The present invention relates generally to display systems and, more specifically, to light-transmissive display systems that become visible when illuminated.
In the world of consumer electronic devices, there has been an ever-present demand for improved appearance, improved functionality, and improved aesthetics. Industrial design has become a highly skilled profession that focuses on fulfilling this need for enhanced consumer product appearance, functionality, and aesthetics.
Much of the aesthetic appeal of an electronic device or other consumer product may quickly be compromised if there are too many display elements, lights, and indicators, or if too much of the visible display area is occupied by display elements that are not needed or relevant at all times. When not needed, these “passive” or inactivated visual display elements may remain perceptible to the user, even though in the “off” state. This is not only displeasing from an aesthetic standpoint, but it can be an annoying distraction that interferes with the perception and understanding of other visual display elements that are of greater importance or should be observed at a given moment.
Therefore, it can be seen that there is a need to present displays, lights, and other visual indicators for a user in a manner that is readily understandable, yet uncluttered and aesthetically pleasing.
In one aspect, a display system comprises a housing having an interior surface and an exterior surface; a light source located within the housing; and a plurality of micro perforations disposed to extend from the interior surface to the exterior surface of the housing, wherein the plurality of micro perforations pass through the housing at different angles with respect to a plane of the exterior surface of the housing.
In another aspect, an electronic computing apparatus comprises a plurality of micro perforations disposed to extend from an interior surface to an exterior surface of a housing of the electronic computing device, the plurality of micro perforations including at least a first set of micro perforations disposed at a first angle relative to an external plane of the housing, and a second set of micro perforations disposed at a second angle relative to the external plane of the housing.
In a further aspect, a mobile computing device comprises a computing device capable of receiving, processing, and outputting data; a plurality of keys having a key top coupled to the computing device and configured to generate touching signals; a plurality of micro perforations disposed to extend from an interior surface to an exterior surface of a key top on the keys; and a light source under each of the plurality of the key tops.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles, since the scope of the embodiments is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features.
Broadly, exemplary embodiments comprise an aesthetically pleasing visual display that may be backlit. More specifically, exemplary embodiments may provide visual displays that may include a micro perforated and backlit display having alternative display capabilities. Such displays may be used on electronic or other personal devices. A plurality of micro perforations may be arranged into an overall pattern. Each micro perforation may have a diameter of about 100 microns or less, which is not visible unless seen very closely. In some embodiments, a first set of micro perforations may be cut at a first angle through a back cover of a lid of a laptop computer, for example, and a second set of micro perforations may be cut at a second angle through the back cover. When a user opens the lid, a logo pattern at the back cover of the lid may change as light passing through the first set of micro perforations that may be visible at a first angle of the lid and light passing through the second set of micro perforations that may be visible at a second angle of the lid. In some embodiments, a plurality of micro perforations may be formed through a key top of a keyboard.
Referring to
The notebook PC 10 may include a processor (not shown) within the lower housing 120. A liquid crystal display (LCD) 114, which may be a touch sensitive screen, for example, may be disposed on a front cover 111 of the upper housing 110. The liquid crystal display 114 may be coupled to be operable by the processor to display data to a user of the notebook PC 10.
The upper housing 110 and the lower housing 120 may move pivotally around the linking member 122. The upper housing 110 may be rotatable relative to the lower housing 120. The lower housing 120 may include a top cover 126 and an input device, such as a keyboard 124.
Referring to
The Lenovo® logo 182 and the ThinkPad® logo 192 may comprise a pattern of numerous micro perforations 194 formed in the material of the top cover 126. The Lenovo® logo 182 and the ThinkPad® logo 192 can be, for example, a micro perforated and backlit display having a different surface finish than the rest of top cover 126. The backlit display may be illuminated by a light source 220 (shown in
In exemplary embodiments, micro perforations formed in the top cover 126 for such a display may be small enough so that they cannot be readily distinguished from the base material surface by the naked human eye, but are large enough so that light may pass therethrough and be seen by the naked human eye when such light is provided behind the micro perforations. In general, such micro perforations may extend from one side of the base material to another side, such that light may pass therethrough. Such micro perforations may be about 50 microns or less in diameter, and typically about 20 to 30 microns in diameter. It is thought that a diameter of about 30 microns or less tends to result in such micro perforations being “invisible” to the naked eye for most observers.
Such micro perforation patterns may be formed on a surface of an opaque base object where the subject visual display is desired. Although metallic surfaces are used frequently, such as, stainless steel, aluminum, titanium, copper, magnesium and the like, for example, other base objects that are readily amenable to the formation of such micro perforations may be used.
Micro perforations may be cut by lasers at slanted angles such that a user may see the Lenovo® logo 182, but not the ThinkPad® logo 192 from a first direction 180. In the same way, a user may see the ThinkPad® logo 192 but not the Lenovo® logo 182 from a second direction 190.
Referring to
Referring to
At least a portion of the plurality of micro perforations 212 may include one or more various translucent particles, such as resins 214, for example. The resins 214 inside the micro perforations may be selected to have different optical characteristics such that, when the backlight 220 emits light rays through the resins inside each of micro perforations, users may see various colors of light rays coming out of the micro perforations.
In operation of an exemplary embodiment,
Referring now to
Although the use of a micro perforated and backlit display is quite aesthetically pleasing to a user, there is typically no perceptible display or item when the light source is turned off. Although this may be preferable for some applications, it may be desirable for the backlit display item to be seen in some way even when the light source is turned off. For example, a logo or other trademark may be an item that a manufacturer might want on display at all times. Of course, a wide variety of other instances may also exist, such as advertisements, disclaimers, and other texts, for example. In such instances, it is desirable that the micro perforated and backlit display have alternative display capabilities when the backlight source is turned off. For example, the resins 214 inside the micro perforations may be replaced by fluorescent or phosphorescent dyes that may glow in the dark.
It should be understood, of course, that the foregoing relate to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5818357 | Motoyama et al. | Oct 1998 | A |
6762740 | Kimura | Jul 2004 | B1 |
7778015 | Weber et al. | Aug 2010 | B2 |
7880131 | Andre et al. | Feb 2011 | B2 |
7884315 | Andre et al. | Feb 2011 | B2 |
7960684 | Payne | Jun 2011 | B2 |
8390481 | Pance et al. | Mar 2013 | B2 |
20040074862 | Musaragno | Apr 2004 | A1 |
20060012949 | Hutchinson et al. | Jan 2006 | A1 |
20100008030 | Weber et al. | Jan 2010 | A1 |
20120092816 | Moran et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
59103232 | Jun 1984 | JP |
2000-94872 | Apr 2000 | JP |
2003-11558 | Jan 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20130147715 A1 | Jun 2013 | US |