The present application is based on, and claims priority from, JP2020-18512, filed on Feb. 6, 2020, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present invention relates to a method of installing a stroke sensor.
A stroke sensor is used in various kinds of fields, such as a transmission and a brake of a vehicle. JP2009-44888 discloses an actuator having a sensor for detecting a rotational angle. The sensor is pre-installed in the actuator. In order to compensate the error in installing the actuator, the moving distance of the drive shaft of the actuator and the sensor output are measured by operating the actuator, and the sensor characteristics that are stored in the sensor are rewritten accordingly.
In the method of rewriting the sensor characteristics disclosed in JP2009-44888, it is necessary to move the actuator after the sensor is installed in the actuator. As a result, the processes are complicated after the sensor is installed in the actuator.
The present invention aims at providing a method of installing a stroke sensor that enables the stroke sensor to be adjusted in a simple process.
According to the present invention, a method of installing a stroke sensor is provided, wherein the stroke sensor includes a magnetic field detecting element that detects a magnetic field, a first magnet that generates the magnetic field and that is movable in a first direction relative to the magnetic field detecting element, and a processor that calculates an indicator value S based on the magnetic field that is detected by the magnetic field detecting element, wherein the indicator value S indicates a relative position of the first magnet relative to the magnetic field detecting element. The method comprises the steps of: arranging a second magnet, relative to the magnetic field detecting element, at a physically determinable first reference position and obtaining an indicator value S1; attaching the first magnet and the magnetic field detecting element to structures different from each other, respectively, and positioning the first magnet, relative to the magnetic field detecting element, at a physically determinable second reference position, and obtaining an indicator value S2, wherein the second reference position corresponds to the first reference position; calculating ΔS=S1−S2, wherein ΔS is a difference between the indicator value S1 and the indicator value S2; and modifying a process in the processor such that a sum of the indicator value S and ΔS is outputted.
According to the present invention, it is possible to provide a method of installing a stroke sensor that enables the stroke sensor to be adjusted in a simple process.
The above and other objects, features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings which illustrate examples of the present invention.
With reference to the drawings, a method of installing stroke sensor 1 according to an embodiment of the present invention will be described. In the following descriptions, the direction in which the first magnet is moved is referred to as a first direction or the X direction. The direction that is perpendicular to the X direction and that is perpendicular to the surface of first magnet 3 that faces magnetic field detecting element 21 is referred to as the Y direction. The term “relative position” or “relative position of first magnet 3” refers to the position of first magnet 3 in the X direction relative to magnetic field detecting element 21 unless otherwise defined.
Sensor assembly 2 is attached to second structure 24 that is different from first structure 33. Second structure 24 is, for example, a cover element that covers first structure 33 and, second structure 24 is movable in the X direction relative to first structure 33. In order to arrange magnetic field detecting element 21 near first magnet 3, protrusion 23, that has magnetic field detecting element 21 formed at the tip end thereof, is inserted into hole 25 that is provided in second structure 24. Sensor assembly 2 has housing 26 that covers magnetic field detecting element 21 and processor 2. If second structure 24 has a space for magnetic field detecting element 21 and processor 22, then housing 26 may be omitted. Magnetic field detecting element 21 includes an element that detects a magnetic field in the X direction and an element that detects a magnetic field in the Y direction (both not illustrated). The type of these elements is not limited, and a Hall element, a TMR element, a GMR element and so on may be used. Sensor assembly 2 is preferably immovable because a power cable, an output cable and the like are connected to sensor assembly 2. Accordingly, sensor assembly 2 is immovable, and first magnet 3 is movable in the present embodiment. However, sensor assembly 2 may be movable, and first magnet 3 may be immovable.
Processor 22 calculates indicator value S that indicates the relative position of first magnet 3 based on the magnetic field that is detected by magnetic field detecting element 21. Three sub-magnets 31 generate a magnetic flux having a substantially sinusoidal shape across them. Assume that the X component and the Y component of a magnetic flux at a certain position is Bx and By, respectively. Then, angle θ of the magnetic flux relative to the X direction at the position (hereinafter, referred to as angle θ of the magnetic field) can be expressed by arctan (By/Bx). The magnetic field around first magnet 3 can be obtained by analysis etc. in advance. Since the gap between magnetic field detecting element 21 and first magnet 3 in the Y direction is known, if angle θ of the magnetic field is obtained, then the relative position of first magnet 3 can be calculated. Processor 22 calculates angle θ of the magnetic field=arctan (By/Bx) from Bx and By that are detected by magnetic field detecting element 21, converts angle θ of the magnetic field to output voltage V that corresponds to the relative position, and outputs output voltage V. Angle θ of the magnetic field can be detected over the angle range of 0 to 360°. Therefore, indicator value S is output voltage V that is determined based on angle θ of the magnetic field.
The relationship between the relative position and output voltage V is typically curvilinear and can be expressed by a curved line that resembles a cubic function, as shown by the solid line in
First, sensor assembly 2 is attached to calibration apparatus 6 (see
Next, a line that connects output voltages V1 and V2 at both ends of the movable range is calculated. The line is regarded as the relationship formula between the relative position and output voltage V that has been calibrated (hereinafter, referred to as output voltage W). The relationship formula between the relative position and output voltage W is a linear function. In order to obtain the relationship formula, processor 22 has converting means that converts angle θ of the magnetic field to output voltage W. The converting means are generated as a conversion map shown in
Stroke sensor 1 works in the following manner. Magnetic field detecting element 21 of sensor assembly 2 detects Bx and By. Processor 22 calculates angle θ of the magnetic field=arctan (By/Bx). Processor 22 converts angle θ of the magnetic field to output voltage W, that corresponds to the relative position, by means of the converting means, and outputs output voltage W. Angle θ of the magnetic field is calculated from the conversion map by interpolation, as needed. In this manner, stroke sensor 1 outputs output voltage W that is in a linear relationship with the relative position.
