Information
-
Patent Grant
-
6663471
-
Patent Number
6,663,471
-
Date Filed
Wednesday, June 6, 200123 years ago
-
Date Issued
Tuesday, December 16, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 451 47
- 451 48
- 451 54
- 451 57
- 451 58
- 451 178
- 451 180
- 451 190
- 451 194
- 451 209
- 451 242
- 451 246
- 451 253
-
International Classifications
-
Abstract
A half toroidal CVT disk having an inner surface portion, an outer surface portion and a toroidal surface having a given machining allowance is centered with said inner surface portion worked prior to the heat treatment of said half toroidal CVT disk as the standard thereof, and then is chucked by a chuck mechanism. The toroidal surface of the chucked half toroidal CVT disk is ground by a grinding mechanism with the grinding wheel for grinding the half toroidal CVT disk in a state that one of said half toroidal CVT disk and said tool is inclined at a given angle with respect to the other.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of grinding a half toroidal CVT disk used as a continuously variable transmission in an automobile.
2. Description of the Related Art
A half toroidal CVT disk includes a disk-shaped disk main body
1
; and, as shown in
FIG. 5
, the disk main body
1
has an inner surface portion
2
consisting of a through hole formed in the central portion thereof, an outer surface portion
3
, and a toroidal surface
4
formed on one surface of the disk main body
1
. On one end side of the inner surface portion
2
, there is formed an inner surface involute spline portion
5
; and, on the other end side thereof, there is formed an inside diameter surface
6
. And, the toroidal surface
4
, inner surface involute spline portion
5
and inside diameter surface
6
, except for the outer surface portion
3
, must be respectively ground so as to have concentricity accuracy of a given value or higher.
For this reason, conventionally, for example, as disclosed in JP-A-2000-271844, in a state where the outer surface portion
3
is centered with the inner surface involute spline portion
5
as the standard thereof and is chucked in the thus centered state, the outer surface portion
3
is ground; and, with the thus ground outer surface portion
3
as the standard thereof, the toroidal surface
4
and inner surface portion
2
are respectively ground in separate steps.
Also, as a compound grinding machine, conventionally, there is known a compound grinding machine which, as disclosed in JP-A-10-235545, comprises a plurality of spindle devices each including a work chuck for chucking a work, while these spindle devices are carried on a swing table which is capable of indexingly swinging in such a manner to be able to correspond to a plurality of operation positions. At these operation positions, there are disposed two or more kinds of grinding devices and, using the grinding devices, the works chucked by the work chucks are respectively ground to thereby shorten the grinding time.
In case where the toroidal surface and inner surface portion of the half toroidal CVT disk are ground in separate steps, it is necessary to grind the outer surface portion as the common standard surface for securing the concentricity of these grinding surfaces. However, to grind the outer surface portion is not necessary for the function of the half toroidal CVT disk and thus the step of grinding the outer surface portion provides a great factor in the increased cost of the half toroidal CVT disk.
Also, there must be secured concentricity between the inner surface involute spline portion to be worked prior to the heat treatment of the half toroidal CVT disk and the toroidal surface and inner surface portion to be ground.
Further, in case where the outer surface, inner surface portion and toroidal surface are ground sequentially in separate steps, the half toroidal CVT disk not only must be mounted onto and removed from the grinding machines but also must be delivered between the grinding machines in these respective grinding steps, which makes it troublesome to grind the half toroidal CVT disk and thus provides an important factor in the increased cost thereof.
Still further, in the case of the toroidal surface grinding operation, there is a limit on the diameter of a grinding wheel and the direction of the rotary shaft of the grinding wheel must be set at an angle of 58°-65° (±15°) with respect to the direction of the rotary shaft of the work.
SUMMARY OF THE INVENTION
The present invention aims at eliminating the drawbacks found in the above-mentioned conventional half toroidal CVT disk grinding methods. Accordingly, it is a main object of the invention to provide a half toroidal CVT disk grinding method which can secure concentricity between the inner surface portion and toroidal surface of the half toroidal CVT disk while omitting the step of grinding the outer surface portion thereof, thereby being able to reduce the number of manufacturing steps of the half toroidal CVT disk and thus the manufacturing cost thereof.
