Effect of Benzene and Thiophene on Rate of Coke Formation during Naphtha Pyrolysis, D. Sahu/D. Kunzru, The Canadian Journal of Chemical Engineering, vol. 66, 808-816, Oct. 1988. |
Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons, M.S.G. Reyniers/G. F.Froment, Ind. Eng. Chem. Res., vol. 34, 773-785, 1995. |
Inhibition of Coke Formation in Pyrolysis Furnaces, Y. Tong, et al., Symposium on Coke Formation and Mitigation, 612-617, Division of Petroleum Chemistry, Aug. 1995. |
Organophosphorus Compounds as Coke Inhibitors during Naphtha Pyrolysis. Effect of Benzyl Diethyl Phosphite and Triphenylphosphine Sulfide, P. Das, et al., Ind. Eng. Chem. Res., vol. 31. No. 9, 2251-2255, 1992. |
Pure n-Nonane Steam Cracking and the Influence of Sulfur Compounds, D. Depeyre et al., Ind. Eng. Chem. Des. Dev., vol. 24, No. 4, 920-924, 1985. |
Pyrolysis of Hydrocarbons in the Presence of Elemental Sulfur, M. Bajus et al., Collection Czechoslov. Chem. Commun., vol. 45, 238-254, 1980. |
Pyrolysis of Propane in Tubular Flow Reactors, B. L. Crynes et al., I&EC Process Design and Development, vol. 8, 25-31, Jan. 1969. |
Reduction of Coke Formation During Naphtha Pyrolysis Using Triethyl Phosphite, K.K. Ghosh et al., Ind. Eng. Chem. Res., vol. 27, 559-565, 1988. |
Steam Cracking of Hydrocarbons. 6. Effect of Dibenzyl Sulfide and Dibenzyl Disulfide on Reaction Kinetics and Coking; M. Bajus et al., Ind. Eng. Chem. Prod. Res. Dev., vol. 22, 335-343, 1983. |
Triphenyl Phosphite as a Coke Inhibitor during Naphtha Pyrolsis, S. Vaish et al., Ind. Eng. Chem. Res., vol. 28, 1293-1299, 1989. |