This invention relates to the installation of flexible borehole liners into boreholes in geologic formations with either shallow or deep water tables, and more particularly to a method for placing a flexible liner into a borehole without everting the liner down the borehole.
A “borehole” is a hole, e.g., a drilled shaft, into the Earth's subsurface. The hydraulic conductivity profiling techniques described in, for example, my U.S. Pat. Nos. 6,910,374 and 7,281,422 have been used in over 400 boreholes since 2007. These patents, whose complete teachings are hereby incorporated by reference, describe the hydraulic transmissivity profiling technique which carefully measures the eversion of a flexible borehole liner into an open stable borehole. Other installations of flexible liners into boreholes by the eversion of the liners are used for a variety of known down-hole techniques. Installation of borehole liners by eversion, and some utilities of liners so installed, are disclosed in, for example, my previous U.S. Pat. Nos. 5,176,207, 5,803,666, 6,244,846 and 9,008,971, which are incorporated herein by reference. In the eversion of a liner, one end of the liner is secured around the top of the borehole (e.g., on the casing), while the other closed end is forced down the borehole by fluid pressure; as the closed end of the liner progresses down the borehole the liner turns inside-out. The “inside” of the liner everts to become the outside surface of the liner, which surface is pressed against the borehole wall by the liner's interior fluid pressure. Everted liners are usually installed into the open boreholes using a water level inside the liner which is significantly higher than the water table in the formation penetrated by the borehole. The excess head drives the liner down the borehole, displacing any ambient borehole water.
However, when that required excess head is not available within the borehole, a scaffold plus an extension of the surface casing are often used to achieve the higher water level within the liner. In some situations of very shallow water tables, or in situations where the head within the borehole would rise above the ground surface if the surface casing were extended above the surface (an artesian condition), the required scaffold would be so high as to be dangerous. And high scaffolding may expose the installation personnel to freezing winter winds.
A larger constraint on the methods of everting a flexible liner into a borehole is that the tubing (e.g., sample tubing) accompanying the liner, and required for extraction or injection of fluids into the geologic formation, is too stiff to be everted with the liner. This ordinarily is the case for tubing of ⅜″ outside diameter or larger. In this disclosure and in the claims, “large diameter,” in reference to tubing, means 0.375 or more inches outside diameter. Another limitation is that the spacer typically used on the exterior of the liner to define the extraction or injection interval is too stiff to evert along with the liner, especially into relatively small-diameter boreholes.
The limitations on the eversion method of flexible liner installation are even greater for large-diameter holes. It is impractical to evert tubing with the liner into boreholes of less than 3 inches diameter. A technique described in my U.S. Pat. No. 6,298,920, granted Oct. 9, 2001, uses a rigid pipe to allow the non-eversion installation of a flexible liner by lowering the liner through the interior of the pipe. But such pipe is bulky and difficult to ship and assemble in the field. Installations by the method of U.S. Pat. No. 6,298,920 also present certain other deficiencies, such as not including common water sampling devices and systems.
Another known method used to isolate an interval in a borehole for fluid extraction or injection is called a straddle packer, which uses two bladders on a central pipe. Straddle packer devices are not well-suited for isolation of multiple intervals in a borehole for simultaneous extraction of fluid samples. The straddle packer method isolates the straddled interval, but with the remainder of the borehole open or unsealed. Hence, there is a risk of bypass of the bladders between the open holes above and below the straddled interval.
With the foregoing background, the presently disclosed invention was developed. The invention described hereafter allows the installation of a flexible liner without using the previously known eversion process. The method of the present invention therefore does not require the excess fluid pressure head to evert and drive the liner, and does not require scaffolding for installation in shallow water tables or under artesian conditions. A particular advantage of the disclosed invention is that the installation does not require the trained installers often needed for the everting liner installation procedure.
There is disclosed herein a method and apparatus to allow a flexible liner to be installed into a pipe or borehole for a variety of applications such as sealing the borehole, a water sampling device, mapping contaminant distributions, injecting remediation fluids into contaminated aquifers, and for the purpose of measuring the water table at numerous elevations in a borehole. The inventive installation by lowering the liner into either a cased borehole with slotted screens, or in an uncased borehole, is possible without the hazard of abrasion of the liner. Liner abrasion and associated leakage are normally a concern when lowering a liner into the uncased borehole. The present apparatus and method use a removable protective sheath to avoid the typical abrasion penetration of a flexible liner lowered into an open borehole. By the invention, it is possible to include tubing and other devices attached to the liner that are too stiff to be included in an everting liner. This invention has the additional advantage of installation by personnel less skilled in the art of installation of everting liners, especially in boreholes of low transmissivity. A further advantage of the invention is that the fabrication procedure is possible with tubing too stiff to be included in the normal everting liner construction procedure. That same fabrication advantage allows the construction of very slender flexible liners, as small as two inches in diameter, which can then be installed into the casing (when eversion of such slender liners with tubing is not possible). Another aspect of the invention is that several sampling intervals can be separated by a hydrologic seal between the discrete sampling intervals, even in a continuously screened casing. The sampling intervals are defined by an especially compact design to allow the passage through the hole or casing.
