The present invention relates to a tetracalcium phosphate (TTCP) for producing fast-setting, bioresorbable calcium phosphate cements (CPC), and in particular, to a tetracalcium phosphate (TTCP) having whiskers on the surface thereof for producing fast-setting, bioresorbable CPC having a high initial strength.
In our earlier U.S. Pat. No. 6,648,960 B1, “Method of shortening a working and setting time of a CPC paste,” a heat-treatment method to effectively shorten working/setting time of TTCP/DCPA-based CPC paste was disclosed. Without such treatment, the working/setting time of this TTCP/DCPA-based CPC paste would be inconveniently long.
Continued study led to further development of a monolithic TTCP-based CPC with nano-sized whiskers grown on its surface, which composition demonstrates excellent mechanical properties and biological responses and bioresorption behavior. This newly-developed monolithic TTCP cement, however, displays a working/setting time that is too short for certain surgical applications, such as the rather complicated orthopedic and spinal surgeries.
The present invention discloses a method for significantly increasing working/setting time of the aforesaid TTCP cement. Furthermore, under certain conditions this method can also increase the compressive strength of the cement.
The method for increasing working time of monolithic tetracalcium phosphate (TTCP) cement paste formed by mixing a TTCP powder with an aqueous solution according to the present invention comprises heating said TTCP powder, prior to said mixing, so that said TTCP powder is maintained at a temperature of 50-350° C. for a period of time which is greater than one minute, so that that a TTCP cement paste formed by mixing the resulting heated TTCP powder with said aqueous solution has a prolonged working time in comparison with that formed by mixing TTCP powder that has not been subjected to said heating with said aqueous solution.
The present invention discloses a method for preparing a monolithic tetracalcium phosphate (TTCP) cement paste having a prolonged working time, which comprises heating a TTCP powder at a temperature of from 50-350° C. for a period of time which is greater than one minute, and then mixing the heated TTCP powder with an aqueous solution to form a TTCP cement paste, said paste having a prolonged working time in comparison with a TTCP cement paste formed by mixing TTCP powder that has not been subjected to such heating prior to mixing with the aqueous solution.
Preferably, said temperature is 100-300° C., and said period oftime is greater than 15 minutes. More preferably, said temperature is 150-250° C., and said period of time is 30 to 120 minutes. The heating of the TTCP powder can be conducted under conditions selected from in air, in vacuum, and in an inert atmosphere.
A suitable TTCP powder for use in the method of the present invention has particle sizes ranging from 0.05 to 100 microns, preferably 0.5 to 50 microns, and particles of said TTCP powder have whiskers on their surfaces having a width ranging from 1 to 200 nm, preferably 1 to 100 nm, and a length ranging from 1 to 2000 nm, preferably 1 to 1000 nm. Said calcium phosphate whiskers preferably have a non-stoichiometric chemical composition, more preferably said calcium phosphate whiskers have a Ca/P molar ratio from about 1.35 to about 4.0, and most preferably from about 1.5 to about 2.5. Said calcium phosphate whiskers generally comprise TTCP as a major phase, and are substantially free of a hydroxyapatite phase.
A suitable process for preparing the TTCP powder having whiskers on the surfaces of the particle thereof comprises:
Further details of the process can be found in U.S. patent application Ser. No. 10/773,701, filed Feb. 6, 2004, and U.S. patent application Ser. No. 10/607,023, filed Jun. 27, 2003, the disclosures of which are incorporated herein by reference.
The following examples are intended to demonstrate the invention more fully without acting as a limitation upon its scope, since numerous modifications and variations will be apparent to those skilled in this art.
TTCP Preparation
The TTCP powder used in the following examples was fabricated in-house from the reaction of dicalcium pyrophosphate (Ca2P2O7) (Sigma Chem. Co., St. Louis, Mo., USA) and calcium carbonate (CaCO3) (Katayama Chem. Co., Tokyo, Japan) by a weight ratio of 1:1.27. The powders were mixed uniformly in ethanol for 12 hours, followed by heating in an oven to let the powders dry. The dried powder mixture was then heated to 1400° C. to allow two powders to react to form TTCP [Brown and Epstein [Journal of Research of the National Bureau of standards—A Physics and Chemistry 6 (1965) 69A 12]].
