1. Field
The disclosed and claimed concept relates generally to current transformers and, more particularly, to a method of identifying a particular current transformer that is situated about a particular conductor, and an associated metering device.
2. Related Art
Current sensor such as current transformers of various types are generally known. Typically, a current transformer may include an annular iron core about which a plurality of windings are wrapped. In use, an electrical conductor is situated in the hole of the annular iron core, and when an alternating current is passed through the conductor, the conductor serves as a primary conductor to induce a current in the windings, which serve as a secondary conductor. Depending upon the application, the wire used for the windings is connected with a meter which detects a current from the windings and which responsively provides an output which may be, for instance, a measurement of the current. However, while current transformers have been generally effective for their intended purposes, they have not been without limitation.
As can be understood from the manufacturing arts, current transformers that are manufactured using the same equipment even on the same day are not exactly identical to one another. As such, current transformers that are installed in a factory setting into another system are calibrated during the installation process. That is, an extremely precise calibration load and an extremely precise calibration meter are applied to the current transformer and the output from the current transformer is obtained. By way of example, the calibration might determine that the current which is output by the current transformer might be very slightly greater or less than what is expected given the current flowing through the primary conductor, or the current in the current transformer might be slightly out of phase with that of the primary conductor, or both. Additionally or alternatively, it is possible that at lower current levels in the primary conductor, the current in the current transformer is far less than what it should be.
When the current transformer is installed into a system in a factory setting, therefore, the aforementioned signal errors detected from the current transformer are used to calibrate whatever metering apparatus is connected with the current transformer. That is, a channel of the metering apparatus might have adjustable dials which are adjusted such that the output from the current transformer is corrected based upon the aforementioned errors such that the output from the metering apparatus correctly reflects the current flowing through the primary conductor. Other metering apparatuses might be calibrated in different fashions.
It is noted, however, that the ability to obtain accurate output from the current transformer in order to determine the aforementioned errors relies largely upon the availability of extremely accurate metering devices and extremely accurate calibration loads that can be applied to the current transformer. Equipment with such accuracy levels typically is found only in a factory setting. As such, while the calibration of current transformers can be accurately performed when current transformers are installed in a factory setting, difficulty has been experienced in attempting to calibrate a current transformer when it is installed into another system in the field.
Other difficulties have been encountered during field installation when a current transformer is to be installed on one of a plurality of conductors. That is, in an environment in which a plurality of conductors exist, while a current transformer can be installed to be situated about one of a plurality of conductors, the process of discerning the identity of any particular conductor as being, say, the conductor that serves a particular load or location, has been difficult.
It thus would be desirable to provide an improved current transformer or method or both that overcome these and other shortcomings associated with the relevant art.
An improved current transformer apparatus includes a current transformer upon which are stored a number of calibration values which can be used when connecting the current transformer to a metering device. An improved method of enabling calibration of the current transformer involves applying a high precision known load to the current transformer, deriving from a signal detected from the current transformer a number of calibration values for the current transformer, and storing some of the calibration values in a storage disposed on the current transformer. When the current transformer is installed, such as in a field installation, the metering device to which the current transformer is connected retrieves from the storage the calibration values and applies at least some of the calibration values to a signal detected from the current transformer to generate a calibrated output from the metering device. An improved method of determining that a current transformer is situated about a conductor includes applying a predefined load to a particular conductor from among a plurality of conductors and making a determination from a signal detected from a particular current transformer responsive to the predefined load that the particular current transformer is situated about the particular conductor. An improved metering device having an algorithm for identifying the predefined load is also disclosed.
Accordingly, an aspect of the disclosed and claimed concept is to enable a determination that a particular current transformer is situated about a particular conductor, such as during installation of the current transformer in a field installation.
These and other aspects of the disclosed and claimed concept are provided by an improved method of determining that a current sensor is situated about a conductor. The method can be generally stated as including applying a predefined load to a particular conductor from among a plurality of conductors, and making a determination from a signal detected from a particular current sensor responsive to the predefined load that the particular current sensor is situated about the particular conductor.
Other aspects of the disclosed and claimed concept are provided by an improved metering device that is structured to have a plurality of current sensors connected therewith and to identify a current sensor from among the plurality of current sensors as being situated about a conductor from among a plurality of conductors. The metering device can be generally stated as including a processor apparatus that includes a processor and a memory, a plurality of inputs connected with the processor apparatus, and at least a first output connected with the processor apparatus. The memory has stored therein a number of routines which, when executed on the processor in an environment in which a plurality of current sensors are connected with the plurality of inputs and a predefined load is applied to a particular conductor from among a plurality of conductors, causes the metering device to perform operations that include making a determination from a signal detected from a particular current sensor responsive to the predefined load that the particular current sensor is situated about the particular conductor.
A further understanding of the disclosed and claimed concept can be gained from the following Description when read in conjunction with the accompanying drawings wherein:
Similar numerals refer to similar parts throughout the specification.
An improved current sensor apparatus which, in the depicted exemplary embodiment, is a current transformer apparatus 4 in accordance with the disclosed and claimed concept is depicted in
As will be set forth in greater detail below, during field installation of the current transformer apparatus 4, one or more instances of the current transformer apparatus 4 can be installed about one or more conductors. A predefined load that has been applied to a particular conductor can result in a signal that is detected from a particular current transformer apparatus 4, which enables a determination that the particular current transformer apparatus 4 is situated about the particular conductor. It is noted, however, that the determination that a particular current transformer apparatus 4 is situated about a particular conductor can be performed without the use of the storage 12, meaning that such an improved method can employ any type of current transformer 8 to determine that the current transformer 8 is situated about a particular conductor.