The attached drawings, which form part of this disclosure, are as follows:
The drawing figures are not necessarily to scale, either within a single view or between views. Like numeral labels typically identify like or similar elements throughout the several views.
Flexible liner installation typically is accomplished by everting the liner into position in the borehole. Such installation method is illustrated in
A natural consequence of the eversion procedure is that any water standing in the borehole 2 is driven into the surrounding formation 1. If the formation 1 is not permeable, the flow 3 from inside the borehole into the formation is not possible; water in the borehole 2 beneath the everting end of the liner prevents further eversion, and the liner eversion may cease before reaching the bottom of the borehole 2. The liner 4 of
There is a need, therefore, for a system and method for installing flexible liners into boreholes without using eversion techniques, but rather by lowering the liner down the borehole with the outside surface of the liner—that surface which is to come into contact with the borehole casing or borehole wall—always facing out toward the borehole wall while the liner descends. A problem with liner installation without eversion-type placement is the need to protect the liner during its descent down the hole. The present system and method allow a liner to be lowered down a borehole while protecting it, as with a protective sheath. There also are disclosed means and method for preventing relative movement between a liner and its protective sheath while the liner/sheath combination is being lowered into the borehole according to the invention. Also disclosed are means and method for anchoring the liner in the borehole to prevent its being dragged upward after it is properly placed, and while the sheath is raised and withdrawn from the borehole. After the liner has completed service in the borehole, it may be withdrawn by inversion (pulling the liner's bottom end up first, to turn the liner outside-in), or by deflating and collapsing the liner and pulling it up directly without inversion.
Alternative embodiments of the system may feature, in lieu of or in addition to spacer(s) 24, other means, on the liner and in communication with tubes, for evaluating conditions in the borehole. Such other means for evaluating include a chemically absorptive or reactive element on the outside of the liner 21, such as described in my U.S. Pat. Nos. 7,896,578, and 10,060,252, or fiber optic cables and/or other sensors, including electronic sensors, known in the art for detecting, measuring, or monitoring downhole conditions.
In an alternative embodiment also depicted by reference to
When the liner 21 is submerged below the water table 219 in the borehole, the tubes 29, 210 fill with water flowing from the spacer 217, through the auxiliary tube 215, and through the check valve 218, thus into the tubes 29 and 210 to the level of the water table 219 in the formation 1. An electric water level meter (not shown) disposed through an access fitting 225 can be used to measure the elevation of the water table 219 as manifest inside the large diameter tube 29. In the water-filled condition, when the large diameter tube 29 is pressurized (e.g., with/from a typical regulated gas bottle system 223 at the surface 220), the water flows upward in the auxiliary tube 215, closing the check valve 218 and forcing the subsequent flow in the auxiliary tube into the second slender tube 210 and therein to the surface at point 212 for collection at container 224. The net effect of the gas pressure application, from pressure source 223 into large diameter tube 29, is to drive the water from the geologic formation 1 up into the collector container 224. Reduction to atmospheric pressure of the gas pressure applied to large diameter tube 29 allows the tubing system 29, 210 to refill with water from the spacer 217 (which water originates in the formation).
Attention is invited to
After the liner 21 has been lowered into place in the borehole 10, water is added (from the surface) to the central tube 25 to inflate the liner radially outward against the inside wall of the casing 42 to seal of the casing, thereby to isolate the one or more screened intervals 44 and 411 from connecting (and potentially cross-contaminating) flow inside the casing. The backfill material 48 between the casing 42 and the borehole wall (i.e., wall 10 in
An advantage of the flexible liner 21 being lowered into place in the manner illustrated in
Attention is returned to
The system of
There is a potential hazard in that the drag of the protective sheath 54 on the hole wall 10 may be greater than the frictional drag between the outside of the liner 21 and the inside of the sheath 54. In such a circumstance, the liner 21 may descend, or slip downward, through the sheath 54, causing the sheath to buckle and crinkle around the outside of the liner, which prevents the liner and sheath from moving downward together to the bottom of the borehole 2. Such deleterious buckling of the protective sheath 54 exposes the liner 21 to abrasion to the extent the unprotected liner descends beneath the buckled sheath. To assure that the sheath 54 moves concurrently together with the liner 21, the sheath 54 preferably is attached to the sealed end 26 of the liner, at the bottom end of the liner, using an assembly seen in
A suitable sheath release mechanism according to the present system and method is depicted in
The release mechanism is controllably actuatable from the surface in order to disconnect the bottom of the sheath 54 from the bottom of the liner 21. The connection between the sheath 54 and the liner 21, supplied by the looped engagement of the cord 65 through the grommets and around the actuation tube 68 at location 67, is releasable to permit the sheath to be removed from the borehole 2 while leaving the liner 21 in place. In order for the interconnection to be controllably released from the surface, the strong pull cord 69 passes through the interior of the sheath 54 to the surface. Deliberately sustained upward pulling, at the surface, on the proximate end of the cord 69 withdraws the actuation tube 68 from within the loop in the cord 65 at location 67. Disengagement of the actuation tube 68 from within the loop of the cord 65 frees the cord to slidably pass back through the grommets 63, 63′, thereby releasing and relaxing the sheath 54 to dilate as the slit 62 reopens. The reopening of the slit 62 expands the effective diameter of the bottom end of the sheath 54, and frees the connection between the bottom end of the sheath and the bottom end of the liner 21. Operators at the surface then pull upward on the top end of the sheath 54, and the sheath 54 is then removed from around the outside of the liner 21 and is withdrawn to the surface. The weight 28 (
However, if the drag of the sheath 54 on the liner 21 is more than the combined weight of the weight 28 and the liner with its tubing while underwater in the borehole, the bottom end of the liner must be anchored in the borehole 2 in order that the liner not rise with the withdrawal of the sheath from the borehole.