Whisker-inducing Treatment of TTCP Particles
Ca4(PO4)2O (TTCP) powder as synthesized was sieved with a #325 mesh. The sieved powder has an average particle size of about 10 μm. An aqueous solution of diammonium hydrogen phosphate was prepared by dissolving 20 mg of diammonium hydrogen phosphate, (NH4)2HPO4, in 40 ml deionized water. The resulting solution had a pH value of 8.02. To the TTCP powder the basic aqueous solution of diammonium hydrogen phosphate was added according to the ratio of 1 gm TTCP/13 ml solution. The TTCP powder was immersed in the basic aqueous solution for 10 minutes, filtered rapidly and washed with deionized water, and filtered rapidly with a vacuum pump again. The resulting powder cake was dried in an oven at 50° C. The dried powder was dispersed in ethanol with supersonication. A drop of the dispersion was dripped on a single-side carbon sieve of #325 mesh having a diameter of 3 mm, and left dry to obtain a specimen coated with a thin carbon film for electrical conductivity for TEM examination. A Hitachi Model-HF2000 200 kV field emission transmission electron microscope (TEM) equipped with a Noran Vayager Model 1000 energy dispersive spectroscopy (EDS) system was used for the study. The aperture size for microchemical analysis (Ca/P ratio) is 15 nm.
Whiskers grown on TTCP surface are basic (Ca/P>1.33) in nature. The EDS-determined Ca/P molar ratios are between about 1.4 and 3.8 with an average Ca/P ratio of about 2.1. Majority of whiskers have lengths <300 nm and widths <100 nm.
Heat-treatment Effect on the Working/Setting Time of Whisker-treated TTCP Powder
To study the effect of heat treatment on working/setting time and compressive strength, the whisker-treated TTCP powder was heat-treated in an air furnace (N 7/H, Nabertherm®, Germany). Different heat-treatment temperatures (140-400° C.) and times (30 and 120 min) were used for the study. To form a TTCP cement paste, the TTCP powder was mixed with 3M diammonium hydrogenphosphate ((NH4)2HPO4) hardening solution with a pH value of 8.6 and liquid/powder ratio of 0.3 ml/gm. After mixing for one minute, the cement paste was uniformly packed in a stainless steel mold under a popularly-used pressure of 0.7 MPa. This mold has an opening of 6 mm in diameter and 12 mm in depth (ASTM F 451-99a) for the preparation of samples for compressive strength testing. At the time of 15 minutes after mixing, the TTCP cement samples were removed from the mold and immersed in 20 ml Hanks' physiological solution (Mears 1977) at 37° C. Since short term (typically within 20-30 minutes after implantation) and long term strengths are both important for TTCP cement (especially for load-bearing applications), the compressive strengths of TTCP cement immersed in Hanks' solution for 20 minutes, 1 day and 7 days were measured.
The working time of the TTCP cement paste was determined as the duration for which the paste was no longer moldable, while setting time was measured according to ISO 1566 standard method. The compressive strength was measured using a desktop mechanical tester (Shimadzu AGS-500D, Tokyo, Japan) at a crosshead speed of 1.0 mm/min.
X-ray diffraction (XRD) was carried out to help identify the phase changes of TTCP cement during immersion. A Rigaku D-MAX B X-ray diffractometer (Tokyo, Japan) with Ni-filtered CuKα radiation operated at 30 kV and 20 mA at a scanning speed of 0.25°/min was used for the study. The various phases were identified by matching each characteristic XRD peak with that compiled in JCPDS files. A Fourier transform infrared spectroscopy (FTIR) system (Jasco, FT/IR-460 Plus, UK) in transmission absorption mode with a spectral resolution of 2 cm−1 was used to characterize the various functional groups of the TTCP powder under various heat-treatment conditions.