As can be understood from
During the process of enabling calibration of the current transformer 8, a pair of leads 28 of the current transformer 8 are connected with the calibration meter and a memory programmer 24, and the communications system 20 is likewise connected with the calibration meter and memory programmer 24. A calibration load 32 which provides a known load to the current transformer 8 is applied to the current transformer 8. More particularly, the calibration load 32 draws a current in a primary calibration conductor 36 which extends through a hole formed in an annular iron core (not expressly depicted herein) of the current transformer 8 and through a neutral calibration conductor 40 that are connected with the calibration load 32.
While
Once the signals have been detected from the current transformer 8 and have been used by the calibration meter and memory programmer 24 to derive the number of calibration values for the current transformer 8, the calibration meter and memory programmer 24 programs the number of calibration values into the non-volatile memory 16 in any of a variety of well-understood fashions. The calibration meter and memory programmer 24 can additionally program into the non-volatile memory 16 the aforementioned identification data for the current transformer 8, or such identification data may have already been stored in the non-volatile memory 16 prior to connection with the calibration meter and memory programmer 24.
The primary calibration conductor 36 is then removed from the current transformer 8, and the current transformer apparatus 4 with its current transformer 8 and its programmed storage 12 can then be shipped for field installation. Advantageously, therefore, the current transformer 8 is shipped with a storage 12 that includes in its non-volatile memory data that includes one or more calibration values for the current transformer and/or one or more pieces of identification data that include data elements indicative of certain aspects of the current transformer 8. Since the calibration values are derived in a factory setting from a highly accurate calibration meter and memory programmer 24 and from a highly accurate calibration load 32, the calibration values are highly accurate and can be advantageously used in the field by a metering device to which the current transformer 8 is connected to generate a calibrated output from the current transformer 8. Moreover, if a plurality of instances of the current transformer apparatus 4 are being installed in a system in the field, the calibration values for any particular current transformer apparatus 4 are physically stored directly on the current transformer apparatus 4, with the result that it is unnecessary for a technician to record, input, or otherwise work with the particular calibration values themselves. That is, when each of the instances of the current transformer apparatus 4 are connected with a metering device, the metering device retrieves from the individual instances of the current transformer apparatus 4 the associated calibration values and applies the associated calibration values to the signal that is received from the current transformer 8 in order to generate a calibrated signal and to thereby provide from the metering device a calibrated output that corresponds with the current transformer 8.
A field installation of the current transformer apparatus 4 is depicted generally in
The metering device 44 includes three channels 114A, 114B, 114C which serve as inputs on the metering device 44, with the current transformer apparatuses 104A, 104B, 104C being connected with the channels 114A, 114B, 114C, respectively. As has been set forth above, the calibration values that are stored in the storage 12 of each of the current transformer apparatuses 104A, 104B, 104C are retrieved by the metering device 44, and the retrieved set of calibration values are applied to the signal detected from the current transformer 8 of the corresponding current transformer apparatus 104A, 104B, 104C in order to generate a calibrated signal from each such current transformer 8. As such, a plurality of current transformers 8 can be calibrated by providing on the current transformer 8 the storage 12 which has stored therein the calibration values and by retrieving the calibration values from the storage 12 and applying them to the signal received from the corresponding current transformer 8.
Another improved method in accordance with the disclosed and claimed concept enables a determination that a particular current transformer 8 is situated about a particular conductor 106A, 106B, 106C. That is, the plurality of conductors 106A, 106B, 106C may be indistinguishable from one another in the vicinity of the metering device 44, and thus a predefined load 126 is advantageously applied to a particular one of the conductors 106A, 106B, 106C, and whatever signals are detected from the current transformers 8 are analyzed to identify the current transformer 8 having an output that indicates the existence of the predefined load 126 on the associated conductor 106A, 106B, 106C. The predefined load 126 is depicted schematically in
For example,
Once the metering device 44 has identified the current transformer 8 that is situated about the conductor to which is connected the predefined load 126, i.e., the conductor 106C in
It is understood that the calibration values stored in the storage 12 of each of the current transformer apparatuses 104A, 104B, 104C are employed in calibrating the current transformers 8 of the current transformer apparatuses 104A, 104B, 104C when connected with the metering device 44. It is also understood, however, that such calibration values are not necessarily employed in identifying that a particular current transformer 8 is situated about a particular conductor 106A, 106B, 106C. As such, the identification of such a current transformer 8 can be performed on any type of current transformer 8, i.e., even when the current transformer 8 does not additionally include calibration values stored on an associated storage 12.
Advantageously, therefore, a current transformer 8 can be configured to allow for automatic calibration by subjecting it to one or more calibration loads and employing a calibration meter and memory programmer 24 to detect a signal from the current transformer 8, to determine a number of calibration values for the current transformer 8 from the signal, and to store the calibration values in a storage 12 disposed on the current transformer 8 to form an improved current transformer apparatus 4. Upon connecting the current transformer apparatus 4 with a metering device 44 and retrieving the calibration values stored in the storage 12, the metering device 44 can apply the calibration values to the signal received from the current transformer 8 to form a calibrated output from the current transformer 8 and to provide a calibrated output on the metering device 44. Further advantageously, a predefined load 126 can be connected with various conductors in order to identify which current transformer 8 is situated about which conductor.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.