctggcccSEQ ID NO:225Di.b.1.crggccagggaggccagcgtSEQ ID NO:226Di.b.2.crcagggaggccagcgtggaSEQ ID NO:227Di.b.3.cragggaggccagcgtggactSEQ ID NO:228Di.b.4.crggaggccagcgtggacttcSEQ ID NO:229Di.b.5.crggccagcgtggacttcaccSEQ ID NO:230Diego Wr-a-allele:Wr.a.1tgggcttgcgttccaagtSEQ ID NO:231Wr.a.2ggcttgcgttccaagtttcSEQ ID NO:232Wr.a.3ttgcgttccaagtttcccaSEQ ID NO:233Wr.a.4cgttccaagtttcccatctSEQ ID NO:234Wr.a.5tccaagtttcccatctggaSEQ ID NO:235Wr.a.1 CRtccagatgggaaacttggaSEQ ID NO:236Wr.a.2 CRagatgggaaacttggaacgSEQ ID NO:237Wr.a.3 CRtgggaaacttggaacgcaaSEQ ID NO:238Wr.a.4 CRgaaacttggaacgcaagccSEQ ID NO:239Wr.a.5 CRacttggaacgcaagcccaSEQ ID NO:240Diego Wr-b-allele:2Wr.b.1gggcttgcgttccgagttSEQ ID NO:241Wr.b.2gcttgcgttccgagtttcSEQ ID NO:242Wr.b.3ttgcgttccgagtttcccSEQ ID NO:243Wr.b.4cgttccgagtttcccatcSEQ ID NO:244Wr.b.5tccgagtttcccatctggSEQ ID NO:245Wr.b.1 CRccagatgggaaactcggaSEQ ID NO:246Wr.b.2 CRgatgggaaactcggaacgSEQ ID NO:247Wr.b.3 CRgggaaactcggaacgcaaSEQ ID NO:248Wr.b.4 CRgaaactcggaacgcaagcSEQ ID NO:249Wr.b.5 CRaactcggaacgcaagcccSEQ ID NO:250Dombrock-a-allele:Do.a.1taccacccaagaggaaactSEQ ID NO:251Do.a.2ccacccaagaggaaactggSEQ ID NO:252Do.a.3acccaagaggaaactggttgSEQ ID NO:253Do.a.4caagaggaaactggttgcaSEQ ID NO:254Do.a.5aggaaactggttgcagttgaSEQ ID NO:255Do a 6 crctcaactgcaaccagtttccSEQ ID NO:256Do a 7 crcaactgcaaccagtttcctcSEQ ID NO:257Do a 8 crtgcaaccagtttcctcttggSEQ ID NO:258Do a 9 craccagtttcctcttgggtggSEQ ID NO:259Do a 10 crcagtttcctcttgggtggtaSEQ ID NO:260Dombrock-b-allele:Do.b.1taccacccaagaggagactSEQ ID NO:261Do.b.2ccacccaagaggagactggSEQ ID NO:262Do.b.3acccaagaggagactggttgSEQ ID NO:263Do.b.4caagaggagactggttgcaSEQ ID NO:264Do.b.5aggagactggttgcagttgaSEQ ID NO:265Do b 6 crctcaactgcaaccagtctccSEQ ID NO:266Do b 7 crcaactgcaaccagtctcctcSEQ ID NO:267Do b 8 crtgcaaccagtctcctcttggSEQ ID NO:268Do b 9 craccagtctcctcttgggtggSEQ ID NO:269Do b 10 crcagtctcctcttgggtggtSEQ ID NO:270Dombrock-Joseph(a) positive allele:Jo.a.pos.1ccccagaacatgactaccacSEQ ID NO:271Jo.a.pos.2ccagaacatgactaccacacaSEQ ID NO:272Jo.a.pos.3agaacatgactaccacacacgcSEQ ID NO:273Jo.a.pos.4catgactaccacacacgctgtSEQ ID NO:274Jo.a.pos.5actaccacacacgctgtggSEQ ID NO:275Jo.a.pos.1.crgccacagcgtgtgtggtagtSEQ ID NO:276Jo.a.pos.2.cracagcgtgtgtggtagtcatgSEQ ID NO:277Jo.a.pos.3.cragcgtgtgtggtagtcatgttSEQ ID NO:278Jo.a.pos.4.crcgtgtgtggtagtcatgttctgSEQ ID NO:279Jo.a.pos.5.crgtggtagtcatgttctggggSEQ ID NO:280Dombrock-Joseph(a) negative allele:Jo.a.neg.1ctaccccagaacatgactatcacSEQ ID NO:281Jo.a.neg.2cccagaacatgactatcacacaSEQ ID NO:282Jo.a.neg.3cagaacatgactatcacacacgcSEQ ID NO:283Jo.a.neg.4catgactatcacacacgctgtgSEQ ID NO:284Jo.a.neg.5actatcacacacgctgtggcSEQ ID NO:285Jo.a.neg.1.craatagccacagcgtgtgtgatagtSEQ ID NO:286Jo.a.neg.2.crcacagcgtgtgtgatagtcatgSEQ ID NO:287Jo.a.neg.3.crcagcgtgtgtgatagtcatgttSEQ ID NO:288Jo.a.neg.4.crcgtgtgtgatagtcatgttctggSEQ ID NO:289Jo.a.neg.5.crgtgatagtcatgttctggggtagSEQ ID NO:290Duffy-a-allele:Fy.A.1ccagatggagactatggtgccSEQ ID NO:291Fy.A.2atggagactatggtgccaacSEQ ID NO:292Fy.A.3ggagactatggtgccaacctgSEQ ID NO:293Fy.A.4gactatggtgccaacctggaSEQ ID NO:294Fy.A.5tatggtgccaacctggaagSEQ ID NO:295Fy.A.1.crcttccaggttggcaccataSEQ ID NO:296Fy.A.2.crtccaggttggcaccatagtcSEQ ID NO:297Fy.A.3.craggttggcaccatagtctccSEQ ID NO:298Fy.A.4.crgttggcaccatagtctccatSEQ ID NO:299Fy.A.5.crgcaccatagtctccatctggSEQ ID NO:300Duffy-b-allele:Fy.B.1cccagatggagactatgatgccSEQ ID NO:301Fy.B.2gatggagactatgatgccaacSEQ ID NO:302Fy.B.3tggagactatgatgccaacctgSEQ ID NO:303Fy.B.4gactatgatgccaacctggaaSEQ ID NO:304Fy.B.5tatgatgccaacctggaagcSEQ ID NO:305Fy.B.1.crgcttccaggttggcatcataSEQ ID NO:306Fy.B.2.crttccaggttggcatcatagtcSEQ ID NO:307Fy.B.3.crcaggttggcatcatagtctccSEQ ID NO:308Fy.B.4.crgttggcatcatagtctccatcSEQ ID NO:309Fy.B.5.crgcatcatagtctccatctgggSEQ ID NO:310Duffy GATAbox-normal-allele:Fy.GATA.normal.1agtccttggctcttatcttgSEQ ID NO:311Fy.GATA.normal.2agtccttggctcttatcttggaSEQ ID NO:312Fy.GATA.normal.3cttggctcttatcttggaagcSEQ ID NO:313Fy.GATA.normal.4gctcttatcttggaagcacaggSEQ ID NO:314Fy.GATA.normal.5cttatcttggaagcacaggcgcSEQ ID NO:315Fy.GATA.normal.1.crgcctgtgcttccaagataagSEQ ID NO:316Fy.GATA.normal.2.crtgtgcttccaagataagagcSEQ ID NO:317Fy.GATA.normal.3.crtgcttccaagataagagccaSEQ ID NO:318Fy.GATA.normal.4.crttccaagataagagccaaggaSEQ ID NO:319Fy.GATA.normal.5.crcaagataagagccaaggactSEQ ID NO:320Duffy GATAbox-mutation-allele:Fy.GATA.mut.1tccttggctcttaccttgSEQ ID NO:321Fy.GATA.mut.2tccttggctcttaccttggaSEQ ID NO:322Fy.GATA.mut.3tggctcttaccttggaagcSEQ ID NO:323Fy.GATA.mut.4gctcttaccttggaagcacagSEQ ID NO:324Fy.GATA.mut.5cttaccttggaagcacaggcgSEQ ID NO:325Fy.GATA.mut.1.crcctgtgcttccaaggtaagSEQ ID NO:326Fy.GATA.mut.2.crgtgcttccaaggtaagagcSEQ ID NO:327Fy.GATA.mut.3.crgcttccaaggtaagagccaSEQ ID NO:328Fy.GATA.mut.4.crttccaaggtaagagccaaggSEQ ID NO:329Fy.GATA.mut.5.crcaaggtaagagccaaggaSEQ ID NO:330Duffy Fyx-normal-allele:Fy.X.(b).1ttttcagacctctcttccgctSEQ ID NO:331Fy.X.(b).2agacctctcttccgctggcSEQ ID NO:332Fy.X.(b).3ctctcttccgctggcagcSEQ ID NO:333Fy.X.(b).4ctcttccgctggcagctcSEQ ID NO:334Fy.X.(b).5cttccgctggcagctctgSEQ ID NO:335Fy.X.(b).1.crcagagctgccagcggaaSEQ ID NO:336Fy.X.(b).2.cragctgccagcggaagagSEQ ID NO:337Fy.X.(b).3.crctgccagcggaagagaggSEQ ID NO:338Fy.X.(b).4.crgccagcggaagagaggtcSEQ ID NO:339Fy.X.(b).5.crcagcggaagagaggtctgSEQ ID NO:340Duffy Fyx-mutation-allele:Fy.X.1gcttttcagacctctcttctgctSEQ ID NO:341Fy.X.2tcagacctctcttctgctggcSEQ ID NO:342Fy.X.3acctctcttctgctggcagcSEQ ID NO:343Fy.X.4ctcttctgctggcagctctgSEQ ID NO:344Fy.X.5cttctgctggcagctctgcSEQ ID NO:345Fy.X.1.crgcagagctgccagcagaaSEQ ID NO:346Fy.X.2.crgagctgccagcagaagagagSEQ ID NO:347Fy.X.3.cragctgccagcagaagagaggSEQ ID NO:348Fy.X.4.crgccagcagaagagaggtctgSEQ ID NO:349Fy.X.5.crcagcagaagagaggtctgaaaSEQ ID NO:350Kidd-allele-a:Jk.a.1cagccccatttgaggacaSEQ ID NO:351Jk.a.2gccccatttgaggacatctaSEQ ID NO:352Jk.a.3ccatttgaggacatctactttgSEQ ID NO:353Jk.a.4atttgaggacatctactttggaSEQ ID NO:354Jk.a.5gaggacatctactttggactctSEQ ID NO:355Jk.a.1.crcagagtccaaagtagatgtcctcSEQ ID NO:356Jk.a.2.cragtccaaagtagatgtcctcaaaSEQ ID NO:357Jk.a.3.craaagtagatgtcctcaaatgggSEQ ID NO:358Jk.a.4.crtagatgtcctcaaatggggcSEQ ID NO:359Jk.a.5.cratgtcctcaaatggggctgSEQ ID NO:360Kidd-allele-b:Jk.b.1tcagccccatttgagaacaSEQ ID NO:361Jk.b.2gccccatttgagaacatctaSEQ ID NO:362Jk.b.3cccatttgagaacatctactttgSEQ ID NO:363Jk.b.4atttgagaacatctactttggacSEQ ID NO:364Jk.b.5gagaacatctactttggactctgSEQ ID NO:365Jk.b.1.crccagagtccaaagtagatgttctcSEQ ID NO:366Jk.b.2.cragagtccaaagtagatgttctcaaaSEQ ID NO:367Jk.b.3.crccaaagtagatgttctcaaatggSEQ ID NO:368Jk.b.4.cragtagatgttctcaaatggggcSEQ ID NO:369Jk.b.5.cratgttctcaaatggggctgaSEQ ID NO:370Kell-K1-allele:KEL.1.1tccttaaactttaaccgaatgctSEQ ID NO:371KEL.1.2ttaaactttaaccgaatgctgagaSEQ ID NO:372KEL.1.3aactttaaccgaatgctgagacttSEQ ID NO:373KEL.1.4aaccgaatgctgagacttctgSEQ ID NO:374KEL.1.5cgaatgctgagacttctgatgagSEQ ID NO:375KEL 1.6 CRactcatcagaagtctcagcattcSEQ ID NO:376KEL 1.7 CRtcagaagtctcagcattcggtSEQ ID NO:377KEL 1.8 CRaagtctcagcattcggttaaagSEQ ID NO:378KEL 1.9 CRtctcagcattcggttaaagtttaaSEQ ID NO:379KEL 1.10 CRagcattcggttaaagtttaaggaSEQ ID NO:380Kell-K2-allele:KEL.2.1ccttaaactttaaccgaacgctSEQ ID