Also, it is a second object of the invention to provide a half toroidal CVT disk grinding method which is capable of not only grinding the inner surface portion and toroidal surface of the half toroidal CVT disk simultaneously using a compound grinding machine while they remain chucked by the same chuck mechanism but also securing concentricity between the inner surface portion and toroidal surface.
Further, it is a third object of the invention to provide a half toroidal CVT disk grinding method which, in case where the inner surface portion of the half toroidal CVT disk is hard broached after the half toroidal CVT disk is thermally treated, can grind the toroidal surface of the half toroidal CVT disk with the thus hard broached inner surface portion as the standard thereof to omit the step of grinding the outer surface portion the half toroidal CVT disk, thereby being able to reduce the number of manufacturing steps of the half toroidal CVT disk and thus the manufacturing cost thereof.
In attaining the above objects, according to a first aspect of the invention, there is provided a method of grinding a half toroidal CVT disk by a grinding mechanism with a tool for grinding the half toroidal CVT disk, the half toroidal CVT disk having an inner surface portion, an outer surface portion and a toroidal surface having a given machining allowance, the method including the steps of: centering the half toroidal CVT disk with a first part of the inner surface portion worked prior to the heat treatment of the half toroidal CVT disk as the standard thereof; chucking the centered half toroidal CVT disk by a chuck mechanism; grinding the toroidal surface of the chucked half toroidal CVT disk in a state that one of the half toroidal CVT disk and the tool is inclined at a given angle with respect to the other; and grinding a second part of the inner surface portion simultaneously with the toroidal surface in a compound manner.
Further, according to a second aspect of the invention, there is provided a method of grinding a half toroidal CVT disk by a grinding mechanism with a tool for grinding the half toroidal CVT disk, the half toroidal CVT disk having an inner surface portion, an outer surface portion and a toroidal surface having a given machining allowance, the method comprising the steps of: hard-broaching the inner surface portion after the heat treatment of the half toroidal CVT disk; centering the half toroidal CVT disk with the hard broached inner surface portion as the standard thereof; chucking the centered half toroidal CVT disk by a chucking mechanism; and grinding the toroidal surface of the chucked half toroidal CVT disk in a state that one of the half toroidal CVT disk and the tool is inclined at a given angle with respect to the other.
Now, according to the first aspect of the invention, the half toroidal CVT disk is centered with the inner surface portion worked prior to the heat treatment of the half toroidal CVT disk as the standard thereof and is chucked in the thus centered state by the chuck mechanism and, in the centered state, the toroidal surface is ground. Thanks to this, even in case where the step of grinding the outer surface portion of the half toroidal CVT disk is omitted, there can be secured concentricity between the inner surface portion and toroidal surface of the half toroidal CVT disk. This can decrease the number of manufacturing steps of the half toroidal CVT disk, so that the manufacturing cost of the half toroidal CVT disk can be reduced. Further, when the toroidal surface is ground, the inner surface portion is ground simultaneously in a compound manner. This makes it possible not only to secure concentricity between the inner surface portion and toroidal surface of the half toroidal CVT disk but also to shorten the grinding operation time, thereby being able to reduce the manufacturing cost of the half toroidal CVT disk.
Further, according to the second aspect of the invention, in case where the inner surface portion is hard broached after the heat treatment of the half toroidal CVT disk, in a state where the half toroidal CVT disk is centered with the thus hard broached inner surface portion and is chucked in the thus centered state by the chuck mechanism, the toroidal surface is ground. Due to this, there is eliminated the step of grinding the outer surface portion of the half toroidal CVT disk to thereby decrease the number of manufacturing steps of the half toroidal CVT disk, so that the manufacturing cost of the half toroidal CVT disk can be reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic plan view of a grinder, showing a first embodiment of a method for grinding a half toroidal CVT disk according to the invention;
FIG. 2
is a front view of a chuck mechanism employed in the first embodiment;
FIG. 3
is a section view taken along the III—III line shown in
FIG. 2
;
FIG. 4
is a longitudinal side section view of a half toroidal CVT disk including an inner surface ball spline groove, showing a second embodiment of a method for grinding a half toroidal CVT disk according to the invention; and,
FIG. 5
is a longitudinal side section view of a conventional half toroidal CVT disk including an ordinary inner surface involute spline portion.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Now, description will be given below of the preferred embodiments of a method for grinding a half toroidal CVT disk according to the invention with reference to the accompanying drawings.
