The invention relates to methods of decreasing the effect of blast loads on industrial spaces relating to, inter alia, nuclear power plant and large chemical manufacturing facilities.
Methods and devices for mitigating a shock wave using foam or porous materials but without use of any additional damping mechanisms are known [1. V. M. Kudinov, B. I. Palamarchuk, B. Ye. Gelfand, S. A. Gubin Shock wave parameters during explosive charge explosion in foam//“Reports of the Academy of Sciences of the USSR”. Vol. 228, 1974, 4.—P. 555-558. 2. B. Ye. Gelfand, A. V. Gubanov, Ye. I. Timofeev Interaction of shock air waves with a porous screen//“Izvestiya of the Academy of Sciences of the USSR, MZhG”, 1983, 4.—P. 79-84.].
However, such devices are characterized by low efficiency and high consumption of consumables, which significantly limits the possibilities of their practical application.
In order to reduce the intensity of shock waves, screens from a porous material with an open cell structure (for example, polyurethane foam) filled with a non-flammable liquid are also used [RU 2150669, F 42 V 33/00, F 42 D 5/04, Mar. 15, 1999.].
However, the use of such an approach in industrial spaces is not effective, since the presence of liquid in the porous screen leads to formation of high humidity and, accordingly, corrosion, as well as to an increased weight load on the walls and floors of the protected room.
The closest method to the claimed invention in terms of the purpose and the set of essential features is a method of increasing explosion safety, the method comprising placing obstructions in front of the protected surface, in the form of elastic membranes filled with a flame-retardant liquid, the obstructions are dedicated for attenuating the blast wave. This method is considered as a prototype [RU 2125232, F 42 V 39/00, F 42 V 33/00, Sep. 23, 1997].
The disadvantage of the prototype, as well as of other analogues, is the constant static load on the walls and floors of the protected space.
The objective of the claimed invention is to improve explosion safety.
The technical result of the present invention is decrease in the effect that an explosive wave formed in an accidental explosion of fuel-air mixtures has on the walls and floors of protected spaces.
In order to achieve the said technical result, the known method improving explosion safety by attenuating the effect of a combustion wave or shock wave on a protected surface, comprising placing obstructions before the protected surface in the form of elastic membranes filled with a flame-retardant substance it is proposed to use non-flammable gas as a substance filling the membranes, to make the membranes themselves of a material that disintegrates during, and under the action of, displacement of the front of a combustion wave or shock wave along the surface of the membranes, wherein the membranes are filled with a non-flammable gas immediately after flammable gas is detected at a dangerous concentration in the space in front of the protected object. Helium is used to fill the elastic membranes as anon-flammable substance. The elastic membranes are placed in front of the protected surface in at least two layers. Each subsequent layer of the elastic membranes is located in depressions of the previous one. To fill the elastic membranes, an air/helium mixture with a helium content of at least 50 vol. % is used as a non-flammable substance. Membranes filled with air are placed in front of the membranes filled with helium. The total thickness of the elastic membranes filled with non-flammable substance along the normal to the protected surface exceeds two critical detonation diameters in the free space for the mixture of stoichiometric composition.
The disclosed set of features allows to achieve high efficiency of the method of reducing highly explosive and thermal effect of a blast wave on spatially extended flat and curved surfaces, which limit the protected space.
No combination of essential features corresponding to the claimed features was found in the known methods of reducing the explosive impact on the protected surfaces.
The proposed method for attenuating the effect of a blast wave on the protected surface is explained on
According to
The surfaces of NPP spaces are protected from blast loads as follows. Signals related to the concentration of flammable gas, for example, hydrogen, in the protected room of the NPP, are continuously sent from the sensors 2 to the controller 3. When the controller 3 detects an unacceptable concentration of flammable gas (in the event of an emergency), the controller 3 issues a command to the gas supply mechanism 4, and the elastic membranes 7 are filled with non-flammable gas, for example helium, through the distribution system 6 from the containers 5 (on
The effectiveness of shock wave attenuation was tested in the experiments with a large-scale explosion of a local volume of a hydrogen-air mixture in a spherical explosion chamber 9 with a diameter of 12 m, which schematic is shown on
In relation to external objects, which in the simplest case are represented by limiting surfaces, the spherical volume 10 located in the near-wall area simulates the accumulation of a flammable hydrogen-air mixture in the internal space of the nuclear power plant. For recording the explosive load parameters, four pressure sensors 13 were located near the surface of the explosion chamber, shown in the right-hand part of the layout on
These tests have shown that elastic membranes filled with helium provide the most effective pressure decrease.
The specified gas layer thickness of 0.6 m in the elastic membranes on the blast wave propagation path is at least double critical detonation diameter in the free space for a hydrogen-air mixture with stoichiometric composition.
Number | Date | Country | Kind |
---|---|---|---|
2019134276 | Oct 2019 | RU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2020/000513 | 10/5/2020 | WO |