NO:381KEL.2.2aactttaaccgaacgctgagaSEQ ID NO:382KEL.2.3ctttaaccgaacgctgagacttSEQ ID NO:383KEL.2.4aaccgaacgctgagacttctSEQ ID NO:384KEL.2.5cgaacgctgagacttctgatgSEQ ID NO:385KEL 2.6 CRtcatcagaagtctcagcgttcSEQ ID NO:386KEL 2.7 CRcagaagtctcagcgttcggtSEQ ID NO:387KEL 2.8 CRagtctcagcgttcggttaaagSEQ ID NO:388KEL 2.9 CRtctcagcgttcggttaaagttSEQ ID NO:389KEL 2.10 CRagcgttcggttaaagtttaaggSEQ ID NO:390Kell-K3-allele:KEL.3.1aatctccatcacttcatggctSEQ ID NO:391KEL.3.2tccatcacttcatggctgttSEQ ID NO:392KEL.3.3atcacttcatggctgttccaSEQ ID NO:393KEL.3.4acttcatggctgttccagttSEQ ID NO:394KEL.3.5tcatggctgttccagtttcSEQ ID NO:395KEL.3.1.cragaaactggaacagccatgaaSEQ ID NO:396KEL.3.2.craactggaacagccatgaagtgSEQ ID NO:397KEL.3.3.crtggaacagccatgaagtgatgSEQ ID NO:398KEL.3.4.cracagccatgaagtgatggagSEQ ID NO:399KEL.3.5.crgccatgaagtgatggagattSEQ ID NO:400Kell-K4-allele:KEL.4.1tctccatcacttcacggctSEQ ID NO:401KEL.4.2ccatcacttcacggctgttSEQ ID NO:402KEL.4.3cacttcacggctgttccaSEQ ID NO:403KEL.4.4acttcacggctgttccagSEQ ID NO:404KEL.4.5tcacggctgttccagtttSEQ ID NO:405KEL.4.1.craaactggaacagccgtgaaSEQ ID NO:406KEL.4.2.crctggaacagccgtgaagtgSEQ ID NO:407KEL.4.3.crggaacagccgtgaagtgatgSEQ ID NO:408KEL.4.4.cracagccgtgaagtgatggSEQ ID NO:409KEL.4.5.crgccgtgaagtgatggagaSEQ ID NO:410Kell-K6-allele:KEL.6.1tactgcctgggggctgccccgccSEQ ID NO:411KEL.6.2tgggggctgccccgcctgtSEQ ID NO:412KEL.6.3gctgccccgcctgtgacSEQ ID NO:413KEL.6.4ctgccccgcctgtgacaaSEQ ID NO:414KEL.6.5gccccgcctgtgacaacSEQ ID NO:415KEL.6.1.crgttgtcacaggcggggcSEQ ID NO:416KEL.6.2.crttgtcacaggcggggcagSEQ ID NO:417KEL.6.3.crtcacaggcggggcagcccSEQ ID NO:418KEL.6.4.cracaggcggggcagcccccaSEQ ID NO:419KEL.6.5.craggcggggcagcccccaSEQ ID NO:420Kell-K7-allele:KEL.7.1actgcctgggggctgcctcgccSEQ ID NO:421KEL.7.2cctgggggctgcctcgcctgtSEQ ID NO:422KEL.7.3ggctgcctcgcctgtgacSEQ ID NO:423KEL.7.4ctgcctcgcctgtgacaaccSEQ ID NO:424KEL.7.5gcctcgcctgtgacaaccSEQ ID NO:425KEL.7.1.crggttgtcacaggcgaggcSEQ ID NO:426KEL.7.2.crggttgtcacaggcgaggcagSEQ ID NO:427KEL.7.3.crttgtcacaggcgaggcagcccSEQ ID NO:428KEL.7.4.cracaggcgaggcagcccccaggSEQ ID NO:429KEL.7.5.craggcgaggcagcccccaggSEQ ID NO:430Lutheran a-allele:Lu.a.1ggagctcgcccccgcctSEQ ID NO:431Lu.a.2gctcgcccccgcctagcSEQ ID NO:432Lu.a.3cgcccccgcctagcctcSEQ ID NO:433Lu.a.4cccccgcctagcctcggSEQ ID NO:434Lu.a.5cccgcctagcctcggctSEQ ID NO:435Lu.a.1 CRagccgaggctaggcgggSEQ ID NO:436Lu.a.2 CRccgaggctaggcgggggSEQ ID NO:437Lu.a.3 CRgaggctaggcgggggcgSEQ ID NO:438Lu.a.4 CRgctaggcgggggcgagcSEQ ID NO:439Lu.a.5 CRaggcgggggcgagctccSEQ ID NO:440Lutheran b-allele:Lu.b.1gggagctcgcccccacctSEQ ID NO:441Lu.b.2gagctcgcccccacctagcSEQ ID NO:442Lu.b.3ctcgcccccacctagcctcSEQ ID NO:443Lu.b.4cccccacctagcctcggctSEQ ID NO:444Lu.b.5cccacctagcctcggctgaSEQ ID NO:445Lu.b.1 CRtcagccgaggctaggtgggSEQ ID NO:446Lu.b.2 CRagccgaggctaggtgggggSEQ ID NO:447Lu.b.3 CRgaggctaggtgggggcgagSEQ ID NO:448Lu.b.4 CRgctaggtgggggcgagctcSEQ ID NO:449Lu.b.5 CRaggtgggggcgagctcccSEQ ID NO:450MNS M-allele:M.1gtgagcatatcagcatcaagSEQ ID NO:451M.2atcagcatcaagtaccactggSEQ ID NO:452M.3catcaagtaccactggtgtgSEQ ID NO:453M.4taccactggtgtggcaatgcSEQ ID NO:454M.5ctggtgtggcaatgcacaSEQ ID NO:455M.1.crtgtgcattgccacaccagtSEQ ID NO:456M.2.crgcattgccacaccagtggtaSEQ ID NO:457M.3.crccacaccagtggtacttgatgSEQ ID NO:458M.4.craccagtggtacttgatgctSEQ ID NO:459M.5.crcttgatgctgatatgctcacSEQ ID NO:460MNS N-allele:N.1tgtgagcatatcagcattaagSEQ ID NO:461N.2atcagcattaagtaccactgaggSEQ ID NO:462N.3cattaagtaccactgaggtggSEQ ID NO:463N.4accactgaggtggcaatgcSEQ ID NO:464N.5ctgaggtggcaatgcacactSEQ ID NO:465N.1.crgtgtgcattgccacctcagtSEQ ID NO:466N.2.crgcattgccacctcagtggtaSEQ ID NO:467N.3.crccacctcagtggtacttaatgcSEQ ID NO:468N.4.crcctcagtggtacttaatgctSEQ ID NO:469N.5.crcttaatgctgatatgctcacaSEQ ID NO:470MNS S-allele:big.S.1tttgctttataggagaaatgggaSEQ ID NO:471big.S.2ctttataggagaaatgggacaSEQ ID NO:472big.S.3ttataggagaaatgggacaacttgSEQ ID NO:473big.S.4gagaaatgggacaacttgtccSEQ ID NO:474big.S.5aaatgggacaacttgtccatcSEQ ID NO:475big.S.1.crgatggacaagttgtcccatttSEQ ID NO:476big.S.2.crgacaagttgtcccatttctccSEQ ID NO:477big.S.3.craagttgtcccatttctcctataSEQ ID NO:478bigS.4.crtgtcccatttctcctataaagcaSEQ ID NO:479big.S.5.crcccatttctcctataaagcaaaaSEQ ID NO:480MNS s-allele:little.s.1tgctttataggagaaacgggaSEQ ID NO:481little.s.2tttataggagaaacgggacaSEQ ID NO:482little.s.3ggagaaacgggacaacttgSEQ ID NO:483little.s.4gagaaacgggacaacttgtcSEQ ID NO:484little.s.5aaacgggacaacttgtccatSEQ ID NO:485little.s.1.crtggacaagttgtcccgtttSEQ ID NO:486little.s.2.cracaagttgtcccgtttctccSEQ ID NO:487little.s.3.cragttgtcccgtttctcctataSEQ ID NO:488little.s.4.crtgtcccgtttctcctataaagcSEQ ID NO:489little.s.5.crcccgtttctcctataaagcaSEQ ID NO:490MNS U-positive-allele:U.pos.1ttgctgctctctttagctccSEQ ID NO:491U.pos.2ctctctttagctcctgtagtgatSEQ ID NO:492U.pos.3agctcctgtagtgataatactcaSEQ ID NO:493U.pos.4gtagtgataatactcattatttttgSEQ ID NO:494U.pos.5taatactcattatttttggggtgSEQ ID NO:495U.pos.1.crcaccccaaaaataatgagtattaSEQ ID NO:496U.pos.2.crcaaaaataatgagtattatcactacaSEQ ID NO:497U.pos.3.cragtattatcactacaggagctaaaSEQ ID NO:498U.pos.4.cratcactacaggagctaaagagSEQ ID NO:499U.pos.5.crgagctaaagagagcagcaaaSEQ ID NO:500MNS U-negative-allele:U.neg.1ttttgctgctctctttatctccSEQ ID NO:501U.neg.2gctctctttatctcctgtagagatSEQ ID NO:502U.neg.3tatctcctgtagagataacactcaSEQ ID NO:503U.neg.4gtagagataacactcattatttttSEQ ID NO:504U.neg.5taacactcattatttttggggtSEQ ID NO:505U.neg.1.craccccaaaaataatgagtgttaSEQ ID NO:506U.neg.2.craaaaataatgagtgttatctctacaSEQ ID NO:507U.neg.3.cragtgttatctctacaggagataaaSEQ ID NO:508U.neg.4.cratctctacaggagataaagagagSEQ ID NO:509U.neg.5.crgagataaagagagcagcaaaattaSEQ ID NO:510Rhesus C-allele(307T):Rh.big.C.1tgagccagttcccttctggSEQ ID NO:511Rh.big.C.2gagccagttcccttctggSEQ ID NO:512Rh.big.C.3ctgagccagttcccttctgSEQ ID NO:513Rh.big.C.4ccttctgggaaggtggtcSEQ ID NO:514Rh.big.C.5ccttctgggaaggtggtcaSEQ ID NO:515Rh.big.C.1.crtgaccaccttcccagaaggSEQ ID NO:516Rh.big.C.2.crgaccaccttcccagaaggSEQ ID NO:517Rh.big.C.3.crccagaagggaactggctcSEQ ID NO:518Rh.big.C.4.crccagaagggaactggctcaSEQ ID NO:519Rh.big.C.5.crcagaagggaactggctcagSEQ ID NO:520Rhesus c-allele(307C):Rh.little.c.1gagccagttccctcctggSEQ ID NO:521Rh.little.c.2agccagttccctcctggSEQ ID NO:522Rh.little.c.3tgagccagttccctcctgSEQ ID NO:523Rh.little.c.4cctcctgggaaggtggtSEQ ID NO:524Rh.little.c.5cctcctgggaaggtggtcSEQ ID NO:525Rh.little.c.1.crgaccaccttcccaggaggSEQ ID NO:526Rh.little.c.2.craccaccttcccaggaggSEQ ID NO:527Rh.little.c.3.crccaggagggaactggctSEQ ID NO:528Rh.little.c.4.crccaggagggaactggctcSEQ ID NO:529Rh.little.c.5.crcaggagggaactggctcaSEQ ID NO:530Rhesus BigC-intron2-specific-insert-allele:RhC.intron.2.1agggtgccctttgtcacttcSEQ ID NO:531RhC.intron.2.2gccctttgtcacttcccagtSEQ ID NO:532RhC.intron.2.3cctttgtcacttcccagtggSEQ ID NO:533RhC.intron.2.4ttgtcacttcccagtggtacaaSEQ ID NO:534RhC.intron.2.5tcacttcccagtggtacaatcaSEQ ID NO:535RhC.intron.2.1.crgaagtgacaaagggcaccctSEQ ID NO:536RhC.intron.2.2.cractgggaagtgacaaagggcSEQ ID NO:537RhC.intron.2.3.crccactgggaagtgacaaaggSEQ ID NO:538RhC.intron.2.4.crtgtaccactgggaagtgacaaaSEQ ID NO:539RhC.intron.2.5.crtgattgtaccactgggaagtgaSEQ ID NO:540Rhesus BigC-intron2-specific-insert-negative-allele:


The setup of the PCR is chosen in such a way that a PCR product will be formed only, when the bigC-intron2-specific-insert is present. The antitags (used for background subtraction) are used to calculate the ratio for genotyping.

Rhesus E-allele:Rh.big.E.1gccaagtgtcaactctcctctSEQ ID NO:541Rh.big.E.2caagtgtcaactctcctctgctSEQ ID NO:542Rh.big.E.3gtgtcaactctcctctgctgagSEQ ID NO:543Rh.big.E.4caactctcctctgctgagaagtcSEQ ID NO:544Rh.big.E.5tctcctctgctgagaagtccSEQ ID NO:545Rh.big.E.1.crggacttctcagcagaggagagSEQ ID NO:546Rh.big.E.2.crcttctcagcagaggagagttgaSEQ ID NO:547Rh.big.E.3.crctcagcagaggagagttgacacSEQ ID NO:548Rh.big.E.4.crgcagaggagagttgacacttgSEQ ID NO:549Rh.big.E.5.crgaggagagttgacacttggcSEQ ID NO:550Rhesus e-allele:Rh.little.e.1gccaagtgtcaactctgctctSEQ ID NO:551Rh.little.e.2caagtgtcaactctgctctgctSEQ ID NO:552Rh.little.e.3tgtcaactctgctctgctgagSEQ ID NO:553Rh.little.e.4caactctgctctgctgagaagSEQ ID NO:554Rh.little.e.5tctgctctgctgagaagtccSEQ ID NO:555Rh.little.e.1.crggacttctcagcagagcagagSEQ ID NO:556Rh.little.e.2.crttctcagcagagcagagttgaSEQ ID NO:557Rh.little.e.3.crtcagcagagcagagttgacacSEQ ID NO:558Rh.little.e.4.crgcagagcagagttgacacttgSEQ ID NO:559Rh.little.e.5.crgagcagagttgacacttggcSEQ ID NO:560Rhesus RHD-allele:RhD 1ttccccacagctccatcatSEQ ID NO:561RhD 2acagctccatcatgggctacSEQ ID NO:562RhD 3tccatcatgggctacaacttcSEQ ID NO:563RbD 4tcatgggctacaacttcagctSEQ ID NO:564RhD 5gggctacaacttcagcttgctSEQ ID NO:565RhD cr 1agcaagctgaagttgtagcccSEQ ID NO:566RbD cr 2agctgaagttgtagcccatgaSEQ ID NO:567RbD cr 3gaagttgtagcccatgatggSEQ ID NO:568RhD cr 4gcccatgatggagctgtSEQ ID NO:569RhD cr 5tgatggagctgtggggaaSEQ ID NO:570Rhesus RHD-negative-allele:


The setup of the PCR is chosen in such a way that a PCR product will be formed only, when the RHD gene is present. The antitags (used for background subtraction) are used to calculate the ratio for genotyping.

Rhesus r's-allele:r′s.T.1ggaaggtcaacttggtgcaSEQ ID NO:571r′s.T.2ggaaggtcaacttggtgcagtSEQ ID NO:572r′s.T.3caacttggtgcagttggtgSEQ ID NO:573r′s.T.4acttggtgcagttggtggtSEQ ID NO:574r′s.T.5ttggtgcagttggtggtgatSEQ ID NO:575r′s.T.1.crcatcaccaccaactgcaccaSEQ ID NO:576r′s.T.2.crcaccaccaactgcaccaagtSEQ ID NO:577r′s.T.3.craccaactgcaccaagttgacSEQ ID NO:578r′s.T.4.cractgcaccaagttgaccttccSEQ ID NO:579r′s.T.5.crtgcaccaagttgaccttccSEQ ID NO:580Rhesus r's-negative-allele:


The setup of the PCR is chosen in such a way that a PCR product will be formed only, when the r's gene is present. The antitags (used for background subtraction) are used to calculate the ratio for genotyping.


Rhesus DVI-Allele:


The setup of the PCR is chosen in such a way that a PCR product will be formed only, when a normal RHD gene is present. The antitags (used for background subtraction) are used to calculate the ratio for genotyping.

DVI-probes for presence normal RHD allele:Rh.DVI.1atttcaaccctcttggccttSEQ ID NO:581Rh.DVI.2aaccctcttggcctttgtttSEQ ID NO:582Rh.DVI.3tcttggcctttgtttccttgSEQ ID NO:583Rh.DVI.4ggtatcagcttgagagctcgSEQ ID NO:584Rh.DVI.5atcagcttgagagctcggagSEQ ID NO:585Rh.DVI.1.craaggccaagagggttgaaatSEQ ID NO:586Rh.DVI.2.craaacaaaggccaagagggttSEQ ID NO:587Rh.DVI.3.crcaaggaaacaaaggccaagaSEQ ID NO:588Rh.DVI.4.crcgagctctcaagctgataccSEQ ID NO:589Rh.DVI.5.crctccgagctctcaagctgatSEQ ID NO:590Rhesus RHD-Pseudogene-mutation-allele:RhD Y 1tttctttgcagacttaggtgcSEQ ID NO:591RhD Y 2ctttgcagacttaggtgcacaSEQ ID NO:592RhD Y 3tttgcagacttaggtgcacagtSEQ ID NO:593RhD Y 4acttaggtgcacagtgcggSEQ ID NO:594RhD Y 5cttaggtgcacagtgcggtSEQ ID NO:595RhD Y cr 1caccgcactgtgcacctaaSEQ ID NO:596RhD Y cr 2ccgcactgtgcacctaagtcSEQ ID NO:597RhD Y cr 3gcactgtgcacctaagtctgcSEQ ID NO:598RhD Y cr 4tgcacctaagtctgcaaagaSEQ ID NO:599RhD Y cr 5cacctaagtctgcaaagaaatagcgSEQ ID NO:600Rhesus RHD-Pseudogene-normal-allele:RhD non Y 1ctatttctttgcagacttatgtgcSEQ ID NO:601RhD non Y 2tctttgcagacttatgtgcacaSEQ ID NO:602RhD non Y 3ttgcagacttatgtgcacagtgSEQ ID NO:603RhD non Y 4acttatgtgcacagtgcggtSEQ ID NO:604RhD non Y 5cttatgtgcacagtgcggtgSEQ ID NO:605RhD non Y cr 1acaccgcactgtgcacataaSEQ ID NO:606RhD non Y cr 2accgcactgtgcacataagtcSEQ ID NO:607RhD non Y cr 3gcactgtgcacataagtctgcSEQ ID NO:608RhD non Y cr 4tgtgcacataagtctgcaaagSEQ ID NO:609RhD non Y cr 5cacataagtctgcaaagaaatagcgSEQ ID NO:610Yt-a-allele:Yt.a.1gcgggagacttccacggSEQ ID NO:611Yt.a.2gggagacttccacggcctSEQ ID NO:612Yt.a.3gagacttccacggcctgcSEQ ID NO:613Yt.a.4gacttccacggcctgcaSEQ ID NO:614Yt.a.5ttccacggcctgcaggtaSEQ ID NO:615Yt.a.1 CRtacctgcaggccgtggaaSEQ ID NO:616Yt.a.2 CRtgcaggccgtggaagtcSEQ ID NO:617Yt.a.3 CRgcaggccgtggaagtctcSEQ ID NO:618Yt.a.4 CRaggccgtggaagtctcccSEQ ID NO:619Yt.a.5 CRccgtggaagtctcccgcSEQ ID NO:620Yt-b-allele:Yt.b.1gcgggagacttcaacggcSEQ ID NO:621Yt.b.2gggagacttcaacggcctgSEQ ID NO:622Yt.b.3gagacttcaacggcctgcaSEQ ID NO:623Yt.b.4gacttcaacggcctgcagSEQ ID NO:624Yt.b.5ttcaacggcctgcaggtaaSEQ ID NO:625Yt.b.1 CRttacctgcaggccgttgaaSEQ ID NO:626Yt.b.2 CRctgcaggccgttgaagtcSEQ ID NO:627Yt.b.3 CRtgcaggccgttgaagtctcSEQ ID NO:628Yt.b.4 CRcaggccgttgaagtctcccSEQ ID NO:629Yt.b.5 CRgccgttgaagtctcccgcSEQ ID NO:630


Using the available software programs, it would be possible for a skilled person to design probes for other blood cell antigen alleles.


