The present invention relates to a method of identifying and authenticating a product using a bar code reader and, more particularly, to a method of embedding a unique identification pattern in the substrate of a tamper-resistant seal or cap of a product and imaging the identification pattern to authenticate and/or track the product as it travels through it distribution system.
There is an increasing concern over counterfeit over-the-counter and prescription drugs entering the U.S. market. This concern is exacerbated because of the ready availability of lower cost prescription drugs from pharmacies and drug stores in foreign countries such as Canada.
Because of governmental regulations and/or to prevent unauthorized tampering, many prescription and over-the-counter drugs are packaged in containers using tamper-resistant seals. The consumer purchasing a drug product must break or destroy the tamper-resistant seal in order to open the container and access the product. While such tamper-resistant seals effectively thwart tampering, sophisticated counterfeit drug manufacturers may manufacture containers that include a tamper-resistant seal. Thus, tamper-resistant seals do not adequately address the issue of counterfeit drugs.
There is a need to provide an effective identification and authentication procedure to insure that a purchased drug product is authentic, beyond the use of a tamper-resistant seal on the product container. There is also a need to provide an effective method to track drug products as they move through various stages in the distribution system. Finally, there is a need to accomplish the foregoing objectives using readily available technology and equipment.
The present invention is directed to a method of identifying or authenticating a product by applying a unique identification pattern to the product, product container or product packaging, such as the product's tamper-resistant seal and authenticating the product by using a bar code reader to read the identification pattern.
In one embodiment, the unique identification pattern is a pattern of spaced apart particles embedded in the substrate of a tamper-resistant seal. A region of interest of the seal which includes the identification pattern is imaged by a bar code reader and the identification particles within the region of interest are identified. A perimeter of the identification particles is identified and a geometric center of an area defined by the perimeter is determined. Given the geometric center of the identification pattern perimeter, a polar vector (distance and angle) for each identification particle in the region of interest is determined. The distance magnitudes of the polar vectors are scaled or normalized based on the maximum polar vector distance. Angles between radially adjacent particles are computed. The combination of angular differences and scaled distances comprise a unique electronic signature corresponding to the identification pattern for the product.
The electronic signature is stored in a database for future authentication of the product as it moves through its distribution system. Additionally, the electronic signature may be affixed to the product by, for example, incorporating the electronic signature into the product's bar code which would be imprinted on a label of the product or the product packaging. Other methods of affixing the electronic signature to the product would be to incorporate the electronic signature into an RFID (radio frequency identification) tag affixed to the product.
At any point or node in the distribution system, the product's authenticity can be verified by imaging the identification pattern and obtaining the electronic signature. This may be done either by: 1) comparing the identification pattern electronic signature with an electronic signature incorporated into the product bar code or RFID tag; or 2) by comparing the identification electronic signature with electronic signatures stored in the central database. If the identification pattern signature matches the bar code electronic signature or RFID electronic signature, the product is authentic. Alternately, if the identification pattern signature matches one of the stored signatures in the database, the product is authentic.
Tracking of the product through the distribution system is also facilitated since when a product is authenticated at a node, the information regarding the location of the node and the time and date of authentication would be obtained and transmitted to a central database.
Because the identification pattern signature utilizes differences in angles (between radially adjacent particles) and scaled distances (based on the greatest distance between the center and the furthest particle), the identification pattern electronic signature may be determined regardless of the rotational angle of the bar code reader with respect to the identification pattern, the distance between the reader and the label or a degree of magnification used by the reader to image the identification pattern. When the ultimate consumer opens the product, the tamperproof seal is destroyed preventing its reuse for any counterfeit products.
These and other objects, advantages, and features of the exemplary embodiment of the invention are described in detail in conjunction with the accompanying drawings.
One preferred embodiment of the identification or authentication system of the present invention is shown generally at 10 in
Alternately, as shown in
Embedded in the seal 14 is a unique identification pattern 20 comprising a plurality of spaced apart identification particles 22 within an area or region of interest 25 of the seal 14. To facilitate reading the identification pattern 20, the region of interest 25, that is, the portion of the seal 14 where the pattern 20 is to be imaged may be marked with a border 24 to define the region of interest 25 (
The particles 22 preferably are embedded in the substrate of the seal 14, that is, the material that the seal 14 is fabricated from. For example, if the seal 14 is a shrink wrap plastic film 14a (
The identification particles may be comprised of any of a number of different materials so long as the particles can be easily and clearly identified with respect to the substrate material of the seal 14 within the region of interest 25 when the region 25 is imaged by an imaging device 100, as explained below. By way of example and without limitation, the identification particles may be discrete pieces of material that fluoresce under UV or other specific wavelengths of illumination. The particles 22 may also be discrete pieces of metal such as small metal chips or shavings. The particles 22 may be small pieces of fabric or other material that changes color under illumination of specific wavelength. Alternately, the particles 22 may be discrete markings that are printed, etched or otherwise impressed on the seal 14 within the region of interest area 25.