This precaution of mud addition is only needed for relatively deep installations, and when the liner weight is not sufficient to keep the liner 21 in place while the sheath 54 is lifted from the borehole. It is impressively beneficial that a modest mud pressure of the liner against the borehole wall produces a drag of the liner on the borehole wall exceeding a hundred pounds of drag resistance against sliding upward on the hole wall.
For the liner 21 at the wall 10 to be anchored by the friction of the liner 21 against the hole wall 10, a portion of the liner must be exposed beneath the sheath 54. However, such exposure may allow abrasion of the liner 21 during the installation descent in the borehole 2 (unless the liner 21 is otherwise protected). Referring still to
The top of the balloon 815 is sealably attached to the cylindrical upper fitting 81 by means of an upper clamp 82. The bottom portion of the balloon 815 is similarly attached to a lower fitting 86. The tube 25 fills the balloon interior with water 813 that flows through the supply port 84 in the tube 25. Because, at the outset of system installation, the balloon 815 initially is collapsed by the ambient water pressure in the borehole 2, very little air is trapped in the balloon interior. A spring-loaded relief valve 87 is provided, and is biased closed during the water 813 addition to the interior of the balloon 815.
Other preferred features of the water balloon design are depicted by
An optional feature of the embodiment of
The removal of the liner 21 after use, a desirable aspect of the system and method, is achieved by injecting air into the central tube 25 at a pressure greater than the pressure at submerged depth of the bottom of the water balloon 815. The injected air passes out the upper vent hole 85 and expels the water 813 from within the balloon 815 via the lower vent hole 84. The water expelled through the lower vent hole 84 passes through the opened relief valve 87 and into the lower liner interior, to mix with the lower-pressure water inside the liner 21. Then, by controllably lowering the air pressure in the central tube 25 to atmospheric, the relief valve 87 closes, and the balloon 815 collapses under the higher water pressure within the liner 21. The balloon 815 thereafter no longer functions to anchor the liner 21 in the borehole 2. Pumping the water from within the liner 21 (and to the surface) using a pump (not shown) lowered into the liner interior causes the water pressure in the borehole 2 and outside the liner to collapse the liner. The liner 21 can then readily be lifted up and out from the borehole 2. If the natural water table is not more than 25 feet below the ground's surface, the water 813 in the balloon 815 can be removed from within the balloon by simply attaching a to the central tube 25 a peristaltic pump (not shown) at the surface.
Without the water balloon anchor 815 in use, the water within in the liner 21, as seen in
An attractive borehole liner function is to enable the extraction of contaminated water, or injection of remediation fluids, from/in discrete intervals of a borehole in a geologic formation. However, these functions require that the borehole be sealed except for the discrete borehole intervals of interest. Such extractions or injections require larger-diameter tubing than are normally incorporated in everting liner designs. But such large and stiff tubing advantageously can be included in liners that are lowered directly (and not be eversion) into the borehole or casing as described previously. An embodiment of the present invention shown in
The natural tubing curvature when removed from a shipping reel can contribute to the abrasion of a liner 21 which is simply lowered down an open borehole 2. The use of the protective sheath 54 described above allows the installation of this system without abrasion of the liner 21, even when the sampling tubes tend to curve, so the sheath 54 allows the entire liner system to be conveniently shipped on a reel.