The DNA array may be a limited array comprising for example only 72 different probes, but preferably it comprises substantially all probes shown in the above list.


In order to facilitate binding of the probes to the array support and to allow sufficient access to the amplification products, the probe oligos will normally be provided with a linker molecule and a reactive group, preferably at the 5′-end of the oligo, for binding to the array support. All of this is well known to the skilled person and only by way of example it is mentioned that a suitable linker is C6 (hexamethylene, i.e. —(CH2)6—) and a suitable reactive group is amino.


Array Support


The probes are located on a suitable support to which they are usually attached by chemical means. The support may be a glass slide or any other suitable support, such as plastic, silicon or porous metal oxide. Usually, the support will be pretreated to improve binding of the oligos, for example pretreated by coating with poly-L-lysine, aminosilane, aldehyde or epoxy. To achieve binding of the probes, various techniques may be used, such as UV irradiation, nonspecific electrostatic absorption, covalent attachment via 5′amino or phosphate group using carbodiimide (EDC) chemistry, etc.


To avoid non-specific hybridization it will usually be preferable to incubate the array support carrying the probes thereon with prehybridization solution, as is well known to a skilled person, and to prepare the probes for hybridization it will be preferred to denature them, for example by heating at about 80° C. or higher.


Controls


In order to allow correction for background it is preferred to include some probes with a sequence not occurring in the DNA of the donor and which may be expected not to bind by hybridization to amplification products. The signal measured for allele-specific probe spots may be corrected by subtracting the signal measured for these background control spots. Suitable examples of such background correction probes or antitags are the following probes a3, a9, a17, a23, a27, a33, a35, a38, a42 and a43:

a3cagaccataagcacaggcgt,SEQ ID NO:631a9gctcgtccacagtgcgttat,SEQ ID NO:632a17cggcgttcaagcaaaccgaa,SEQ ID NO:633a23gacatatagctccactcaga,SEQ ID NO:634a27tagggtactgatgagcactc,SEQ ID NO:635a33tcagccctatcgcaggatgt,SEQ ID NO:169a35gagacacttgacagtagcca,SEQ ID NO:170a38ggcagggcacctcagtttat,SEQ ID NO:171a42tcaccagccagactgtgtag,SEQ ID NO:172a43cttcacgcaagttgtccaga.SEQ ID NO:173


Further, it may be advisable to include at least one positive control probe. This probe should be the complement of a labeled positive control oligomer added to the products of the amplification. For example, the positive control probe may be the following oligo CS05:

CS05gtcctgacttctagctcatg,SEQ ID NO:174


which is capable of hybridizing to its labelled complement catgagctagaagtcaggac which is added to the mixture of amplification products before the mixture is applied onto the DNA array.


Hybridization Conditions


Hybridization of products of the amplification to the probes in the DNA array is usually carried out at a temperature of between 50 and 65° C., preferably at about 56° C., for a sufficient time, such as for 15 minutes to 10 hours, more preferably for 30 minutes to 4 hours.


Array Configuration


The configuration of the array is fully arbitrary. Usually, one array support will carry a large number of spots present in several blocks that may be identical (preferred) or different from each other. Each spot contains one probe and it is preferred that similar probes are spotted as distant from each other as possible. It is preferable that each block contains one spot of each of the allele-specific probes, and in addition some control spots. Thus, one block may comprise 128 allele-specific spots, 5 background controls and a positive control, in total 134 spots.


Measuring the Fluorescence Signal


The binding of labelled amplification products to certain spots is determined on the basis of the fluorescence signal emitted by these spots. The signal can be measured with a photomultiplier tube, scanning laser systems or any other apparatus and technique known to the skilled person.


Evaluation of the Resulting Data


To evaluate the resulting data as to the blood cell antigen genotype of the donor of the DNA, the fluorescence signal intensities may be converted using Genepix Pro 5.0 (Axon Instruments Inc.) to signal values which can be analyzed further, for example in Excel.


EXAMPLES

In the Examples below, that only serve to illustrate the invention without limiting it in any way, the concept of genotyping blood cell antigens by the present combination of a particular multiplex PCR and a DNA microarray of allele-specific probes is tested in Example 1 on the biallelic Human Platelet Antigen systems HPA-1 through 5 and Gov. A blind panel of 58 donor samples was genotyped for these 6 HPA systems and only one discrepancy was found in one HPA system. The discrepancy can be overcome by adjusting the scoring criteria and validating the new format. Then, in Example 2, it was shown that the multiplex PCR of this invention worked well with all primers of Table II together.


Example 1

Sequences and Tm values of the probes spotted on poly-Lysine-coated glass slide are shown in Table I. The SNPs of HPA-3 and -5 are located in a GC-rich and -poor area, respectively. Therefore, these probes are shorter or longer than the other oligonucleotides, and have a Tm outside the 60-65° C. range. The probes, dissolved at a concentration of 50 μM in 0.4 M NaHCO3 (pH 9.4), were spotted on poly-L-lysine coated glass slides by the Omnigrid 100® microarrayer (Genemachines) supplied with 16 SMP 3 Microspotting pins (Telechem). Each glass slide contains 48 blocks of 134 spots corresponding to the 128 allele-specific probes, the 5 background controls and the positive control CS05. Similar probes were spotted as distant as possible from each other. DNA was cross-linked by UV irradiation at 250 mJ/cm2 (Stratalinker model 1800 UV Illuminator, Stratagene). To prevent non-specific hybridisation, the slides were incubated with 100 μl of prehybridisation solution [400 ng/μl yeast tRNA (Roche), 400 ng/μl herring sperm DNA (Gibco BRL), 5× Denhardt's solution, 3.2×SSC and 0.4% SDS] at 65° C. for 30 min. Prior to hybridisation, the slide containing the prehybridisation mixture was incubated for 2 min at 80° C. to denature the spotted DNA. After prehybridisation, the slides were washed twice in 2×SSC for 5 min at room temperature and dehydrated with a series of 70 (twice), 90 and 100% ethanol, for 5 min each, respectively.


A multiplex PCR for only the six platelet antigens was performed using 5 nM of each HPA and gov primer (7.5 nM of each HPA-3 primer) and 1.2 μM of each Cy5 labeled universal primer. Further, the multiplex PCR was performed as described for the multiplex PCR in Example 2. For hybridisation reaction chambers were made as described by Pastinen et al. (2000). A silicon rubber grid was used to divide the glass slide in 24 different compartments. While the slide was preheated (65° C. for 75 min), 40 μl of the multiplex PCR products was denatured at 95° C. for 5 min, put on ice and 120 μl of ice-cold hybridisation solution [2 ng Cy5-labelled complement of CS05 (5′-catgagctagaagtcaggac-3′) and 4×SSC] was added. For hybridisation, 80 μl of this mixture was added per array and incubated for 3½ hours at 56° C. Next, slides were lifted out of the hybridisation holder in 600 ml 3×SSC and washed twice with 2×SSC/0.1% SDS at 50° C. and twice with 0.2×SSC at RT, for 5 min each, respectively. Glass slides were dried by centrifugation at 800 rpm for 5 min and scanned in an Agilent G2565BA micro array scanner at 10 μm resolution. Photomultiplier tube voltage was always set at 100%. PCR products of six different donors were analysed per slide as shown in FIG. 3. After Genepix analysis the obtained data was converted to Excel. A panel of 12 donor samples with known HPA typing was used to define the HPA scoring criteria. Table III lists the scoring criteria. The median signal intensities Fmed of the negative controls (C) were averaged and this background value plus three times its standard deviation was subtracted from the median intensity Fmed of each oligo, giving a threshold value, Fth, shown in the third column in Table III. If the Fth showed a negative value for both the matched (allele a) and the mismatched (allele b) probe, the primer pair was excluded for the genotyping result. For genotyping, the ratio of the intensities of two oligonucleotides (one from allele a and the other from allele b) in one set was calculated. The ratios were calculated of the Fmed−Fbg intensities for the a-allele to the sum of the Fmed−Fbg intensities for both alleles in the sixth column. This formula a/(a+b) has also been described by Hinds et al. (2004). In principle, these ratios should take on values near 1.0, 0.5 or 0.0 for aa, ab or bb genotypes. Only positive Fmed−Fbg values were used and therefore negative values were set to 1 in the fifth column. Next, the ratios were converted to genotypes in the seventh column. For HPA-1, -2, -4 and -5 ratio values above 0.75 were typed aa, below 0.25 bb and between 0.35 and 0.65 ab. Due to a high binding of the PCR fragments to the probes representing the a allele, the criteria for HPA-3 and Gov were adjusted to 0.95 and 0.8 for aa, 0.45 and 0.35 for bb and for ab between 0.55 and 0.85 and between 0.45 and 0.7, respectively. The most frequent genotype was coloured orange in the seventh column. This was done for every blood group, every block and every sample. The samples of the 12 donors were used to accept probe-sets that correctly predicted the genotype. As criteria used for the final scoring: 50% of the used probe-sets should predict a genotype if a homozygote genotype was predicted and 40% if a heterozygote genotype was predicted (30% for HPA-3). Using these criteria a blind panel of 58 samples were genotyped. The results of nine of them are shown in Table IV. The genotypes of all 58 samples are listed in Table V. The genotypes of 56 samples could be scored with the preset criteria. Only in one sample a result discrepant with its known genotype was obtained. In this case, 33.3% of the probe sets indicated an HPA-3bb genotype and 37.5% indicated an HPA-3ab genotype as shown in Table VI. Adjustment of the scoring criteria leads to complete concordance of the typing results.