Results and Discussion
The working/setting time of the present monolithic TTCP-derived CPC can be significantly changed by applying a heat-treatment to the TTCP powder. As can be seen from Table 1, all the investigated heat-treatment conditions caused the working/setting time to become longer than that without heat-treatment. Specifically, when the TTCP powder was heat-treated at a temperature of 300° C. or lower, the working and setting times of the CPC increased respectively from 8 and 9.5 minutes to respectively 12-14 minutes (by 50-75%) and 15-17 minutes (by 60-80%), which are ideal for most applications. When the TTCP powder was heat-treated to 400° C. for 30 minutes, the working and setting times greatly increased to a surgically inconvenient level. When the TTCP powder was heat-treated to 400° C. for 120 minutes, the cement paste was hardly set.
The compressive strength of the TTCP cement can also be modified by heat-treating the TTCP powder. As indicated in Table 2, when the TTCP powder was heat-treated at 140° C. for 30 min, the compressive strengths of CPC immersed in Hanks' solution for 20 minutes and 7 days both largely decreased from 49.2 and 70.5 MPa to 17.5 and 38.8 MPa, respectively, although its 1-day-strength did not change much. When TTCP powder was heat-treated at 200° C. for 30 minutes, both 20 min and 7-day-compressive strengths of CPC significantly increased. Specifically, the CPC derived from such-treated powder had a 7-day-compressive strength (85.1 MPa) higher than that without treatment (70.5 MPa).
When the powder was treated at 200° C. for 120 minutes, the 20-minute and 1-day-compressive strengths further increased to 65.9 and 96.0 MPa (the highest 1-day-strength), respectively. Its 7-day-strength, however, declined to 80.1 MPa. The heat-treatment at 250° C. for 30 minutes is also interesting in that the compressive strength of the TTCP cement continued to increase even after immersion for 7 days. While the heat-treatment at 300° C. for 30 minutes still showed relatively high 1-day and 7-day-strengths, the heat-treatment to 300° C. for 120 minutes or to 400° C. caused the compressive strength of the CPC to largely decline. From a practical point of view, among all heat-treatment conditions investigated in this study, the heat-treatment at about 200-300° C. for about 30-120 min appears to be a suitable range for prolonging the working/setting time, while maintaining (in some cases even increasing) the compressive strength of the monolithic TTCP cement.
To further understand the effect of heat treatment, XRD was performed on all heat-treated TTCP powders. The XRD pattern of non-heat-treated TTCP powder showed a typical TTCP crystal structure, except the heat-treatment conditions of 300° C./120 minutes and 400° C., the XRD patterns of all heat-treated TTCP powders remained essentially the same as that of non-heat-treated powder. When the TTCP powder was heat-treated to 300° C. for 120 minutes or to 400° C. for 30 minutes, apatite peaks were observed, indicating that a phase transition from TTCP to apatite had occurred under such heat treatment conditions. When the powder was treated to 400° C. for 120 minutes, apatite became the dominant phase.
The formation of apatite under these heat-treatment conditions was reconfirmed by the presence of OH band at 3570 cm−1 in FTIR spectra.
Although the present invention has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims. Many modifications and variations are possible in light of the above disclosure.