FIGS. 1
to
3
show a first embodiment of a method for grinding a half toroidal CVT disk according to the invention. As shown in
FIG. 1
, a grinding machine
10
includes a grinding mechanism
11
, a drive mechanism
12
and an inner surface grinding unit
13
. The grinding mechanism
11
includes a cutting table
14
, while the cutting table
14
can be driven in the direction of an arrow mark A shown in
FIG. 1 through a
ball screw
15
by a servo motor
16
.
The cutting table
14
includes a drive motor (not shown) which can drive and rotate a grinding wheel
17
, that is, the rotational force of this drive motor can be transmitted to the grinding wheel
17
through a spindle
18
. The grinding surface of the outer peripheral surface of the grinding wheel
17
is formed in a curved shape having a radius corresponding to the toroidal surface
19
a
of a half toroidal CVT disk (which is hereinafter referred to as a work
19
) which is a finished product with the grinding operation thereof completed. Therefore, since the work
19
has a machining allowance in a state before it is ground, the radius of the surface to be ground of the work
19
is set smaller than the diameter of the grinding surface of the outer peripheral surface of the grinding wheel
17
. Here, an angle a between the rotation center axis a of the work
19
and the center axis b of the grinding wheel is set in the range of 58°-65° (±15°).
The drive mechanism
12
includes a drive motor (not shown), while this drive motor includes a chuck mechanism
20
for chucking the work
19
. The chuck mechanism
20
is structured as shown in
FIGS. 2 and 3
. That is, a chuck main body
21
includes a work receiving portion
22
formed in the front portion thereof and, in the central portion of the work receiving portion
22
, there is disposed a collet
24
which is connected to a draw bar
23
.
And, in case where the work
19
is set on the work receiving portion
22
, the collet
24
is inserted into the inner surface involute spline portion
19
b
of the work
19
. In this state, in case where the draw bar
23
is pulled in the direction of an arrow mark B shown in
FIG. 3
, the collet
24
is allowed to spread, thereby being able to hold the inner surface involute spline portion
19
b
of the work
19
. At the then time, the work
19
is also pulled in the same direction and is thereby butted against the standard surface of the work receiving portion
22
.
Further, on the outer periphery of the work receiving portion
22
of the chuck main body
21
, there is disposed a floating chuck mechanism
25
. The floating chuck mechanism
25
includes three pawls
26
so that the outer periphery of the work
19
can be held at three positions spaced at regular intervals of 120° by these three pawls
26
, while the three pawls
26
are respectively connected to their associated cylinders
29
through their associated levers
28
which can be rotated about their associated pivots
27
.
And, in case where the levers
28
are pulled by the cylinders
29
respectively, the levers
28
can be respectively rotated about their pivots
27
and the pawls
26
can be respectively moved toward the work
19
, thereby holding the outer surface portion
19
c
of the work
19
. At the then time, even in case where the inner surface portion
19
d
and outer surface portion
19
c
of the work
19
happen to be out of concentricity with each other, due to the action of the floating chuck mechanism
25
, there is eliminated the possibility that the pawls
26
can be made free or can be strongly pressed against the outer surface portion
19
c
of the work
19
in part.
Now, the inner surface grinding unit
13
, as shown in
FIG. 1
, includes an inner surface grinding cutting table
31
and an inner surface grinding traverse table
32
which is carried on the inner surface grinding cutting table
31
. The inner surface grinding cutting table
31
can be driven in the direction of an arrow mark c shown in
FIG. 1 through a
ball screw
33
by a servo motor
34
, while the inner surface grinding traverse table
32
can be driven in the direction of an arrow mark d shown in
FIG. 1 through a
ball screw
35
by a servo motor
36
.
The inner surface grinding traverse table
32
carries an inner surface grinding spindle
37
thereon and, on the inner surface grinding spindle
37
, there is mounted an inner surface grinding wheel
30
. And, the inner surface grinding wheel
30
is used to grind the inner surface portion
19
d
of the work
19
.