Example 2

A primer mix was constructed with the primers listed in Table II. The concentration of the primers in the PCR mixture is also listed in Table II. The Qiagen multiplex kit was used for the multiplex PCR. In the multiplex PCR, the annealing temperature was not changed during PCR and two fluorescent labelled universal primers were used. In more detail, at the start the PCR mixture contains a very low amount of chimeric primers (5 nM) and an excess of fluorescent-labelled universal primers (0.2 μM of each universal primer per chimeric primer). The temperature profile of the PCR started with 15 min at 95° C., followed by 45 cycles of 94° C. for 30 sec, 57° C. for 90 sec, 72° C. for 90 sec and the protocol ended with a final polymerization step at 72° C. for 10 min. Very little amount of PCR product is amplified during the first amplification cycles, but enough to be used as template by the universal MAPH primers in the following cycles as can be seen on 8% acrylamide gel in FIG. 1. By tagging the MAPH primers at their 5′end with the fluorescent label Cy5, only two fluorescent-labelled primers are necessary to label the PCR product efficiently. As described by White et al. (2002), a better discrmination of the multiplex PCR products can be visualized on an ABI 3700 capillary sequencer (Applied Biossystems), in this case only MAPH-rev is fluorescent (FAM) labeled. Multiplex PCR with all designed PCR primers yielded the expected pattern of peaks as shown in the chromatogram in FIG. 2. This means that all gene-fragments were amplified at similar yields.

TABLE ISequences and melting temperatures of theprobes.ProbeTmSequence (5′-3′)HPA-1aa65.86tacaggccctgcctctggg+TL,32HPA-1ab66.92aggccctgcctctgggctHPA-1ac67.79ccctgcctctgggctcaccHPA-1ad67.35tgcctctgggctcacctcgHPA-1ae64.65ctctgggctcacctcgctgHPA-1aa CR64.65cagcgaggtgagcccagagHPA-1ab CR67.35cgaggtgagcccagaggcaHPA-1ac CR67.79ggtgagcccagaggcagggHPA-1ad CR66.92agcccagaggcagggcctHPA-1be CR65.86cccagaggcagggcctgtaHPA-1ba69.93tacaggccctgcctccgggHPA-1bb70.94aggccctgcctccgggctHPA-1bc68.84ccctgcctccgggctcacHPA-1bd66.21ctgcctccgggctcacctHPA-1be66.33ctccgggctcacctcgctHPA-1ba CR66.33agcgaggtgagcccggagHPA-1bb CR66.21aggtgagcccggaggcagHPA-1bc CR68.84gtgagcccggaggcagggHPA-1bd CR70.94agcccggaggcagggcctHPA-1be CR69.93cccggaggcagggcctgtaHPA-2aa63.81ctgacgcccacacccaagHPA-2ab65.21ctcctgacgcccacacccHPA-2ac65.37ggctcctgacgcccacacHPA-2ad66.12agggctcctgacgcccacHPA-2ae68.84ccagggctcctgacgcccHPA-2aa CR63.81cttgggtgtgggcgtcagHPA-2ab CR65.21gggtgtgggcgtcaggagHPA-2ac CR65.37gtgtgggcgtcaggagccHPA-2ad CR66.12gtgggcgtcaggagccctHPA-2ae CR68.84gggcgtcaggagccctggHPA-2ba64.88cctgatgcccacacccaagHPA-2bb65.57ctcctgatgcccacacccaHPA-2bc66.37ggctcctgatgcccacaccHPA-2bd66.45agggctcctgatgcccacaHPA-2be66.45ccagggctcctgatgcccHPA-2ba CR64.88cttgggtgtgggcatcaggHPA-2bb CR65.57tgggtgtgggcatcaggagHPA-2bc CR66.37ggtgtgggcatcaggagccHPA-2bd CR66.45tgtgggcatcaggagccctHPA-2be CR66.45gggcatcaggagccctggHPA-3aa69.45ccatccccagcccctcccHPA-3ab69.60gcccatccccagcccctcHPA-3ac70.57ctgcccatccccagccccHPA-3ad170.72gctgcccatccccagcccHPA-3ad70.72ggctgcccatccccagccHPA-3ad270.72gggctgcccatccccagcHPA-3ae70.08ggggctgcccatccccaHPA-3aa CR69.45gggaggggctggggatggHPA-3ab CR69.60gaggggctggggatgggcHPA-3ac CR70.57ggggctggggatgggcagHPA-3ad1 CR70.72gggctggggatgggcagcHPA-3ad CR70.72ggctggggatgggcagccHPA-3ad2 CR70.72gctggggatgggcagcccHPA-3ae CR70.08tggggatgggcagccccHPA-3ba68.75ccagccccagcccctccHPA-3bb70.39gcccagccccagcccctHPA-3bc69.91ctgcccagccccagcccHPA-3bd170.07gctgcccagccccagccHPA-3bd70.07ggctgcccagccccagcHPA-3bd269.91gggctgcccagccccagHPA-3be72.50ggggctgcccagccccaHPA-3ba CR68.75ggaggggctggggctggHPA-3bb CR70.39aggggctggggctgggcHPA-3bc CR69.91gggctggggctgggcagHPA-3bd1 CR70.07ggctggggctgggcagcHPA-3bd CR70.07gctggggctgggcagccHPA-3bd2 CR69.91ctggggctgggcagcccHPA-3be CR72.50tggggctgggcagccccHPA-4aa62.77gccacccagatgcgaaagHPA-4ab59.94cacccagatgcgaaagctHPA-4ac61.08cccagatgcgaaagctcaHPA-4ad57.99cagatgcgaaagctcaccHPA-4ae57.99gatgcgaaagctcaccagHPA-4aa CR57.99ctggtgagctttcgcatcHPA-4ab CR57.99ggtgagctttcgcatctgHPA-4ac CR61.08tgagctttcgcatctgggHPA-4ad CR59.94agctttcgcatctgggtgHPA-4ae CR62.77ctttcgcatctgggtggcHPA-4ba60.20gccacccagatgcaaaagHPA-4bb61.19ccacccagatgcaaaagctHPA-4bc60.26acccagatgcaaaagctcacHPA-4bd58.50cagatgcaaaagctcaccaHPA-4be58.04gatgcaaaagctcaccagtaaHPA-4ba CR58.04ttactggtgagcttttgcatcHPA-4bb CR58.50tggtgagcttttgcatctgHPA-4bc CR60.26gtgagcttttgcatctgggtHPA-4bd CR61.19agcttttgcatctgggtggHPA-4be CR60.20cttttgcatctgggtggcHPA-5aa57.46gagtctacctgtttactatcaaagaggHPA-5ab56.77agtctacctgtttactatcaaagaggtaHPA-5ac57.08gtctacctgtttactatcaaagaggtaaHPA-5ad57.16ctacctgtttactatcaaagaggtaaaaHPA-5ae57.38acctgtttactatcaaagaggtaaaaaHPA-5aa CR57.38tttttacctctttgatagtaaacaggtHPA-5ab CR57.16ttttacctctttgatagtaaacaggtagHPA-5ac CR57.08ttacctctttgatagtaaacaggtagacHPA-5ad CR56.77tacctctttgatagtaaacaggtagactHPA-5ae CR57.46cctctttgatagtaaacaggtagactcHPA-5ba57.42gagtctacctgtttactatcaaaaaggHPA-5bb56.75agtctacctgtttactatcaaaaaggtaHPA-5bc57.05gtctacctgtttactatcaaaaaggtaaHPA-5ad57.13ctacctgtttactatcaaaaaggtaaaaHPA-5be57.34acctgtttactatcaaaaaggtaaaaaHPA-5ba CR57.34tttttacctttttgatagtaaacaggtHPA-5bb CR57.13ttttacctttttgatagtaaacaggtagHPA-5bc CR57.05ttacctttttgatagtaaacaggtagacHPA-5bd CR56.75tacctttttgatagtaaacaggtagactHPA-5be CR57.42cctttttgatagtaaacaggtagactcGov-aa58.44ttattatcttgacttcagttacaggatttGov-ab59.20tcttgacttcagttacaggatttaccGov-ac59.15tgacttcagttacaggatttaccaaGov-ad58.36cttcagttacaggatttaccaagaatGov-ae59.44cagttacaggatttaccaagaatttgGov-aa CR59.44caaattcttggtaaatcctgtaactgGov-ab CR58.36attcttggtaaatcctgtaactgaagGov-ac CR59.15tggtaaatcctgtaactgaagtcaaGov-ad CR59.20ggtaaatcctgtaactgaagtcaagaGov-ae CR58.44aaatcctgtaactgaagtcaagataataaGov-ba58.35tatcttgacttcagttccaggattGov-bb58.39cttgacttcagttccaggatttacGov-bc59.51gacttcagttccaggatttaccaGov-bd58.24ttcagttccaggatttaccaagGov-be59.79cagttccaggatttaccaagaattGov-ba CR59.79aattcttggtaaatcctggaactgGov-bb CR58.24cttggtaaatcctggaactgaaGov-bc CR59.51ggtaaatcctggaactgaacGov-bd CR58.39gtaaatcctggaactgaagtcaagGov-be CR58.35aatcctggaactgaagtcaagataa3363.03tcagccctatcgcaggatgta3553.75gagacacttgacagtagccaa3861.40ggcagggcacctcagtttata4257.37tcaccagccagactgtgtaga4360.02cttcacgcaagttgtccagaCS0552.41gtcctgacttctagctcatg
Each oligonucleotide probe has an amine group and a C6 spacer at its

The polymorphic sites in the allele-specific probes are highlighted.










