The present invention relates generally toward coiled compression springs. More specifically, the present invention relates toward a method of optimizing performance of a coiled compression spring.
Compression springs have been used for many years in various capacities. For example, coiled compression springs are used in suspension systems, brake actuators, and various other mechanical devices where axial force generated through the compression of the spring is used. Generally, the desired force, or K-value of a spring is used to affect location and movement of the mechanical device. Hooke's Law is a principle of physics that defines the actual force of a compressed spring based upon the distance a spring is compressed. The axial force is a desired result of compressing a coiled spring. However, a phenomenon known as lateral force, has been an historic problem that heretofore has not been solved.
Lateral force is the force generated by a compressed spring that is lateral to the axial force along a spring axis, which is defined by a body of a coiled compression spring. Lateral force is known to cause premature failures in brake actuators and other mechanical devices that make use of the axial force generated by the compressed spring. It has been an unknown phenomenon as to what mechanical feature of the spring has caused unwanted lateral force. Therefore, no solution to the lateral force phenomenon has, to date, been developed. Therefore, it would be desirable to identify a cause of lateral force of a coiled compression spring and solve the problem of lateral force on mechanical devices.
The method of monitoring lateral force of a coil spring having a body and opposing end coils is disclosed. A fixture having a base that defines a planar surface with a shaft extends from the planar surface at a normal angle to the planar surface. An axis defined by the coil spring is aligned with the shaft. Angular displacement from the shaft of one of the end coils is measured and correlated with a lateral force value of the spring.
It has been determined that the phenomenon known as lateral force generated during compression of a coil spring is the result of angular displacement of an end coil of the coil spring from the axis defined by the coil spring. The cause of lateral force generated by a coil spring was previously unknown. Therefore, it was determined that maintaining the angular displacement of at least one of the end coils of a coil spring would control the amount of lateral force generated by compression of the coil spring. For example, maintaining an angular displacement of at least one of the opposing end coils from the spring axis of between about −1.5° and 2.5° from a plane that is normal to the spring axis controls the lateral load generated by the coil spring below a predetermined threshold believed to substantially eliminate damage caused to mechanical devices from lateral force. As such, a desirable manufacturing process has been developed that solves the historical lateral force problem of compression coil springs.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to
The first end coil 12 is identified at a first distal end 18 and extends around the spring axis about 180°. Likewise, the second end coil 14 extends from a second distal end 20 to about 180° around the spring axis a from the second distal end 20.
As set forth above, the primary function of the coil spring 10 is to store energy upon compression that is translated along spring axis a. However, lateral force L has historically been an uncontrolled phenomenon of the coil spring 10. Lateral force L generated by a coil spring 10 is known to cause structural defects in a related component such as, for example, brake actuators, suspension systems, and other mechanical devices making use of spring force K in the axial direction.
One such example will now be described as shown in
A spring piston 34 is disposed between the diaphragm 30 and the coil spring 10 to guide the coil spring 10 as it is compressed and expanded and provides structural support to the spring 10. A pneumatic chamber 36 is depressurized as shown in
As set forth above, the coil spring 10 not only exerts force along the spring axis a, a coil spring is known to exert a lateral force L known to cause damage by forcing the spring piston 34 to actuate in an inconsistent angle damaging the diaphragm 30, in addition to other defects. Therefore, the present invention endeavours to reduce or eliminate lateral force associated with the coil spring 10 to reduce or eliminate defects caused by unwanted lateral force.
Referring now to
A shaft 46 extends from a base 48 that defines a planer surface 50. The shaft 46 extends at a normal or perpendicular angle from a planer surface 50 of the base 48. A conical member 52 is received by the shaft 46 and is disposed upon the planer surface 50 of the base 48 so that the conical member 52 is co-axial with the shaft 46 having its narrower portion directed upwardly. A second conical member 54 is inverted relative to the first conical member 52 and supports a measurement assembly 56.
The measurement assembly 56 includes a pivot arm 58 that is pivotally secured to a tubular member 60 at pivot point P as best seen in
When measuring angular displacement of the end coils 12, 14, the coil spring 10 is placed onto the apparatus 44 so that the second end coil 14 engages the first conical member 52. Subsequently, the second conical member 54 is positioned into the first end coil 12, thereby aligning the spring axis a with the shaft 46 at a same axis defined by the first and second conical members 52, 54. The measurement assembly 56 is placed on shaft 46, thereby aligning the measurement assembly 56 with spring axis a. A reference arm 66 which is secured to tubular member 60 along axis which intersects pivot point P will make contact with first end coil 12. The reference arm 66 is used to rotate the measurement assembly 56 until the first distal end 18 of the first end coil 12 abuts the stop 62. In this manner, the arm 58, and therefore the angle gauge 64 are disposed at a location on the end coil 12 that is 90° from the first distal end 18. At this point, the arm 58 is allowed to pivot around to the point P so that the angle gauge 64 measures the angular relationship of the end coil 12 relative to a plane that is normal to the axis a defined by the coil spring 10. In a similar manner, the coil spring 10 is inverted and the angle of the second end coil 14 is measured by the angle gauge 64.
Previously, the lateral force of compression springs were measured resulting in upwards of a 40% of coil springs 10 having a lateral force threshold higher than a desirable value. Some applications, it's proved to be a lateral force of about 400 Newtons. Therefore, applicant set upon optimizing an end coil angle relative to a desired target lateral load. Referring to
Various steps were made to tighten tolerances during spring manufacturing, the use of pre-tempered wire prior to folding the coil proved most beneficial in establishing a consistent angular displacement between about −1.5° and 2.5° from the plane that is normal to the spring axis a. For an SAE J2318 spring or the like, a target ratio of axial force to lateral force measured at an extended disposition is between about 67 and 13 to 1. A target ratio is about 53 to 1. A spring that exceeds SAE J2318 standards by about 20% includes an axial force to lateral force measured at an extended position between about 80 and 60 to 1, with a target ratio of about 64 to 1.
The invention has been described in an illustrative manner, and is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. It is now apparent to those skilled in the art that many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that the invention may be practiced otherwise and is specifically described, and still be within the scope of the present application.
This application claims priority to U.S. Provisional Patent Application No. 61/973,454 filed on Apr. 1, 2014.
Number | Name | Date | Kind |
---|---|---|---|
2291561 | Reiss | Jul 1942 | A |
2639613 | Richmond | May 1953 | A |
3640129 | Bandimere | Feb 1972 | A |
3675479 | Carlson | Jul 1972 | A |
3834228 | Wachholz | Sep 1974 | A |
4157033 | Shereda | Jun 1979 | A |
4517848 | Faure | May 1985 | A |
4641521 | Lawrence | Feb 1987 | A |
5090249 | Bielewicz | Feb 1992 | A |
5832774 | Smith | Nov 1998 | A |
6128950 | Hoagland | Oct 2000 | A |
6779564 | Hasegawa | Aug 2004 | B2 |
7069778 | Strehler | Jul 2006 | B1 |
8151638 | Erlenkeuser | Apr 2012 | B2 |
20030116219 | Hasegawa | Jun 2003 | A1 |
20100139359 | Erlenkeuser | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150276511 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61973454 | Apr 2014 | US |