Next, description will be given below of the operation of the above-described first embodiment of a half toroidal CVT disk according to the invention.
That is, the work
19
chucked by the chuck mechanism
20
is rotated using the drive motor (not shown) of the drive mechanism
12
and, at the same time, the grinding wheel
17
of the grinding mechanism
11
is rotated using the drive motor (not shown). In this state, in case where the cutting table
14
is moved in the A direction using the servo motor
16
, the grinding wheel
17
moves forward in the radial direction C shown in
FIG. 3
with respect to the toroidal surface
19
a
of the work
19
and thus cuts the toroidal surface
19
a
to thereby grind the same.
On the other hand, at the then time, since not only the inner surface grinding wheel
30
mounted on the inner surface grinding spindle
37
is rotated but also the inner surface grinding cutting table
31
is moved in the arrow mark c direction by the servo motor
34
to execute a cutting operation, the inner surface portion
19
d
of the work
19
is ground simultaneously by the inner surface grinding wheel
30
, that is, the inner surface portion
19
d
is ground in a compound manner.
In this manner, in a state where the toroidal surface
19
a
is centered with the inner surface involute spline portion
19
b
worked prior to execution of the heat treatment of the half toroidal CVT disk serving as the work
19
as the standard thereof and is chucked by the chuck mechanism
20
, the toroidal surface
19
a
is ground. Thanks to this, even in case where the step of grinding the outer surface portion
19
c
is omitted, concentricity between the inner surface portion
19
d
and toroidal surface
19
a
can be secured. This can reduce the number of the manufacturing steps of the half toroidal CVT disk, which in turn makes it possible to reduce the manufacturing cost thereof.
By the way, in the case of a light grinding operation, only the collet chucking function of the chuck mechanism
20
can provide sufficient holding rigidity for the work
19
. However, in the case of a grinding operation to be executed in the present embodiment, the toroidal surface
19
a
must be ground in a wide range and, in some cases, the grinding resistance in the radial direction can range up to 40 kgf. In such case, there is a possibility that the work
19
can be moved or shifted in position, which lowers the grinding accuracy (roundness and chatter). Therefore, in order to obtain more sufficient holding rigidity, the outer surface portion
19
c
of the work
19
is held by the floating chuck mechanism
25
. However, it should be noted here that the floating chuck mechanism
25
is not always necessary.
Also, in the above-mentioned first embodiment, when the toroidal surface
19
a
is ground in a state where it is centered with a part of the inner surface involute spline portion
19
b
of the half toroidal CVT disk serving as the work
19
as the standard thereof and is chucked by the chuck mechanism
20
, the inner surface portion
19
d
is ground simultaneously with the grinding of the toroidal surface
19
a
, that is, in a compound manner by the inner surface grinding wheel
30
. Thanks to this, concentricity between the inner surface portion
19
d
and toroidal surface
19
a
can be secured as well as the grinding operation time can be shortened, thereby being able to reduce the manufacturing cost of the half toroidal CVT disk.
Now,
FIG. 4
shows a second embodiment of a method for grinding a half toroidal CVT disk according to the invention. In the second embodiment, in the inner surface portion of a work
19
which consists of a different half toroidal CVT disk from the disk
19
employed in the first embodiment, there is formed an inner surface ball spline groove
19
e
. In the case of the work
19
having such inner surface ball spline groove
19
e
, after it is thermally treated, the inner surface ball spline groove
19
e
must also be worked.
For example, the inner surface ball spline groove
19
e
and inner surface portion
19
d
can be worked integrally by hard broaching. In this case, in a state where the thus hard broached inner surface portion
19
d
is chucked by the chuck mechanism
20
according to the first embodiment and the concentricity of the toroidal surface
19
a
with the hard broached inner surface portion
19
d
is secured, the toroidal surface
19
a
is ground using the grinding wheel
17
.
