The present invention relates to a golf club head and, more particularly, to a technique for controlling vibration of a golf club head by a viscoelastic body.
A technique for controlling vibration of a golf club head has been developed to improve the hitting impression or adjust the hitting sound on impact. Japanese Patent Laid-Open No. 2004-313777 discloses a golf club head having a viscoelastic body. When the viscoelastic body is attached, the vibration on impact is absorbed by the viscoelastic body to improve the hitting impression and decrease the hitting sound that is offensive to the player's ear. Japanese Patent Laid-Open No. 2005-6763 discloses analyzing the vibration mode of a golf club head by a computer to correct the thickness and the like of the materials that form the golf club head. Japanese Patent Laid-Open No. 2003-102877 discloses providing a metal rib to a part corresponding to the antinode of the secondary bending vibration of a golf club head.
As such a method of controlling the vibration of a golf club head, the simplest is a method of mounting a viscoelastic body in a golf club head, as in Japanese Patent Laid-Open No. 2004-313777. Conventionally, the viscoelastic body may be mounted on the rear surface of the face portion because this is where the impact is input, or on the sole portion in order to lower the barycenter of the golf club. Not many studies have been made, however, on that portion to mount the viscoelastic body which is effective in vibration suppression. Therefore, the viscoelastic body may not exhibit its vibration suppressing function effectively.
The present invention has been made in order to overcome the deficits of prior art.
According to the aspects of the present invention, there is provided a hollow golf club head having a face portion, a crown portion, a sole portion, and a side portion, the head comprising a viscoelastic body to be mounted in at least one of the face portion, the crown portion, the sole portion, and the side portion, wherein the viscoelastic body is mounted in a part of a portion where the viscoelastic body is to be mounted, the part corresponding to a antinode of a primary vibration mode.
According to the hollow golf club head, the viscoelastic body is mounted in the part of the portion where the viscoelastic body is to be mounted, the part corresponding to the antinode of the primary vibration mode. The part corresponding to the antinode of the primary vibration mode is where the magnitude of the vibration becomes the largest. Therefore, when the viscoelastic body is mounted in this portion, the vibration of the golf club head can be suppressed more effectively.
Other features and advantages of the present invention will be apparent from the following descriptions taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
The golf club head A can be made of, e.g., a titanium-based metal material. Various types of manufacturing methods can be employed to make the golf club head A to have a hollow structure. For example, the crown portion 20, sole portion 30, side portion 40, and hosel portion 50 may be formed integrally, and a face member which forms the face portion 10 may be fixed to the resultant integrally formed component, thus forming a hollow structure. Alternatively, the face portion 10, crown portion 20, side portion 40, and hosel portion 50 may be formed integrally, and a sole member which forms the sole portion 30 may be fixed to the resultant integrally formed component, thus forming a hollow structure.
Although the golf club head A is a golf club head that is to be used as a driver, the present invention can be applied to a wood type golf club head including a fairway wood or the like other than the driver as well, a utility type golf club head, and other hollow golf club heads.
Viscoelastic bodies 51 and 52 are mounted in the crown portion 20 and sole portion 30, respectively, of the golf club head A. Examples of viscoelastic materials that form the viscoelastic bodies 51 and 52 include IIR (butyl bromide composition), NBR (acrylonitrile-butadiene rubber), natural rubber, silicone rubber, styrene-based rubber, and the like. The viscoelastic bodies 51 and 52 can also be formed by mixing a metal powder or the like in the viscoelastic materials described above to adjust their specific gravities. Preferably, the viscoelastic bodies 51 and 52 are made of viscoelastic materials with loss coefficients (so-called tan δ) the peak values of which are 0.3 or more. If the loss coefficients are 0.3 or more, a higher vibration attenuating effect can be obtained. The viscoelastic bodies 51 and 52 may be mounted on the circumferential wall of the golf club head A by, e.g., fixing with an adhesive or fixing with screws.
In this embodiment, the viscoelastic body 51 is mounted in a part of the crown portion 20 where the viscoelastic body 51 is to be mounted, the part corresponding to the antinode of the primary vibration mode. Similarly, the viscoelastic body 52 is mounted in a part of the sole portion 30 where the viscoelastic body 52 is to be mounted, the part corresponding to the antinode of the primary vibration mode. The part corresponding to the antinode of the primary vibration mode is where the magnitude of the vibration becomes the largest. Therefore, when the viscoelastic body is mounted in this portion, the vibration of the golf club head can be suppressed more effectively. More specifically, the viscoelastic body 51 suppresses the vibration of the crown portion 20 effectively. The viscoelastic body 52 suppresses the vibration of the sole portion 30 effectively. According to this embodiment, the vibration of the golf club head A is suppressed effectively at the respective unitary portions of the golf club head A separately in this manner, so that the vibration of the golf club head A as a whole is suppressed effectively.