The present application is a continuation-in-part application of U.S. patent application Ser. No. 10/773,701, filed Feb. 6, 2004, which is a continuation-in-part application of U.S. patent application Ser. No. 10/607,023, filed Jun. 27, 2003, now U.S. Pat. No. 6,960,249 which is a continuation-in-part application of U.S. patent application Ser. No. 10/414,582, filed Apr. 16, 2003, now U.S. Pat. No. 7,094,282 which is a continuation-in-part application of U.S. patent application Ser. No. 09/615,384, filed Jul. 13, 2000, now abandoned, which is a continuation-in-part of Ser. No. 09/351,912, filed Jul. 14, 1999, now U.S. Pat. No. 6,379,453. The entire contents of the above-listed applications, which are commonly assigned with the present invention, are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3679360 | Rubin et al. | Jul 1972 | A |
4371484 | Inukai et al. | Feb 1983 | A |
4481175 | Iino et al. | Nov 1984 | A |
4518430 | Brown et al. | May 1985 | A |
4553272 | Mears | Nov 1985 | A |
4612053 | Brown et al. | Sep 1986 | A |
4623553 | Ries et al. | Nov 1986 | A |
RE33161 | Brown et al. | Feb 1990 | E |
RE33221 | Brown et al. | May 1990 | E |
4959104 | Iino et al. | Sep 1990 | A |
5017518 | Hirayama et al. | May 1991 | A |
5053212 | Constantz et al. | Oct 1991 | A |
5092888 | Iwamoto et al. | Mar 1992 | A |
5149368 | Liu et al. | Sep 1992 | A |
5152791 | Hakamatsuka et al. | Oct 1992 | A |
5164187 | Constantz et al. | Nov 1992 | A |
5180426 | Sumita | Jan 1993 | A |
5218035 | Liu | Jun 1993 | A |
5262166 | Liu et al. | Nov 1993 | A |
5336264 | Constantz et al. | Aug 1994 | A |
5338356 | Hirano et al. | Aug 1994 | A |
5342441 | Mandai et al. | Aug 1994 | A |
5409982 | Imura et al. | Apr 1995 | A |
5476647 | Chow et al. | Dec 1995 | A |
5492768 | Okimatsu et al. | Feb 1996 | A |
5496399 | Ison et al. | Mar 1996 | A |
5503164 | Friedman | Apr 1996 | A |
5522893 | Chow et al. | Jun 1996 | A |
5525148 | Chow et al. | Jun 1996 | A |
5536575 | Imura et al. | Jul 1996 | A |
5542973 | Chow et al. | Aug 1996 | A |
5545254 | Chow et al. | Aug 1996 | A |
5550172 | Regula et al. | Aug 1996 | A |
5569490 | Imura et al. | Oct 1996 | A |
5605713 | Boltong | Feb 1997 | A |
5607685 | Cimbollek et al. | Mar 1997 | A |
5652016 | Shiro et al. | Jul 1997 | A |
5683461 | Lee et al. | Nov 1997 | A |
5683496 | Ison et al. | Nov 1997 | A |
5695729 | Chow et al. | Dec 1997 | A |
5697981 | Ison et al. | Dec 1997 | A |
5702449 | McKay | Dec 1997 | A |
5766669 | Pugh et al. | Jun 1998 | A |
5782971 | Constantz et al. | Jul 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5820632 | Constantz et al. | Oct 1998 | A |
5846312 | Ison et al. | Dec 1998 | A |
5891448 | Chow et al. | Apr 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5954867 | Chow et al. | Sep 1999 | A |
5958430 | Campbell et al. | Sep 1999 | A |
5964932 | Ison et al. | Oct 1999 | A |
5976234 | Chow et al. | Nov 1999 | A |
5993535 | Sawamura et al. | Nov 1999 | A |
5997624 | Chow et al. | Dec 1999 | A |
6005162 | Constantz | Dec 1999 | A |
6013591 | Ying et al. | Jan 2000 | A |
6013853 | Athanasiou et al. | Jan 2000 | A |
6018095 | Lerch et al. | Jan 2000 | A |
6027742 | Lee et al. | Feb 2000 | A |
6077989 | Kandel et al. | Jun 2000 | A |