However, there is a possibility that when first magnet 3 is attached to first structure 33 and sensor assembly 2 that has been calibrated is attached to second structure 24, the relationship between the relative position and output voltage W, that is, the relationship shown by the dashed line in
Accordingly, the process that is carried out in processor 22 of stroke sensor 1 is modified in the present embodiment. First, as shown in
Next, as shown in
Next, processor 22 calculates indicator value S2 that indicates second reference position XR2, and adjustment apparatus 7 reads output voltage W2, that is indicator value S2. Unlike the calibration, it is not necessary to move first magnet 3. The left end of first magnet 3 stays at second reference position XR2. Second reference position XR2 may be at any position as long as the relationship between first reference position XR1 and second reference position XR2 can be definitely determined, but preferably at the initial position where the installation is performed. By doing so, it is not necessary to further move first magnet 3 after first magnet 3 is attached.
Next, adjustment apparatus 7 calculates a difference between indicator value S1 and indicator value S2, i.e., ΔS=S1−S2. Indicator value S1 has been directly inputted to adjustment apparatus 7 or has been inputted in advance to adjustment apparatus 7 via the above-mentioned storage apparatus. As mentioned above, since the position of sensor assembly 2 in calibration apparatus 6 is shifted from that in the actual apparatus, indicator value S2 is different from indicator value S1. Accordingly, adjustment apparatus 7 modifies the flow of processor 22 such that a sum of indicator value S and ΔS is outputted. Specifically, adjustment apparatus 7 updates the program that is stored in processor 22 so as to add ΔW=W1−W2 to output voltage W that is calculated by the above-mentioned method, and to output the sum. For example, when output voltage W1 is 4.0V and output voltage W2 is 3.9V, stroke sensor 1 must output 4.0V as output voltage W2 at second reference position XR2. This is because stroke sensor 1 is adjusted so as to output 4.0V as voltage W1 at first reference position XR1 that corresponds to second reference position XR2. If output voltage W1 of 4.0V is not outputted at second reference position XR2, then the position of first magnet 3 cannot be precisely detected. Accordingly, adjustment apparatus 7 modifies the process in processor 22 so as to add ΔW=4.0−3.9=0.1V to output voltage W2 of 3.9V and to output 4.0V as output voltage W2. Alternatively, the conversion map may be directly updated by a writing apparatus such that output voltage W is increased by ΔW.
In this manner, as shown in
In the present embodiment, it is not necessary to move first magnet 3 when stroke sensor 1 is adjusted in an actual apparatus. All that is required after first magnet 3 and sensor assembly 2 are installed in an actual apparatus is to obtain indicator value S2 at the initial position where first magnet 3 and sensor assembly 2 are installed, to calculate ΔS, and to modify the process in processor 22 accordingly. In general, the calibration of stroke sensor 1 is performed by the manufacturer of stroke sensor 1, but the adjustment of stroke sensor 1, after it is installed in an actual apparatus, is carried out by the manufacturer of an assembly to which stroke sensor 1 is incorporated or by the manufacturer of the final product. Accordingly, in the present embodiment, the process that is performed by the manufacturer of the assembly or by the manufacturer of the final product is simplified and the added value of stroke sensor 1 is increased.
In the present embodiment, a highly precise calibration can be performed even when first magnet 3 is movable to limited positions, that is, only discretely movable. For example, first structure 33 may be connected to an element, such as a plunger, that is configured to stop only at both ends of the movable range. When calibration of stroke sensor 1 is carried out after stroke sensor 1 is installed in an actual apparatus, the measurements that can be used for the calibration are limited to the values that are measured at the two points. In the present embodiment, since calibration using measurements at multiple points is possible before stroke sensor 1 is installed in an actual apparatus, the accuracy of the calibration can be improved.
An embodiment of the present invention has been described, but the present invention is not limited to the embodiment. For example, first magnet 3 may be used as second magnet 5 for the calibration. First magnet 3 has substantially the same magnetic properties as master magnet 5, but there is a possibility that the magnetic properties of the two magnets are not completely the same. Since first magnet 3 that is to be installed in an actual apparatus is used for the calibration instead of master magnet 5, measurement error that is caused by the difference in the magnetic properties between first magnet 3 and master magnet 5 does not occur.
As shown in
As shown in
In addition, the calibration may be omitted. As shown in
Although a certain preferred embodiment of the present invention has been shown and described in detail, it should be understood that various changes and modifications may be made without departing from the spirit or scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-018512 | Feb 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20050232094 | Hoshino | Oct 2005 | A1 |
20100188074 | Matsumoto | Jul 2010 | A1 |
20110248705 | Matsumoto | Oct 2011 | A1 |
20210262829 | Moriya | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
2005-017220 | Jan 2005 | JP |
2009-44888 | Feb 2009 | JP |
2009-174863 | Aug 2009 | JP |
2010-025879 | Feb 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20210247172 A1 | Aug 2021 | US |