According to this embodiment, the viscoelastic bodies 51 and 52 are mounted in the two portions (crown portion 20 and sole portion 30) of the face portion 10, crown portion 20, sole portion 30, and side portion 40. However, a viscoelastic body can be mounted in any one of the four portions 10 to 40 described above. Alternatively, viscoelastic bodies can naturally be mounted in three or more portions of the four portions 10 to 40 described above. If viscoelastic bodies are mounted in a plurality of portions of the four portions 10 to 40 descried above, the vibration suppressing effect of the golf club head A as a whole enhances accordingly.
Whichever portion the viscoelastic body may be mounted, it is mounted in the part of the portion where the viscoelastic body is to be mounted, the part corresponding to the antinode of the primary vibration mode. More specifically, when the viscoelastic body is to be mounted in the face portion 10, it is mounted in the part of the face portion, which corresponds to the antinode of the primary vibration mode. When the viscoelastic body is to be mounted in the crown portion 20, it is mounted in the part of the crown portion 20, which corresponds to the antinode of the primary vibration mode. When the viscoelastic body is to be mounted in the sole portion 30, it is mounted in the part of the sole portion 30, which corresponds to the antinode of the primary vibration mode. When the viscoelastic body is to be mounted in the side portion 40, it is mounted in the part of the side portion 40, which corresponds to the antinode of the primary vibration mode.
If the viscoelastic body is large, the weight of the golf club head increases. Hence, the smaller the viscoelastic body, the more preferable. The viscoelastic body is preferably mounted such that its center is located in the part corresponding to the antinode of the primary vibration mode. In this embodiment, even when the viscoelastic body is small, if it is mounted in the part corresponding to the antinode of the primary vibration mode, it can suppress the vibration of the golf club head more effectively, thus satisfying both a weight reduction and vibration suppression of the golf club head. Regarding the size and shape of the viscoelastic body, for example, a circular disk-like viscoelastic body having a radius of about 15 mm and a thickness of about 1.5 mm can be used.
A method of specifying the part corresponding to the antinode of the primary vibration mode will be described. The part corresponding to the antinode of the primary vibration mode may be specified on the basis of the experimental value of a vibration mode test for a fabricated trial product of the golf club head A. However, since the test product must be fabricated, this method is cumbersome. Accordingly, it is convenient to specify (estimate) the part corresponding to the antinode of the primary vibration mode by subjecting a golf club head model to mode analysis by a computer. This method will be briefly described hereinafter.
First, a three-dimensional model of the golf club head A is created by the computer. The three-dimensional model can be created using CAD software by setting specifications such as the outer shape of the golf club head A, the wall thicknesses of the respective portions, the types (physical properties) of the materials, and the like. Naturally, this three-dimensional model does not include the viscoelastic bodies 51 and 52.
To analyze the three-dimensional model 100 by FEM (Finite Element Method), a mesh model of the three-dimensional model 100 is created by the computer using FEM software.
Subsequently, vibration mode analysis of the three-dimensional mesh model 101 is performed by the computer using analysis software. With the vibration mode analysis, first, the frequency response function of the golf club head A as a whole is obtained.
In the vibration mode view of
In the vibration mode view of
In the vibration mode view of
As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-373457 | Dec 2005 | JP | national |
This is a divisional of U.S. application Ser. No. 11/435,989, filed May 18, 2006, which claims priority to Japanese Application No. 2005-373457, filed Dec. 26, 2005 in the Japanese Patent Office, respectively. The entire disclosures are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2846228 | Reach | Aug 1958 | A |