6083229 | Constantz et al. | Jul 2000 | A |
6117456 | Lee et al. | Sep 2000 | A |
6118043 | Nies et al. | Sep 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6132463 | Lee et al. | Oct 2000 | A |
6149688 | Brosnahan et al. | Nov 2000 | A |
6162258 | Scarborough et al. | Dec 2000 | A |
6277149 | Boyle et al. | Aug 2001 | B1 |
6294041 | Boyce et al. | Sep 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6323146 | Pugh et al. | Nov 2001 | B1 |
6325987 | Sapieszko et al. | Dec 2001 | B1 |
6325992 | Chow et al. | Dec 2001 | B1 |
6332779 | Boyce et al. | Dec 2001 | B1 |
6340648 | Imura et al. | Jan 2002 | B1 |
6379453 | Lin et al. | Apr 2002 | B1 |
6440444 | Boyce et al. | Aug 2002 | B2 |
6458162 | Koblish et al. | Oct 2002 | B1 |
6478825 | Winterbottom et al. | Nov 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B2 |
6530955 | Boyle et al. | Mar 2003 | B2 |
6533821 | Lally | Mar 2003 | B1 |
6547866 | Edwards et al. | Apr 2003 | B1 |
6569489 | Li | May 2003 | B1 |
6585992 | Pugh et al. | Jul 2003 | B2 |
6616742 | Lin et al. | Sep 2003 | B2 |
6648960 | Lin et al. | Nov 2003 | B1 |
6670293 | Edwards et al. | Dec 2003 | B2 |
6696073 | Boyce et al. | Feb 2004 | B2 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6730129 | Hall et al. | May 2004 | B1 |
6752831 | Sybert et al. | Jun 2004 | B2 |
6793725 | Chow et al. | Sep 2004 | B2 |
6808561 | Genge et al. | Oct 2004 | B2 |
6808585 | Boyce et al. | Oct 2004 | B2 |
6840995 | Lin et al. | Jan 2005 | B2 |
6929692 | Tas | Aug 2005 | B2 |
6953594 | Lee et al. | Oct 2005 | B2 |
6955716 | Xu et al. | Oct 2005 | B2 |
6960249 | Lin et al. | Nov 2005 | B2 |
20020019635 | Wenstrom, Jr. et al. | Feb 2002 | A1 |
20020073894 | Genge et al. | Jun 2002 | A1 |
20020137812 | Chow et al. | Sep 2002 | A1 |
20030019396 | Edwards et al. | Jan 2003 | A1 |
20030031698 | Roeder et al. | Feb 2003 | A1 |
20030039676 | Boyce et al. | Feb 2003 | A1 |
20030055512 | Genin et al. | Mar 2003 | A1 |
20030078317 | Lin et al. | Apr 2003 | A1 |
20030121450 | Lin et al. | Jul 2003 | A1 |
20030167093 | Xu et al. | Sep 2003 | A1 |
20030216777 | Tien et al. | Nov 2003 | A1 |
20040003757 | Lin et al. | Jan 2004 | A1 |
20040022825 | Lagow | Feb 2004 | A1 |
20040031420 | Lin et al. | Feb 2004 | A1 |
20040076685 | Tas | Apr 2004 | A1 |
20040137032 | Wang | Jul 2004 | A1 |
20040175320 | Lin et al. | Sep 2004 | A1 |
20040180091 | Lin | Sep 2004 | A1 |
20040185181 | Matsumoto | Sep 2004 | A1 |
20040186481 | Lin et al. | Sep 2004 | A1 |
20050008759 | Nie et al. | Jan 2005 | A1 |
20050076813 | Lin et al. | Apr 2005 | A1 |
20050101964 | Lin et al. | May 2005 | A1 |
20050184417 | Lin et al. | Aug 2005 | A1 |
20050186354 | Lin et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
0267624 | May 1988 | EP |
1172076 | Jul 2002 | EP |
06-228011 | Aug 1994 | JP |
WO 03055418 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050069479 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10773701 | Feb 2004 | US |
Child | 10940922 | US | |
Parent | 10607023 | Jun 2003 | US |
Child | 10773701 | US | |
Parent | 10414582 | Apr 2003 | US |
Child | 10607023 | US | |
Parent | 09615384 | Jul 2000 | US |
Child | 10414582 | US | |
Parent | 09351912 | Jul 1999 | US |
Child | 09615384 | US |