TABLE II










Primers used for multiplex PCR












Product
concentration













MAPH
Ag

size
of primer













PCR-primer
system
Sequence
Tm*
(bp)
in mpx (nM)
















HPA1-left
HPA-1
gccgcgaattcactagtgcttcaggtcacagcgaggt
58.98

5






HPA1-right
HPA-1
ggccgcgggaattcgattgctccaatgtacggggtaaa
59.82
185
5





HPA2-left
HPA-2
gccgcgaattcactagtgtgaaaggcaatgagctgaag
59.15

5





HPA2-right
HPA-2
ggccgcgggaattcgattagccagactgagcttctcca
60.28
113
5





HPA3-left
HPA-3
gccgcgaattcactagtggcctgaccactcctttgc
59.35

7.5





HPA3-right
HPA-3
ggccgcgggaattcgattggaagatctgtctgcgatcc
59.77
141
7.5





HPA4-left
HPA-4
gccgcgaattcactagtgatccgcaggttactggtgag
60.13

5





HPA4-right
HPA-4
ggccgcgggaattcgattccatgaaggatgatctgtgg
58.88
121
5





HPA5-left
HPA-5
gccgcgaattcactagtgtgcaaatgcaagttaaattaccag
59.47

5





HPA5-right
HPA-5
ggccgcgggaattcgattacagacgtgctcttggtaggt
58.88
190
5





Gov-left
Gov
gccgcgaattcactagtgtgtatcagttcttggttttgtgatg
60.31

5





Gov-right
Gov
ggccgcgggaattcgattaaaaccagtagccacccaag
59.10
156
5





JK1/2-left
Kidd
gccgcgaattcactagtggtctttcagccccatttgag
59.67

10





JK1/2-right
Kidd
ggccgcgggaattcgattgttgaaaccccagagtccaa
59.94
86
10





FY1/2-left
Duffy
gccgcgaattcactagtggaattcttcctatggtgtgaatga
59.38

5





FY1/2-right
Duffy
ggccgcgggaattcgattaagaagggcagtgcagagtc
59.60
153
5





GATAbox-left
Duffy
gccgcgaattcactagtgggccctcattagtccttgg
59.49

5





GATAbox-right
Duffy
ggccgcgggaattcgattgaaatgaggggcatagggata
60.12
200
5





KEL1/2-left
Kell
gccgcgaattcactagtgaagggaaatggccatactga
59.39

5





KEL1/2-right
Kell
ggccgcgggaattcgattagctgtgtaagagccgatcc
59.46
207
5





KEL3/4-left
Kell
gccgcgaattcactagtggcctcagaaactggaacagc
60.00

10





KEL3/4-right
Kell
ggccgcgggaattcgattagcaaggtgcaagaacactct
59.15
103
10





RHCEex2for
Rhesus
gccgcgaattcactagtgcgtctgcttccccctcc
61.78

5





RHex2rev
Rhesus
ggccgcgggaattcgattctgaacagtgtgatgaccacc
59.01
268
5





RHCEex5-left
Rhesus
gccgcgaattcactagtgggatgttctggccaagtg
57.47

5





RHex5rev
Rhesus
ggccgcgggaattcgattggctgtcaccacactgactg
60.37
143
5





RHDΨ-left
Rhesus
ggccgcgggaattcgattgtagtgagctggcccatca
59.80

5





RHDΨ-right
Rhesus
gccgcgaattcactagtgtgtctagtttcttaccggcaagt
59.38
380
5





RHD-leftB
Rhesus
gccgcgaattcactagtgttataataacacttgtccacaggg
57.25

5





RHD-rightC
Rhesus
ggccgcgggaattcgattcggctccgacggtatc
58.61
182
5





BigC-left
Rhesus
gccgcgaattcactagtgggccaccaccatttgaa
58.77

15





BigC-rightintron2
Rhesus
ggccgcgggaattcgattccatgaacatgccacttcac
59.97
393
15





MN-left
MNS
gccgcgaattcactagtgtgagggaatttgtcttttgca
60.60

5





MN-right
MNS
ggccgcgggaattcgattcagaggcaagaattcctcca
60.33
394
5





U-left
MNS
gccgcgaattcactagtgcgctgatgttatctgtcttatttttc
59.64

5





U-right
MNS
ggccgcgggaattcgattgatcgttccaataataccagcc
59.71
175
5





JO-left
Dombrock
gccgcgaattcactagtgcctggcttaaccaaggaaaa
59.20

5





JO-right
Dombrock
ggccgcgggaattcgatttcatactgctgtggagtcctg
58.89
181
5





MAPH-reverse#

gccgcgaattcactagtg
57.94

200





MAPH-forward#

ggccgcgggaattcgatt
67.55

200







*Tm values of chimeric primers are without MAPH-tags.





#Cy5 labelled at 5′-end





The gene specific part of the RHDΨ-right and the RHD-rightC primer has been published (Maaskant-van Wijk et al. Transfusion 39, 546, 1999). Published primer sequences Rex6AD3: 5′-TGTCTAGTTTCTTACCGGCAAGT-3′; R1068: 5′-ATTGCCGGCTCCGACGGTATC-3′)





The gene specific part of BigC-left has been published as part of a published primer and part of the bigC-rightintron2, RHex2rev, RHCEex5for primers have been published (Tax et al. Transfusion 42, 634-44, 2002).





Published primer sequences





R348: 5′-CTGAACAGTGTGATGACC-3′;





c/rev: 5′-TGATGACCACCTTCCCAGG-3′;





R637: 5′-GCCCTCTTCTTGTGGATG-3′;





C/for: 5′-CAGCGCCACCACCATTTGAA-3′;





C/rev: 5′-GAACATCCCACTTCACTCCAG-3′)





Part of the MN-primers has been published (Akane et al. Vox Sang, 79, 183-7, 2000)





Published primer sequences MN-Left: 5′-GAGGGAATTTGTCTTTTGCA-3′ and MN-Right: 5′-AGAGGCAAGAATTCCTCC-3′.














TABLE III










Scorings criteria for genotyping HPA-1














ID
Fmed
Fth
Fmed− Fbg
pos(Fmed− Fbg)
ratio
genotype



















C a33
861





av. C
692



C a35
579





SD
105


C a38
688





3*SD
315


C a42
640






aa >
0.75


C a43
692






bb <
0.25


CS05
64433






0.35 < ab <
0.65


HPA-1aa
1311
304.2
619
619
0.0

bb



HPA-1aa CR
680
−327
−12
1
0.0

bb



HPA-1ab
911
−95.8
219
219
0.0

bb



HPA-1ab CR
613



−79
1
0.0





HPA-1ac
7100
6093
6408
6408
0.2

bb



HPA-1ac CR
884
−123
192
192
0.2

bb



HPA-1ad
7319
6312
6627
6627
0.2

bb



HPA-1ad CR
614
−393
−78
1
0.0

bb



HPA-1ae
39718
38711
39026
39026
0.4
ab


HPA-1ae CR
792
−215
100
100
0.2

bb



HPA-1ba
29825
28818
29133
29133


HPA-1ba CR
1159
152.2
467
467


HPA-1bb
10446
9439
9754
9754


HPA-1bb CR
827



135
135


HPA-1bc
26518
25511
25826
25826


HPA-1bc CR
1548
541.2
856
856


HPA-1bd
30718
29711
30026
30026


HPA-1bd CR
1276
269.2
584
584


HPA-1be
65375
64368
64683
64683


HPA-1be CR
1060
53.18
368
368







Most frequent genotype results of a sample are in bold. Excluded genotype result bold and boxed.














TABLE IV








Genotyping results of 9 samples of the blind panel
































Most frequent genotype results of a sample are in bold. Excluded genotype results are in bold and boxed.