3084940 | Cissel | Apr 1963 | A |
4804188 | McKee et al. | Feb 1989 | A |
4811950 | Kobayashi | Mar 1989 | A |
4928972 | Nakanishi et al. | May 1990 | A |
5290036 | Fenton et al. | Mar 1994 | A |
5299807 | Hutin | Apr 1994 | A |
5316298 | Hutin et al. | May 1994 | A |
5316305 | McCabe | May 1994 | A |
5351958 | Helmstetter | Oct 1994 | A |
5362055 | Rennie | Nov 1994 | A |
5409229 | Schmidt et al. | Apr 1995 | A |
5411255 | Kurashima et al. | May 1995 | A |
5431396 | Shieh | Jul 1995 | A |
5492327 | Biafore, Jr. | Feb 1996 | A |
5529543 | Beaumont, Sr. | Jun 1996 | A |
5564705 | Kobayashi et al. | Oct 1996 | A |
5586947 | Hutin | Dec 1996 | A |
5643111 | Igarashi | Jul 1997 | A |
5692972 | Langslet | Dec 1997 | A |
5697855 | Aizawa | Dec 1997 | A |
5703294 | McConnell et al. | Dec 1997 | A |
5766092 | Mimeur et al. | Jun 1998 | A |
5766093 | Rohrer | Jun 1998 | A |
6045456 | Best et al. | Apr 2000 | A |
6093116 | Hettinger et al. | Jul 2000 | A |
6265475 | Chifei et al. | Jul 2001 | B1 |
6302807 | Rohrer | Oct 2001 | B1 |
6431997 | Rohrer | Aug 2002 | B1 |
6454664 | Long et al. | Sep 2002 | B1 |
6616546 | Cho | Sep 2003 | B2 |
6642308 | Nomura et al. | Nov 2003 | B2 |
6672975 | Galloway | Jan 2004 | B1 |
6688989 | Best | Feb 2004 | B2 |
6743114 | Best | Jun 2004 | B2 |
6743117 | Gilbert | Jun 2004 | B2 |
6773360 | Willett et al. | Aug 2004 | B2 |
6780123 | Hasebe | Aug 2004 | B2 |
6835144 | Best | Dec 2004 | B2 |
6855066 | Best | Feb 2005 | B2 |
6876956 | Cirak et al. | Apr 2005 | B1 |
6902495 | Pergande et al. | Jun 2005 | B2 |
6984180 | Hasebe | Jan 2006 | B2 |
6991559 | Yabu | Jan 2006 | B2 |
6991560 | Tseng | Jan 2006 | B2 |
7048647 | Burrows | May 2006 | B2 |
7108613 | Gordon et al. | Sep 2006 | B1 |
7119146 | Tse et al. | Oct 2006 | B2 |
7182698 | Tseng | Feb 2007 | B2 |
7189169 | Billings | Mar 2007 | B2 |
7207899 | Imamoto | Apr 2007 | B2 |
7226366 | Galloway | Jun 2007 | B2 |
7303485 | Tseng | Dec 2007 | B2 |
7303486 | Imamoto | Dec 2007 | B2 |
7316623 | Imamoto | Jan 2008 | B2 |
7371190 | Gilbert et al. | May 2008 | B2 |
7430499 | Rassaian et al. | Sep 2008 | B2 |
20030027662 | Werner et al. | Feb 2003 | A1 |
20030092502 | Pergande et al. | May 2003 | A1 |
20040043830 | Imamoto | Mar 2004 | A1 |
20040053704 | Gilbert | Mar 2004 | A1 |
20040242339 | Gilbert et al. | Dec 2004 | A1 |
20050124437 | Imamoto | Jun 2005 | A1 |
20050148405 | Imamoto | Jul 2005 | A1 |
20050192116 | Imamoto | Sep 2005 | A1 |
20050192118 | Imamoto | Sep 2005 | A1 |
20050197208 | Imamoto | Sep 2005 | A1 |
20060258480 | Hou et al. | Nov 2006 | A1 |
20070049400 | Imamoto et al. | Mar 2007 | A1 |
20070129160 | Matsunaga et al. | Jun 2007 | A1 |
20070129161 | Matsunaga et al. | Jun 2007 | A1 |
20070129162 | Pan et al. | Jun 2007 | A1 |
20070129164 | Shimazaki et al. | Jun 2007 | A1 |
20070129165 | Matsunaga et al. | Jun 2007 | A1 |
20070129166 | Shimazaki et al. | Jun 2007 | A1 |
20070129168 | Matsunaga et al. | Jun 2007 | A1 |
20070149313 | Matsunaga et al. | Jun 2007 | A1 |
20080020860 | Imamoto | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
1757334 | Feb 2007 | EP |
2717701 | Sep 1995 | FR |
01166779 | Jun 1989 | JP |
2141475 | Nov 1990 | JP |
3049776 | Mar 1991 | JP |
05028361 | Apr 1993 | JP |
05147096 | Jun 1993 | JP |
06007486 | Jan 1994 | JP |
06510689 | Jun 1994 | JP |
06254183 | Sep 1994 | JP |
06319836 | Nov 1994 | JP |
0727630 | May 1995 | JP |
07148291 | Jun 1995 | JP |
07213656 | Aug 1995 | JP |
06206258 | Aug 1996 | JP |
08206258 | Aug 1996 | JP |
09000666 | Jan 1997 | JP |
09122281 | May 1997 | JP |
11114112 | Apr 1999 | JP |
11333029 | Dec 1999 | JP |
2000116824 | Apr 2000 | JP |
2000197718 | Jul 2000 | JP |
2001000606 | Jan 2001 | JP |
2001170225 | Jun 2001 | JP |
2004313777 | Nov 2001 | JP |
2003093550 | Apr 2003 | JP |
2003102877 | Apr 2003 | JP |
2003250939 | Sep 2003 | JP |
2003260153 | Sep 2003 | JP |
2003265652 | Sep 2003 | JP |
2003265653 | Sep 2003 | JP |
2004089434 | Mar 2004 | JP |
2005006763 | Jan 2005 | JP |
3112038 | Jun 2005 | JP |
2005143589 | Jun 2005 | JP |
2005160947 | Jun 2005 | JP |
2005160948 | Jun 2005 | JP |
2005218510 | Aug 2005 | JP |
2005245519 | Sep 2005 | JP |
2006000139 | Jan 2006 | JP |
2006000435 | Jan 2006 | JP |
9920358 | Apr 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20090240479 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11435989 | May 2006 | US |
Child | 12417693 | US |