In case where only the inner surface ball spline groove
19
e
is hard broached but the inner surface portion
19
d
is not hard broached after the disk
19
is thermally treated, after the inner surface ball spline groove
19
e
is received by its associated ball and is then centered, in order to secure the rigidity and holding force of the disk
19
, the outer surface portion
19
c
is chucked by a floating chuck mechanism
25
similar to that of the first embodiment and the toroidal surface
19
a
is then ground.
In this manner, in case where the inner surface portion of the work is hard broached after the work is thermally treated, the toroidal surface of the work is ground with the thus hard broached inner surface as the standard thereof. This eliminates the need to grind the outer surface portion of the work, thereby being able to reduce the number of manufacturing steps of the half toroidal CVT disk. As a result of this, the manufacturing cost of the half toroidal CVT disk can be reduced.
While only certain embodiments of the invention have been specifically described herein, it will apparent that numerous modifications may be mede thereto without departing from the spirit and scope of the invention.
As has been described heretofore, according to the first aspect of the invention, even in case where the step of grinding the outer surface of a half toroidal CVT disk is omitted, concentricity between the inner surface portion and toroidal surface of the half toroidal CVT disk can be secured. This can decrease the number of manufacturing steps of the half toroidal CVT disk, so that the manufacturing cost of the half toroidal CVT disk can be reduced. Further, the inner surface portion and toroidal surface of the half toroidal CVT disk can be ground simultaneously in a compound manner by a compound grinding machine while they remain chucked simultaneously by the same chucking mechanism. This makes it possible not only to secure concentricity between the inner surface portion and toroidal surface of the half toroidal CVT disk but also to shorten the grinding operation time, thereby being able to enhance the productivity of the half toroidal CVT disk.
According to the second aspect of the invention, in case where the inner surface portion of the half toroidal CVT disk is hard broached after the disk is thermally treated, the toroidal surface of the half toroidal CVT disk can be ground with the thus hard broached inner surface portion as the standard thereof. This eliminates the step of grinding the outer surface of the half toroidal CVT disk and thus decreases the number of manufacturing steps of the half toroidal CVT disk, thereby being able to reduce the manufacturing cost of the half toroidal CVT disk.
Claims
- 1. A method of grinding a half toroidal CVT disk by a grinding mechanism with a tool for grinding said half toroidal CVT disk, the half toroidal CVT disk having an inner surface portion, an outer surface portion and a toroidal surface having a given machining allowance, said method comprising the steps of:centering said half toroidal CVT disk with a first part of said inner surface portion worked prior to a heat treatment of said half toroidal CVT disk as the standard thereof; chucking said centered half toroidal CVT disk by a chuck mechanism; grinding said toroidal surface of said chucked half toroidal CVT disk in a state that one of said half toroidal CVT disk and said tool is inclined at a given angle with respect to the other; and grinding a second part of said inner surface portion simultaneously with said toroidal surface in a compound manner.
- 2. A half toroidal CVT disk manufactured by the method of claim 1, wherein said outer surface portion is free from grinding after the heat treatment.
- 3. A method of grinding a half toroidal CVT disk by a grinding mechanism with a tool for grinding said half toroidal CVT disk, said half toroidal CVT disk having an inner surface portion, an outer surface portion and a toroidal surface having a given machining allowance, said method comprising the steps of:hard-broaching said inner surface portion after a heat treatment of said half toroidal CVT disk; centering said half toroidal CVT disk with said hard broached inner surface portion as the standard thereof; chucking said centered half toroidal CVT disk by a chuck mechanism; and grinding said toroidal surface of said chucked half toroidal CVT disk in a state that one of said half toroidal CVT disk and said tool is inclined at a given angle with respect to the other.
- 4. A half toroidal CVT disk manufactured by the method of claim 3, wherein said outer surface portion is free from grinding after the heat treatment.
Priority Claims (1)
Number |
Date |
Country |
Kind |
P. 2000-170635 |
Jun 2000 |
JP |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
6347980 |
Kamamura et al. |
Feb 2002 |
B1 |
6527666 |
Mori et al. |
Mar 2003 |
B1 |
Foreign Referenced Citations (3)
Number |
Date |
Country |
10-235545 |
Sep 1998 |
JP |
2000-24899 |
Jan 2000 |
JP |
2000-271844 |
Oct 2000 |
JP |