TABLE V










Genotypes of blind panel of 58 samples




















HPA-
% pos

% pos

% pos

% pos

% pos




Sample
1
HPA-1
HPA-2
HPA-2
HPA-3
HPA-3
HPA-4
HPA-4
HPA-5
HPA-5
Gov
% pos gov




























1

aa

100%
28/28

aa

 94%
30/32

bb

54%
13/24

aa

 85%
17/20

aa

 75%
15/20

ab

75%
27/36


2

aa

 96%
24/25

aa

100%
32/32

aa

83%
20/24

aa

100%
20/20

aa

 79%
15/19

ab

64%
23/36


3

bb

 70%
19/27

aa

100%
31/31

ab

50%
12/24

aa

 84%
16/19

ab

 80%
16/20

bb

72%
26/36


4

ab

 43%
10/23

aa

100%
32/32

aa

79%
19/24

aa

 94%
17/18

ab

 45%
 5/11

aa

67%
24/36


5

aa

 96%
27/28

aa

100%
32/32

aa

83%
20/24

aa

100%
20/20

aa

 68%
13/19

aa

94%
34/36


6

aa

 93%
25/27

ab

 69%
22/32

ab

42%
10/24

aa

100%
20/20

ab

 53%
10/19

aa

58%
21/36


7

ab

 54%
15/28

ab

 81%
26/32

aa

79%
19/24

aa

100%
20/20

ab

 60%
12/20

ab

72%
26/36


8

aa

 96%
27/28

aa

100%
32/32

aa

83%
20/24

aa

 95%
19/20

bb

 65%
13/20

ab

81%
29/36


9

bb

 81%
21/26

aa

100%
32/32

ab

38%
 9/24

aa

 90%
18/20

ab

 65%
13/20

ab

78%
28/36


10

aa

 96%
27/28

ab

 72%
23/32

aa

79%
19/24

aa

 95%
19/20

aa

 85%
17/20

ab

83%
30/36


11

bb

 70%
16/23

aa

 97%
30/31

bb

44%
 7/16

aa

 93%
13/14

bb

 81%
13/16

aa

83%
30/36


12

aa

100%
23/23

ab

 55%
17/31

ab

46%
11/24

aa

 83%
10/12

aa

 80%
16/20

bb

75%
27/36


13

ab

 54%
15/28

ab

 63%
20/32

ab

50%
12/24

aa

 85%
17/20

ab

 65%
13/20

aa

64%
23/36


14

ab

 44%
12/27

bb

 94%
30/32

ab

50%
12/24

aa

100%
20/20

aa

 85%
17/20

bb

64%
23/36


15

aa

 93%
26/28

aa

100%
32/32

ab

38%
 9/24

aa

 90%
18/20

ab

 55%
11/20

aa

72%
26/36


16

aa

 96%
27/28

aa

 75%
24/32

ab

42%
10/24

aa

 89%
17/19

ab

 70%
14/20

ab

81%
29/36


17

bb

 74%
20/27

ab

 53%
17/32

ab

39%
 9/23

aa

 95%
19/20

aa

 78%
14/18

ab

67%
24/36


18

aa

 93%
25/27

ab

 81%
26/32

ab

33%
 8/24

aa

 75%
15/20

ab

 75%
15/20

aa

94%
34/36


19

aa

 96%
27/28

ab

 78%
25/32

ab

54%
13/24

aa

100%
20/20

aa

 65%
13/20

ab

69%
25/36


20

bb

 75%
21/28

aa

 97%
31/32

aa

83%
20/24

aa

100%
20/20

aa

 90%
18/20

ab

64%
23/36


21

aa

100%
28/28

ab

 66%
21/32

bb

61%
14/23

aa

 95%
19/20

aa

100%
20/20

bb

61%
22/36


22

aa

 96%
26/27

aa

100%
32/32

aa

88%
21/24

aa

 90%
18/20

aa

 80%
16/20

bb

83%
30/36


23

aa

100%
28/28

aa

100%
29/29

aa

88%
21/24

aa

 85%
17/20

aa

 80%
16/20

bb

78%
28/36


24

aa

100%
28/28

aa

100%
31/31

ab

42%
10/24

aa

100%
20/20

ab

 65%
13/20

bb

53%
19/36


25

bb

 85%
22/26

ab

 78%
25/32

ab

38%
 9/24

aa

 72%
13/18

aa

 79%
15/19

aa

94%
34/36


26

aa

 96%
27/28

aa

100%
32/32

aa

79%
19/24

aa

 95%
18/19

ab

 95%
18/19

ab

64%
23/36


27

aa

 81%
21/26

aa

100%
31/31

aa

63%
15/24

aa

 86%
12/14

aa

100%
19/19

ab

64%
23/36


28

aa

 79%
22/28

aa

100%
32/32

bb

68%
16/22

aa

 80%
16/20

aa

 75%
15/20

ab

72%
26/36


29

aa

100%
28/28

ab

 69%
22/32

ab

54%
13/24

aa

 84%
16/19

aa

 80%
16/20

ab

67%
24/36


30

bb

 70%
16/23

aa

100%
32/32

bb

72%
13/18

aa

 85%
11/13

aa

 94%
15/16

ab

54%
19/35


31

bb

 74%
20/27

bb

 97%
31/32

ab

50%
12/24

aa

 90%
18/20

aa

 90%
18/20

bb

58%
21/36


32

aa

 89%
25/28

aa

100%
32/32

bb

52%
12/23

aa

100%
20/20

aa

 65%
13/20

aa

86%
31/36


33

aa

 96%
24/25

aa

 94%
30/32

aa

63%
15/24

aa

 94%
17/18

ab

 60%
12/20

ab

64%
23/36


34

bb

 75%
18/24

aa

100%
32/32

aa

71%
17/24

aa

100%
19/19

ab

 76%
13/17

ab

78%
28/36


35

aa

 93%
25/27

ab

 41%
13/32

ab

46%
11/24

aa

 84%
16/19

aa

 68%
13/19

ab

69%
25/36


36

ab

 48%
13/27

aa

100%
32/32

bb

52%
11/21

aa

 85%
17/20

aa

100%
20/20

aa

86%
31/36


37

aa

100%
28/28

ab

 72%
23/32

bb

63%
15/24

aa

100%
19/19

aa

100%
20/20

ab

78%
28/36


38

aa

 96%
27/28

ab

 78%
25/32

ab

46%
11/24

aa

100%
20/20

aa

 85%
17/20

ab

78%
28/36


39

ab

 48%
13/27

ab

 91%
29/32

ab

50%
12/24

aa

 80%
16/20

aa

 80%
16/20

ab

75%
27/36


40

ab

 44%
12/27

aa

100%
32/32

bb

64%
14/22

aa

 84%
16/19

ab

 65%
13/20

aa

86%
31/36


41

ab

 56%
15/27

aa

100%
32/32

ab

54%
13/24

aa

100%
19/19

aa

 65%
11/17

ab

75%
27/36


42

aa

100%
28/28

ab

 59%
19/32

ab

54%
13/24

aa

 90%
18/20

aa

100%
20/20

bb

67%
24/36


43

aa

 96%
27/28

ab

 72%
23/32

aa

79%
19/24

aa

100%
20/20

aa

100%
20/20

bb

53%
19/36


44

aa

100%
28/28

aa

100%
32/32

bb

71%
17/24

aa

 95%
19/20

aa

 90%
18/20

bb

53%
19/36


45

aa

100%
28/28

ab

 63%
20/32

bb

68%
15/22

aa

100%
20/20

aa

 95%
19/20

bb

56%
20/36


46

ab

 35%
 7/20

aa

 94%
30/32

ab

35%
 8/23

aa

 79%
11/14

aa

 83%
15/18

ab

61%
22/36


47

aa

 81%
21/26

ab

 78%
25/32

ab

50%
12/24

aa

 71%
12/17

aa

 73%
11/15

ab

69%
24/35


48

aa

 93%
25/27

ab

 94%
30/32

ab

42%
10/24

aa

 84%
16/19

aa

 80%
16/20

ab

64%
23/36


49

bb

 70%
19/27

aa

100%
32/32

ab

67%
16/24

aa

100%
20/20

aa

 63%
10/16

bb

64%
23/36


50

aa

 93%
26/28

aa

100%
32/32

ab

46%
11/24

aa

 95%
19/20

aa

 80%
16/20

ab

72%
26/36


51

aa

 96%
27/28

ab

 72%
23/32

aa

83%
20/24

aa

 85%
17/20

aa

 75%
15/20

ab

61%
22/36


52

aa

100%
22/22

aa

100%
32/32

aa

79%
19/24

aa

 89%
16/18

aa

 84%
16/19

bb

75%
27/36


53

bb

 71%
17/24

aa

100%
32/32

bb

64%
14/22

aa

 94%
15/16

aa

 78%
14/18

bb

69%
25/36


54

aa

 89%
24/27

aa

100%
32/32

ab

46%
11/24

aa

 83%
15/18

ab

 67%
12/18

ab

67%
24/36


55

aa

100%
27/27

aa

100%
32/32

ab

50%
12/24

aa

100%
19/19

aa

 90%
18/20

aa

83%
30/36


56

bb

 76%
19/25

aa

100%
32/32

aa

75%
18/24

aa

100%
20/20

bb

 63%
12/19

bb

78%
28/36


57

aa

100%
27/27

aa

100%
32/32

bb

80%
16/20

aa

100%
20/20

bb

 68%
13/19

ab

72%
26/36


58

ab

 50%
14/28

bb

100%
32/32

ab

50%
12/24

aa

 70%
14/20

aa

 75%
15/20

bb

83%
30/36







Genotypes are in bold when the predicted genotype is higher then 50% for the homozygote genotypes or 40% for the heterozygote genotypes (HPA-3ab >30%)














TABLE VI








HPA-3 genotyping results of sample 9 compared with the results of 6 other samples






















Most frequent genotype results of a sample are in bold. Excluded genotypes are in bold and boxed. Genotype of sample 9 should be HPA-3bb and therefore the bb-genotypes are shown in capital letters for this sample.















TABLE VII










Additionally tested primers for multiplex PCR



These primers have been tested together with primers of SEQ ID NOS:15 to 40 in


one multiplex PCR. PCR products of the correct product size were obtained.










Product











Ag

size












system
MAPH PCR-primer
Sequence
Tm*
(bp)















Duffy
Fyx-left (MAPH)
gccgcgaattcactagtgTCATGCTTTTCAGACCTCTCTTC
60.01







Duffy
Fyx-right (MAPH2)
ggccgcgggaattcgattCAAGACGGGCACCACAAT
60.53
143





Kell
KEL6/7-left (MAPH)
gccgcgaattcactagtgGCAGCACCAACCCTATGTTC
60.53





Kell
KEL6/7-right (MAPH)
ggccgcgggaattcgattTCAGGCACAGGTGAGCTTC
60.13
154





Rhesus
RHDex3-left (MAPH)
gccgcgaattcactagtgTCCTGGCTCTCCCTCTCT
57.48





Rhesus
RHCEex3-right (MAPH)
ggccgcgggaattcgattTTTTTCAAAACCCCGGAAG
59.90
294





Rhesus
RhDVI-left (MAPH) (fw)
ggccgcgggaattcgattCTTTGAATTAAGCACTTCACAGA
56.48





Rhesus
RhDVI-right (MAPH) (rev)
gccgcgaattcactagtgGCCAGAATCACACTCCTGCT
60.42
277





MNS
Ss-left (MAPH3)
gccgcgaattcactagtgTTTTTCTTTGCACATGTCTTT
55.20





MNS
Ss-right (MAPH2)
ggccgcgggaattcgattTCTTTGTCTTTACAATTTCGTGTG
58.42
276





Dombrock
DO-left (MAPH)
ggccgcgggaattcgattTGATCCCTCCCTATGAGCTG
60.17





Dombrock
DO-right (MAPH)
gccgcgaattcactagtgTTATATGTGCTCAGGTTCCCAGT
59.91
136





Colton
Colton-left (MAPH)
gccgcgaattcactagtgGCCACGACCCTCTTTGTCT
60.25





Colton
Colton-right (MAPH)
ggccgcgggaattcgattTACATGAGGGCACGGAAGAT
60.48
269





Diego
Diego-left (MAPH)
gccgcgaattcactagtgACTTATTCACGGGCATCCAG
59.96





Diego
Diego-right (MAPH)
ggccgcgggaattcgattAAGCTCCACGTTCCTGAAGA
59.99
185





Diego
Wr-left (MAPH)
gccgcgaattcactagtgGGCTTCAAGGTGTCCAACTC
59.70





Diego
Wr-right (MAPH)
ggccgcgggaattcgattAGGATGAAGACCAGCAGAGC
59.56
158





Yt
Yt-left (MAPH)
ggccgcgggaattcgattCCTTCGTGCCTGTGGTAGAT
60.13





Yt
Yt-right (MAPH)
gccgcgaattcactagtgTTCTGGGACTTCTGGGAATG
60.04
235





Lutheran
Lu-left (MAPH)
gccgcgaattcactagtgGGACCCAGAGAGAGAGAGACTG
59.61





Lutheran
Lu-right (MAPH)
ggccgcgggaattcgattGGGAGTCCAGCTGGTATGG
60.48
220







*Tm values are without MAPH tags.







References



  • Akane A, Mizukami H and Shiono H. 2000. Classification of standard alleles of the MN blood group system. Vox Sang 79, 183-187.

  • Belgrader P, Marino M M, Lubin M and Barany F. 1996. A Multiplex PCR-Ligase Detection Reaction Assay for Human Identity Testing. Genome Sci. Technol. 1, 77-87.

  • Berry J E, Murphy C M, Smith G A, Ranasinghe E, Finberg R, Walton J, Brown J, Navarrete C, Metcalfe P and Ouwehand W H. 2000. Detection of Gov system antibodies by MAIPA reveals an immunogenicity similar to the HPA-5 alloantigens. Br J Haematol. 110, 735-742.

  • Beuningen R van, van Damme H, Boender P, Bastiaensen N, Chan A and Kievits T. 2001. Fast and specific hybridisation using flow-through microarrays on porous metal oxide. Clin. Chem. 47, 1931-1933.

  • Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C and Little S. 1997. The elimination of primer-dimer accumulation in PCR. Nucl. Acids Res. 25, 3235-3241.

  • Chamberlain J S, Gibbs R A, Ranier J E, Nguyen P N, and Caskey C T. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucl. Acids Res. 16, 11141-11156.

  • Cheek B J, Steel A B, Torres M P, Yu Y Y and Yang H. 2001. Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal Chem. 73, 5777-5783.

  • Evans J G and Lee-Tataseo C. 2002. Determination of the factor V Leiden single-nucleotide polymorphism in a commercial clinical laboratory by use of NanoChip microelectronic array technology. Clin Chem. 48, 1406-1411.

  • Fan J B, Chen X, Halushka M K, Bemo A, Huang X, Ryder T, Lipshutz R J, Lockhart D J and Chakravarti A. 2000. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853-860.

  • Fodor S P, Read J L, Pirrung M C, Stryer L, Lu A T and Solas D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767-773.

  • Guo Z, Gatterman M S, Hood L, Hansen J A and Petersdorf E W. 2001. Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res. 12, 447-457.