The identification and authentication system 10 further includes the imaging device 100, such as an imaging-based bar code reader or scanner. The device 100 is used to image the identification pattern 20 found within the region of interest 25, that is, within the border 24. Generally, imaging-based bar code readers or scanners utilize imaging arrays such as CCD arrays or CMOS arrays having a plurality of photosensitive elements or pixels. Light reflected from a target image, e.g., a target bar code imprinted on a product label or product packaging, is focused through a lens of the imaging system onto the pixel array. Output signals from the pixels of the pixel array are digitized by an analog-to-digital converter. Decoding circuitry of the imaging system processes the digitized signals and attempts to decode the imaged target, e.g., the imaged target bar code.
As noted above, the particles 22 of the pattern 20 may be comprised of visible particles embedded in or imprinted on the seal 14 or, alternately, may be comprised of non-visible particles embedded in or imprinted on the seal 14 that may be imaged only when exposed to illumination having proper wavelengths. If the pattern 20 is comprised of non-visible particles, the reader 100 will necessarily include an illumination source 101 generating a proper wavelength illumination for imaging the particles 22 such that the particles may be discerned by an imaging system 102 of the reader. The reader 100 may also include a second illumination source 103 generating targeting illumination pattern to aid a user of the reader in aiming the reader at the border 24.
As will be explained below, advantageously, the system 10 permits any rotational angular orientation between the reader 100 and the region of interest 25, that is, the reader 100 may be used to read the identification pattern 20 regardless of the rotational angle of the reader 100 with respect to the axis R—R in
Utilizing its imaging system 102 and bar code decoding circuitry 104, the reader 100 may be used both to image and decode a bar code 26 imprinted on a label 28 of the container 12 to obtain certain information and for inventory control purposes and then to identify/authenticate the product 13 as described below. For the decoding of the identification pattern 20, the reader 100 includes additional identification decoding circuitry 106, embodied either in software or hardware, such that when the seal 14 is imaged by the reader 100, the identification decoding circuitry 106 analyzes the captured image, identifies the region of interest 25 and the identification particles 22 within it, ascertains the identification pattern 20 and determines an electronic signature 36 for the product 13.
As will be explained below, the product bar code 26 may also advantageously include a coded version 29 of the electronic signature 36 of the product 13. This facilitates identification/authentication of the product 13 without the need for transmission of the identification pattern electronic signature 36 to a database for authentication because the identification pattern electronic signature 36 may be compared to the decoded bar code electronic signature 29 to authenticate the product 13.
A process or method used by the identification decoding circuitry 106 is shown schematically in
Next, at step 202, the decoding circuitry 106 identifies the particles 22 within the border 24 and filters out any other non identification particle related marks in the image. For example, particles of dust or other containments that may be disposed within the region of interest 25 are determined by the circuitry 106 not to be identification particles and are subsequently ignored. Similarly, any extraneous markings, such as pen or pencil markings would be filtered out by the circuitry 106. An identification particle that is partially in and out of the region of interest 25, for example, particle 22e, will be considered as an identification particle within the region of interest 25.
At step 204, the identification decoding circuitry 106 determines an outer perimeter 30 defined by the particles 22 within the region of interest 25. This is shown in
Next, at step 208, the identification decoding circuitry 106 establishes a Cartesian (x-y) coordinate system with its origin at the center C of the area 34. This is also shown in
At step 212, for each of the particles 22, the identification decoding circuitry 106 scales or normalizes the polar vector length d of the particle by dividing the length d by the largest magnitude value of d of all of the particles 22, that is, the value of the maximum length dmax. In the example, of the particles 11, polar vector Ve has the maximum length dmax, thus, Vc would have a normalized length of Vc=1 while each of the other polar vectors would have a normalized length less than one. For example, the normalized length of particle 22a would be d1norm=d1/dmax.
At step 214, for each particle 22, the identification decoding circuitry 106 calculates a difference between the polar angle of the particle and the polar angle of the next radially adjacent particle when moving or sweeping in a counterclockwise direction about the center C. For example, for particle 22a, the angular difference, Δθ1, would be the difference between θ2 and θ1: Δθ1=θ2−θ1. This is shown in
At step 216, the identification decoding circuitry 106, using a hashing algorithm, converts the series of normalized lengths and the angular differences for each of the plurality of particles 22 into an identification pattern electronic signature 36 (shown in
There are two ways of using the electronic signature 36 to authenticate the product 13. If the product 13 includes a coded version 29 of the same electronic signature 29 incorporated into, for example, the product bar code 26 printed on the product label 28, the identification pattern electronic signature 36 may be compared with the decoded bar code electronic signature 29 to authenticate the product 13 without the need to transmit the electronic signature 36 or to access the central database 110. If the identification pattern electronic signature 36 matches the product bar code electronic signature 29, the product 13 is authentic. Advantageously, the bar code 26 is a 2D bard code and the electronic signature 29 encoded in the bar code 26 is encoded with a encryption algorithm (e.g., one way hash) so that only the product's manufacturer can create the electronic signature 29.