A further optional aspect of the embodiment of
The liner system of U.S. Pat. No. 7,896,578 can be similarly sheathed and lowered into position in a cased or uncased hole. After the sheath is removed, the liner can be dilated to press the adsorptive carbon felt against the hole wall. The liner can then be removed after removing the water from the liner, or the liner can be inverted from the borehole or casing. The sheath can be only slightly permeable to gain the advantages described and also protect the liner with carbon felt from the contaminated borehole water exposure.
A flexible liner configured with relatively stiff tubing accordingly can be lowered into a smooth casing. However, the more general installation of a flexible liner into an uncased hole requires the protection of an abrasion-resistant sheath to prevent perforation of the thin liner material. The protective sheath also provides the advantage of the temporary compression of the liner's effective diameter to less than the borehole diameter, thereby to minimize the drag of the liner on the borehole wall—facilitating the descent of the liner into the borehole. Suitable sheathing fabric of the necessary properties of abrasion resistance, strength, low friction coefficient and permeability is commercially available at reasonable cost. The ability to lower a flexible liner into an open borehole without abrasion damage further allows the incorporation of large diameter tubes in a flexible liner. The thin, strong, flexible liner provides a superior seal of the borehole when emplaced in the described circumstances. The thin liner also allows the very compact assembly for this function in holes so small as 2 inches in diameter, and potentially smaller, without the bulk of tubing.
An additional advantage is the convenience of deployment of the entire system from a shipping reel in 10-15 minutes, without the need to use a pipe of many sections to provide similar protection. The use of rigid pipe to install a non-everted liner results in much higher cost, as a heavy crane truck and trained operators are necessary to remove the pipe sections. In beneficial contrast, the protective sheath according to the disclosed system and method is easily and quickly removed by one person onto a nearby reel.
Although the invention has been described in detail with reference to these preferred embodiments, other embodiments can achieve the same results. The present apparatus can be practiced by employing generally conventional materials and equipment. Accordingly, the details of such materials and equipment are not set forth herein in detail. In this description, specific details are set forth, such as specific materials, structures, processes, etc., to provide a thorough understanding of the present invention. However, as one having ordinary skill in the art would recognize, the present invention can be practiced without resorting strictly only to the details specifically set forth. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the present invention.
Only some embodiments of the invention and but a few examples of its versatility are described in the present disclosure. It is understood that the invention is capable of use in various other combinations and is capable of changes or modifications within the scope of the inventive concept as expressed herein. Modifications of the invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The disclosures of all patents identified hereinabove are incorporated herein by reference.
This application claims priority to and the benefit of the filing of U.S. Provisional Patent Application Ser. No. 62/793,774 entitled “Method for Installing a Flexible Borehole Liner Without Eversion,” filed 17 Jan. 2019, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4778553 | Wood | Oct 1988 | A |
5176207 | Keller | Jan 1993 | A |
5246862 | Grey et al. | Sep 1993 | A |
5377754 | Keller | Jan 1995 | A |
5725055 | Schirmer | Mar 1998 | A |
5803666 | Keller | Sep 1998 | A |
5804743 | Vroblesky et al. | Sep 1998 | A |
5853049 | Keller | Dec 1998 | A |
6026900 | Keller | Feb 2000 | A |
6109828 | Keller | Aug 2000 | A |
6244846 | Keller | Jun 2001 | B1 |
6283209 | Keller | Sep 2001 | B1 |
6910374 | Keller | Jun 2005 | B2 |
7281422 | Keller | Oct 2007 | B2 |
7753120 | Keller | Jul 2010 | B2 |
7841405 | Keller | Nov 2010 | B2 |
7896578 | Keller | Mar 2011 | B2 |
8069715 | Keller | Dec 2011 | B2 |
8176977 | Keller | May 2012 | B2 |
8424377 | Keller | Apr 2013 | B2 |
9008971 | Keller | Apr 2015 | B2 |
9534477 | Keller | Jan 2017 | B2 |
9797227 | Keller | Oct 2017 | B2 |
10030486 | Keller | Jul 2018 | B1 |
10060252 | Keller | Aug 2018 | B1 |
10139262 | Keller | Nov 2018 | B2 |
10337314 | Keller | Jul 2019 | B2 |
20120173148 | Keller | Jul 2012 | A1 |
20180274312 | Zhou | Sep 2018 | A1 |
20180371882 | Delange | Dec 2018 | A1 |
Entry |
---|
Keller, C., “Improved Spatial Resolution in Vertical and Horizontal Holes . . . ”; Remediation of Hazardous Waste Contaminated Soils; 1994; pp. 513-541; Macel Dekker, Inc.; USA. |
Cherry, J.A., et al.; “A New Depth-Discrete Multilevel Monitoring Approach for Fractured Rock”; Ground Water Monitoring & Remediation; 2007; pp. 57-70; vol. 27, No. 2; USA. |
Number | Date | Country | |
---|---|---|---|
20200232292 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62793774 | Jan 2019 | US |