The present invention is related to a method of handling image sensing data and a related image sensing circuit, and more particularly, to a method of handling image sensing data and a related image sensing circuit for fingerprint sensing.
Fingerprint sensing technology is widely applied in a variety of electronic products such as a mobile phone, laptop, tablet, personal digital assistant (PDA), and portable electronics, for realizing identity recognition. The fingerprint sensing allows a user to perform identity recognition conveniently, where the user only needs to put his/her finger on a fingerprint sensor to login the electronic device instead of entering long and tedious username and password.
The fingerprint sensing may be performed via a capacitive image sensor or a light sensor, both of which are easily affected by noise interference, especially the interference from power noise. However, most power adapters in the market fail to provide satisfactory noise channelization performance. When the electronic device is charged and connected to a power adapter, the power noise may reduce the quality of the sensed fingerprint image. In a practical test on the fingerprint sensing function of an electronic product connected to a poor power adapter, it appears that the power noise generates a severe degradation on the sensing image, which may approach to a white image or a black image. Thus, the industry is working on enhancing noise immunity for the fingerprint sensing system.
It is therefore an objective of the present invention to provide a method of handling image sensing data and a related image sensing circuit for fingerprint sensing.
An embodiment of the present invention discloses a method of handling a plurality of sensing data. The method comprises generating a threshold code for the plurality of sensing data; comparing each of the plurality of sensing data with the threshold code to determine whether a data code of each of the plurality of sensing data is a valid data code or an invalid data code; filtering out at least one first sensing data which has the invalid data code among the plurality of sensing data; and generating a final data by averaging at least one second sensing data which has the valid data code among the plurality of sensing data.
An embodiment of the present invention further discloses an image sensing circuit, which comprises a receiver and a processor. The receiver is configured for generating a plurality of sensing data according to a plurality of sensing signals from an image sensor. The processor, coupled to the receiver, is configured for performing the following steps: generating a threshold code for the plurality of sensing data; comparing each of the plurality of sensing data with the threshold code to determine whether a data code of each of the plurality of sensing data is a valid data code or an invalid data code; filtering out at least one first sensing data which has the invalid data code among the plurality of sensing data; and generating a final data by averaging at least one second sensing data which has the valid data code among the plurality of sensing data.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
In order to enhance the quality of the fingerprint image generated from an image sensor, the image sensing result may be generated by averaging the values of multiple sensing data obtained in several consecutive scan cycles. In a scan cycle, each sensing pixel of the image sensor may generate a sensing signal, which is then converted to a sensing data via an analog to digital converter (ADC). The sensing data may be deviated upward or downward from its accurate value due to noise interference. By averaging the values of multiple sensing data in different scan cycles, the errors in the sensing data (including the upward or downward deviation) may be reduced or eliminated after the average operation.
Please refer to
However, the power noise from a power adapter may cause that the sensing image approaches to a white image or a black image. Correspondingly, the code value of the sensing data may approach to the minimum code or the maximum code. The minimum code or the maximum code may still generate a significant error in the final data after the averaging operation.
The present invention provides a method of filtering out those sensing data interfered with by the power noise and approaching to the minimum code or the maximum code before the averaging operation. Taking
Please refer to
In detail, the image sensing circuit 202 may include a receiver 210 and a processor 220. The receiver 210 may be an analog front-end circuit for receiving the sensing signals from the image sensor 200. The receiver 210 may include a plurality of ADCs for converting the sensing signals into a plurality of digital sensing data. The processor 220 then processes the sensing data to obtain the sensing results. The processor 220 may be a central processing unit (CPU), a controller, a microcontroller unit (MCU), or any other processing unit that is capable of processing the sensing data.
Please refer to
Step 300: Start.
Step 302: Generate a threshold code for the plurality of sensing data.
Step 304: Compare each of the plurality of sensing data with the threshold code to determine whether a data code of each of the plurality of sensing data is a valid data code or an invalid data code.
Step 306: Filter out at least one first sensing data which has the invalid data code among the plurality of sensing data.
Step 308: Generate a final data by averaging at least one second sensing data which has the valid data code among the plurality of sensing data.
Step 310: End.
According to the process 30, a threshold code is generated for the sensing data. The data code of each of the sensing data is compared with the threshold code, to determine whether the data code is a valid data code or an invalid data code. A sensing data may be filtered out if the sensing data has the invalid data code, i.e., the data code of the sensing data is the invalid data code. The rest sensing data, which have the valid data code, are averaged to generate the final data. In other words, the final data is calculated based on only the sensing data having the valid data code, where the sensing data having the invalid data code may be excluded.
Please refer to
For example, the threshold code TH may be configured to be 30 in an embodiment. In such a situation, a sensing data may be determined to be an invalid data if its data code is between 0 and 30 (approaching to a black image) or between 225 and 255 (approaching to a white image), and the sensing data may be filtered out before the averaging operation. A sensing data may be determined to be a valid data if its data code is between 30 and 225, and the sensing data may be averaged with other valid sensing data to generate the final data.
As shown in
It should be noted that the data codes range between 0 and 255, where there is a 256-value distribution of the data codes. Different code values may represent different capacitance sensed by a capacitive type fingerprint sensor, or may represent different light strength sensed by a light-sense fingerprint sensor. In general, the code values between the maximum code and the minimum code comply with a data range of the ADC generating the sensing data, e.g., the ADC in the receiver 210. For example, 256 values refer to 256 possible values of the output data of the ADC. In this embodiment, the ADC is an 8-bit ADC capable of outputting 28=256 different values, which are denoted by 0-255 in
Please note that the present invention aims at providing a method of handling the sensing data of fingerprint sensing. Those skilled in the art may make modifications and alternations accordingly. For example, the embodiments of the present invention are not only applicable to a fingerprint sensing system, but also applicable to any other type of image sensing system. In addition, the circuit structure shown in
Please refer to
Similar to those shown in
As mentioned in
Table 1 illustrates an exemplary embodiment of determining the validity of the data codes and generating the final data by averaging the valid data codes according to the present invention. The validity determination of the data codes is performed based on the criteria shown in
As mentioned above, the threshold code may be configured to any value that may define the range of valid data code and the range of invalid data code. The threshold code may be configured for filtering out the data codes corresponding to a nearly white or black image. The threshold code may be a fixed value and predetermined before the image sensing circuit 202 is integrated into the electronic product. For example, the IC provider may perform a test for an image sensing IC implemented with a corresponding touch panel of a mobile phone to find out the optimal value of the threshold code, and then configure the threshold code to its optimal value. Alternatively, the threshold code may be adjustable. For example, the threshold code may be adjusted in the engineering mode of the mobile phone, and/or may be adjusted based on environmental situations faced by the electronic product with the usage of fingerprint sensing function.
Please note that the method of filtering out invalid data codes before averaging the data codes according to embodiments of the present invention significantly enhances the performance of fingerprint sensing. Please refer to
To sum up, the present invention provides a method of handling image sensing data and a related image sensing circuit for fingerprint sensing. Several sensing data may be averaged to obtain a final data for determination of the fingerprint. Since the image sensing operation may be interfered with by power noise, a filtering scheme is applied to the sensing data to be averaged. According to a threshold code, the data codes of the sensing data may be determined to be valid or invalid. The valid data codes are averaged to obtain the final data, where the invalid data codes are filtered out and excluded in the averaging operation. Thus, the sensing data having invalid data codes, which may generate a significant error in the final data, are filtered out, so that the accuracy of the final data and the quality of the fingerprint image obtained from the final data may be enhanced, which in turn enhances the fingerprint sensing performance of the image sensing circuit.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.