  • Hacia J G, Brody L C, Chee M S, Fodor S P and Collins F S. 1996. Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nat Genet. 14, 441-447.

  • Heath K E, Day I N M and Humphries S E. 2000. Universal primer quantitative fluorescent multiplex (UPQFM) PCR: a method to detect major and minor rearrangements of the low density lipoprotein receptor gene. J. Med. Genet. 37, 272-280.

  • Hinds D A, Stokowski R P, Patil N, Konvicka K, Kershenobich D, Cox D R and Ballinger D G. 2004. Matching strategies for genetic association studies in structured populations. Am J Hum Genet. 74, 317-325.

  • Huang J X, Mehrens D, Wiese R, Lee S, Tam S W, Daniel S, Gilmore J, Shi M and Lashkari D. 2001. High-throughput genomic and proteomic analysis using microarray technology. Clin Chem. 47, 1912-1916.

  • Iwasaki H, Ezura Y, Ishida R, Kajita M, Kodaira M, Knight J, Daniel S, Shi M and Emi M. 2002. Accuracy of genotyping for single nucleotide polymorphisms by a microarray-based single nucleotide polymorphism typing method involving hybridization of short allele-specific oligonucleotides. DNA Res. 9, 59-62.

  • Jobs M, Howell W M, Stromqvist L, Mayr T and Brookes A J. 2003. DASH-2: flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays. Genome Res. 13, 916-924.

  • Kajiyama T, Miyahara Y, Iricka L J, Wilding P, Graves D J, Surrey S and Fortina P. 2003. Genotyping on a thermal gradient DNA chip. Genome Res. 13, 467-475.

  • Lindroos K, Sigurdsson S, Johansson K, Ronnblom L and Syvanen A C. 2002. Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system. Nucleic Acids Res. 30, e70.

  • Lu M, Shortreed M R, Hall J G, Wang L, Berggren T, Stevens P W, Kelso D M, Lyamichev V, Neri B and Smith L M. 2002. A surface invasive cleavage assay for highly parallel SNP analysis. Hum. Mutat. 19, 416-422.

  • Maaskant-van Wijk P A, Faas B H, de Ruijter J A, Overbeeke M A, von dem Borne A E, van Rhenen D J and van der Schoot C E. 1999. Genotyping of RHD by multiplex polymerase chain reaction analysis of six RHD-specific exons. Transfusion 39, 546.

  • Metcalfe P, Watkins N A, Ouwehand W H, Kaplan C, Newman P, Kekomaki R, De Haas M, Aster R, Shibata Y, Smith J, Kiefel V and Santoso S. 2003. Nomenclature of human platelet antigens. Vox Sang. 85, 240-245.

  • Miller S A, Dykes D D and Polesky H F. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215.

  • Mujumdar R B, Ernst L A, Mujumdar S R, Lewis C J and Waggoner A S. 1993. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4, 105-111.

  • Park S J, Taton T A and Mirkin C A. 2002. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503-1506.

  • Pastinen T, Kurg A, Metspalu A, Peltonen L and Syvanen A C. 1997. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606-614.

  • Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L and Syvanen A C. 2000. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 10, 1031-1042.

  • Prix L, Uciechowski P, Bockmann B, Giesing M and Schuetz A J. 2002. Diagnostic biochip array for fast and sensitive detection of K-ras mutations in stool. Clin. Chem. 48, 428-435.

  • Randen I, Sorensen K, Killie M K and Kjeldsen-Kragh J. 2003. Rapid and reliable genotyping of human platelet antigen (HPA)-1, -2, -3, -4, and -5 a/b and Gov a/b by melting curve analysis. Transfusion 43, 445-450.

  • Reid M E. 2003. Applications of DNA-based assays in blood group antigen and antibody identification. Transfusion 43, 1748-1757.

  • Seltsam A, Wagner F F, Salama A and Flegel W A. 2003. Antibodies to high-frequency antigens may decrease the quality of transfusion support: an observational study. Transfusion 43, 1563-1566.

  • Shuber A P, Grondin V J and Klinger K W. 1995. A simplified procedure for developing multiplex PCRs. Genome Research 5, 488-493.

  • Tax M G, van der Schoot C E, van Doom R, Douglas-Berger L, van Rhenen D J and Maaskant-vanwijk P A. 2002. RHC and RHc genotyping in different ethnic groups. Transfusion 42, 634-444.

  • Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittnmann M, Morris M S, Shen N, Kilbum D, Rioux J, Nusbaum C, Rozen S, Hudson T J and Lander E S. 1998. Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science 280, 1077-1082.

  • Wen W H, Bernstein L, Lescallett J, Beazer-Barclay Y, Sullivan-Halley J, White M and Press M F. 2000. Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res. 60, 2716-2722.

  • Wen S Y, Wang H, Sun O J, Wang S Q. 2003. Rapid detection of the known SNPs of CYP2C9 using oligonucleotide microarray. World J Gastroenterol. 9, 1342-1346.

  • White S, Kalf M, Liu Q, Villerius M, Engelsma D, Kriek M, Vollebregt E, Bakker B, van Ommen G J, Breuning M H and den Dunnen J T. 2002. Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridisation. Am. J. Hum. Genet. 71, 365-374.


Claims
  • 1. A method to amplify and detectable label a region of the loci of at least two different blood cell antigens that contain a site of a nucleotide polymorphism of said blood cell antigen which method comprises subjecting DNA from an individual of a mammalian species to a multiplex Polymerase Chain Reaction (PCR), wherein said each PCR of said multiplex employs at least one pair of chimeric blood cell antigen-specific primers for each blood cell antigen to be genotyped and at least one detectably labeled universal primer, wherein said at least one universal primer has a unique sequence not occurring in the DNA of said mammalian species, and wherein each chimeric primer pair comprises a left chimeric primer and a right chimeric primer, each comprising a blood cell antigen-specific part at the 3′ end and a universal part at the 5′ end, wherein the nucleotide sequence of the universal part of the chimeric primers corresponds to the nucleotide sequence of said at least one universal primer, and wherein said blood cell antigen-specific parts of the chimeric primer pair enclose a region of the locus of the blood cell antigen which contains the site of a nucleotide polymorphism of said blood cell antigen.
  • 2. The method of claim 1, wherein said at least one detectably labeled universal primer is used in a molar amount which is at least 100 times the molar amount of each chimeric primer.
  • 3. The method of claim 1, wherein said each PCR employs a pair of detectably labeled universal primers each with a unique sequence not occurring in the DNA of said mammalian species, and wherein for each chimeric primer pair the nucleotide sequence of the universal part of one member of the chimeric primer pair corresponds to the nucleotide sequence of one member of the universal primer pair and the nucleotide sequence of the universal part of the other member of the chimeric primer pair corresponds to the nucleotide sequence of the other member of the universal primer pair.
  • 4. The method of claim 3, wherein one of said universal primers has the base sequence gcegcgaattcactagtg (SEQ ID NO:2) and the other universal primer has the base sequence ggccgcgggaattcgatt (SEQ ID NO:1).
  • 5. The method of claim 1, wherein each universal primer carries a fluorescent label at its 5′ end.
  • 6. The method of claim 1, wherein said mammalian species is human, said DNA is genomic DNA, and said blood cell antigens comprise at least two members selected from the group consisting of HPA1, HPA2, HPA3, HPA4, HPA5, Gov, JK1/2, FY1/2, GATAbox, KEL1/2, KEL3/4, RHCEex2/RHex2, RHCEex5/RHex5, RHDy, RHD, BigC, MN, U and JO.
  • 7. The method of claim 6, wherein said chimeric primer pairs comprise at least two, pairs selected from the group consisting of:
  • 8. The method of claim 1, wherein the DNA polymerase used in the multiplex PCR is a heat-resistant polymerase and each cycle of the multiplex PCR comprises a heat denaturation step of 15 to 60 sec at a temperature of 90 to 98° C., an annealing step of 60 to 120 sec at a temperature of 54 to 60° C., and a primer extension step of 60 to 120 sec at a temperature of 68 to 76° C.
  • 9. The method of claim 1, wherein said multiplex PCR uses, based on a reaction volume of 50 μl , about 100 ng of genomic DNA from said individual, about 5 nM of each chimeric primer, about 0.2 μl of each detectably labeled universal primer, about 25 μl of 2× MasterMix containing buffer, dNTP's and DNA polymerase.
  • 10. The method of claim 1, which further comprises determining the genotype for each of said blood cell antigens by hybridizing the products of the multiplex PCR amplification, after denaturation, to blood cell antigen allele-specific oligonucleotide probes, and analyzing the hybridization pattern.
  • 11. The method of claim 10, wherein the allele-specific probes have a length of 15 to 40 nucleotides.
  • 12. The method of claim 10, wherein the probes comprise for each allele of a blood cell antigen at least two different sense probes and at least two different antisense probes, each of them covering the site of the nucleotide polymorphism but at varying positions.
  • 13. The method of claim 10, wherein probes comprise at least 72 different probes selected from the group consisting of:
  • 14. The method of claim 10, wherein the oligonucleotide probes comprise at their 5′ end a linker and a reactive group for attachment to an array support.
  • 15. The method of claim 10, wherein the probes include one or more oligonucleotides with a sequence not occurring in the DNA of said mammalian species to allow for background subtraction.
  • 16. The method of claim 10, wherein the probes include one or more positive hybridization controls, and its detectably labeled complement is added to the products of the multiplex PCR amplification.
  • 17. The method of claim 10, wherein the probes, before adding the products of the multiplex PCR amplification, are subjected to prehybridization and DNA denaturation treatments.
  • 18. The method of claim 10, wherein the denatured products of the multiplex PCR amplification are applied to the probes without prepurification.
  • 19. The method of claim 10, wherein for each blood cell antigen the ratio of the signal intensities for each of the alleles is used to assign the genotype.
  • 20. A kit for genotyping blood cell antigens by the method of claim 1, comprising one pair of blood cell antigen-specific chimeric primers for each blood cell antigen to be genotyped and at least one detectably labeled universal primer.
  • 21. The kit of claim 20, further comprising a DNA array of probes.
  • 22. A set of blood cell antigen-specific chimeric primer pairs useful in a multiplex PCR, comprising at least two primer pairs selected from the group as defined in claim 7.
  • 23. A set of blood cell antigen allele-specific oligonucleotide probes useful for genotyping blood cell antigens, comprising at least 72 different probes selected from the group as defined in claim 13.
  • 24. The method of claim 10, wherein said probes are contained in a supported array.
  • 25. The method of claim 15, wherein said probes are selected from the group consisting of
  • 26. The method of claim 16, wherein said positive hybridization control is
Priority Claims (1)
Number Date Country Kind
04076046.4 Apr 2004 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/NL05/00236 3/31/2005 WO 7/18/2007