Alternately or in addition, the identification pattern electronic signature 36 may be compared with a file of electronic signatures stored in the central database 110 to authenticate the product 13. If the identification pattern signature 36 matches one of the stored signatures in the database 110, the product 13 is authentic. It should be recognized that for even a higher level of security both methods may be employed, that is, the bar code electronic signature 29 must match the identification pattern electronic signature 36 and both must match an electronic signature in the database 110 for the product 13 to be deemed authentic.
At step 218, the first method is used, namely, the reader 100 decodes the product bar code 16 on the label 28. In addition to other product-related information, the bar code 26 includes the coded version 29 of the product electronic signature, which is decoded by the reader bar code decoding circuitry 104. At step 220, the identification pattern electronic signature 36 is compared to bar code electronic signature 29 by reader comparison circuitry 108 to authenticate the product 13. At step 221, if the product 13 is determined to be authentic, the comparison circuitry will notify the user by, for example, actuating a speaker on the reader 100 and/or energizing an LED to indicate authenticity. As would be apparent to those of skill in the art, other methods of incorporating or attaching a second electronic signature onto the product 13, other than through use of the bar code 26, are possible. For example, an RFID tag affixed to the product 13 may include an electronic coded version of the product's electronic signature. If the 2D bar code 26 was read by a bar code reader whose bar code decoding circuitry did not have the capability of reading the bar code electronic signature 29, the reader could still decode the product-related information in the bar code 26 but would be unable to decode the bar code electronic signature 29.
Alternately or in addition to the foregoing, the second method is shown at steps 222 and 224. At step 222, the identification pattern electronic signature 36 is transmitted to the central database 110. At step 224, the identification pattern electronic signature 36 is compared to a database listing of electronic signatures for authentic products. It is presumed, of course, that the identification pattern electronic signature 36 was determined and stored in the database 110 by the manufacturer when the product 13 was introduced into the container 12 and the seal 14 was applied to the container 12. If a successful match of the signature 36 is made with a database signature and the tamper-resistant seal 14 is intact, the product 13 is confirmed as authentic and, at step 221, a transmission is sent back to the reader 100 from the database 110 to confirm authenticity to the user of the reader 100. For example, a speaker on the reader 100 may emits a distinctive beep or an LED may be actuated to indicate authenticity.
The two methods of authentication each have advantages. The first method has the advantage of not requiring communications with the central database 110 and, therefore, “stand alone” authentication can be done in the field without the need for a central database.
The second method of authentication advantageously permits trace and track of the product 13 through its distribution system. The transmission of the electronic signature of the container 12 to the central database 110 may also include additional information such as the time and place that the reading of the identification pattern 20 occurred, an identification number of the reader device 100, an identification number of the user/company authorized to use the reader device 100. This information permits tracking of the container 12 and, therefore, the product 13 as it moves through its distribution system from manufacturer to consumer.
Advantageously, because the container's identification pattern electronic signature 36 is based on normalized polar vector lengths, the identification/authentication method described above may be successfully utilized regardless of the distance between the reader device 100 and the tamper-resistant seal 14 or the degree of magnification used in the optics of the reader device 100 so long as the border area 25 is successfully imaged and the particles 22 identified.
Further, since the container's electronic signature 36 is based on angular differences between the particles 22, the identification method described above may be successfully executed regardless of the relative angle of rotation between the reader device 100 and the seal 14 with respect to axis R—R (
While the present invention has been described with a degree of particularity, it is the intent that the invention includes all modifications and alterations from the disclosed design falling with the spirit or scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5329107 | Priddy et al. | Jul 1994 | A |
5484999 | Priddy et al. | Jan 1996 | A |
6601772 | Rubin et al. | Aug 2003 | B1 |
6830197 | Rubin et al. | Dec 2004 | B2 |
7044376 | Nelson et al. | May 2006 | B2 |
20030028451 | Ananian | Feb 2003 | A1 |
20030121978 | Rubin et al. | Jul 2003 | A1 |
20040096911 | Siniaguine et al. | May 2004 | A1 |
20040112962 | Farrall et al. | Jun 2004 | A1 |
20050018013 | Nelson et al. | Jan 2005 | A1 |
20060071079 | Hepworth et al. | Apr 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060086791 A1 | Apr 2006 | US |