The technical field of this disclosure relates generally to a method for joining an aluminum workpiece and a steel workpiece by way of reaction metallurgical joining.
A number of manufacturing industries employ operations in which two or more metal workpieces are joined together. The automotive industry, for example, often uses various forms of welding and/or mechanical fastening to join together metal workpieces during the manufacture of vehicle structural members (e.g., body sides and cross members) and vehicle closure members (e.g., doors, hoods, trunk lids, and lift gates), among others. And while welding and fastening procedures have traditionally been practiced to join together certain similarly composed metal workpieces—namely, aluminum-to-aluminum and steel-to-steel—the desire to incorporate lighter weight materials into a vehicle body structure has generated interest in joining aluminum workpieces to steel workpieces. Other manufacturing industries including the aviation, maritime, railway, and building construction industries are also interested in developing effective and repeatable procedures for joining such dissimilar metal workpieces.
The joining of aluminum and steel workpieces through traditional welding practices, such as spot and laser welding, can be a challenging endeavor given the markedly different properties of aluminum and steel (e.g., solidus and liquidus temperatures and thermal and electrical conductivities). Spot and laser welding processes are also complicated by the fact that a mechanically tough and electrically insulating refractory oxide layer is typically present at the surface of the aluminum workpiece. These challenges facing conventional welding practices can be avoided through the use of mechanical fasteners such as self-piercing rivets and flow-drill screws. But mechanical fasteners are more laborious to install and have high consumable costs compared to welding. Additionally, mechanical fasteners add weight to the vehicle—weight that is avoided when joining is accomplished by way of welding—that offsets some of the weight savings attained through the use of aluminum workpieces in the first place.
The technical and economical obstacles that accompany welding and/or mechanically fastening together an aluminum workpiece and a steel workpiece are not insurmountable. With that being said, alternative techniques that can successfully join together those two types of dissimilar metal workpieces, especially in a manufacturing setting, are still being investigated for a variety of reasons including the desire to broaden the number of available joining options. Low heat input metallurgical joining techniques that do not necessitate melting of the aluminum workpiece, which melts at a significantly lower temperature than the steel workpiece, are of particular interest. Indeed, when the aluminum workpiece is heated to above its liquidus temperature and the resultant molten aluminum wets a broad surface of the steel workpiece, such as during the practice of resistance spot welding, a hard and brittle intermetallic layer comprised of Fe—Al intermetallic compounds forms along the unmelted faying surface of the steel workpiece. This intermetallic layer is susceptible to rapid crack growth and, as a result, can be a cause of interfacial joint fracture when the joined aluminum and steel workpieces are subjected to loading.
A method of joining an aluminum workpiece and an adjacent overlapping steel workpiece by reaction metallurgical joining may include several steps according to one embodiment of the present disclosure. In one step, a workpiece stack-up that includes an aluminum workpiece, a steel workpiece, and a reaction material located between the aluminum workpiece and the steel workpiece at a faying interface of the aluminum and steel workpieces is assembled. In another step, the reaction material is compressed between the aluminum workpiece and the steel workpiece. In yet another step, the reaction material is heated momentarily to form a metallurgical joint between the aluminum workpiece and the steel workpiece. The metallurgical joint comprises a bonding interface between the reaction material and the steel workpiece and a bonding interface between the reaction material and the aluminum workpiece, and a Fe—Al intermetallic layer is not present at either of the bonding interface between the reaction material and the steel workpiece or the bonding interface between the reaction material and the aluminum workpiece.
The method of the aforementioned embodiment may include further steps or be further defined. For instance, the reaction material may be comprised of a copper-based reaction material composition that has the capacity to both wet steel and form a low-melting point eutectic alloy with aluminum. In particular, the copper-based reaction material may be pure unalloyed copper or a copper alloy having a minimum copper constituent content of 50 wt %. Several copper alloys that may be used include one of a copper-phosphorus alloy, a copper-silver-phosphorus alloy, a copper-tin-phosphorus alloy, a copper-zinc alloy, an aluminum-bronze alloy, or a silicon-bronze alloy.
Additionally, the bonding interface between the reaction material and the steel workpiece may be a primary braze joint and the bonding interface between the reaction material and the aluminum workpiece may be a primary fusion joint established by an aluminum-copper alloy. And, in some instances, the metallurgical joint may further include a radially extended portion of the aluminum-copper alloy that surrounds the reaction material and establishes a secondary braze joint with the steel workpiece and a secondary fusion joint with the aluminum workpiece. The assembled workpiece stack-up may include (in terms of the number of workpieces) only the aluminum workpiece and the steel workpiece, or it may include an additional aluminum workpiece and/or an additional steel workpiece in addition to the aluminum workpiece and the steel workpiece between which the metallurgical joint is formed.
A method of joining an aluminum workpiece and an adjacent overlapping steel workpiece by reaction metallurgical joining may include several steps according to another embodiment of the present disclosure. In one step, a reaction material comprised of a copper-based reaction material composition is deposited onto a faying surface of a steel workpiece to form a reaction material deposit. This reaction material deposit establishes a bonding interface with the faying surface of the steel workpiece in the form of a primary braze joint. In another step, the steel workpiece with its brazed reaction material deposit is assembled into a workpiece stack-up with an aluminum workpiece such that the reaction material deposit is positioned between the aluminum workpiece and the steel workpiece at a faying interface of the aluminum and steel workpieces. In yet another step, the reaction material deposit is compressed between the aluminum workpiece and the steel workpiece. In still another step, the reaction material deposit is heated to a temperature above an aluminum-copper eutectic temperature but below a solidus temperature of the aluminum workpiece to form a localized molten phase of intermixed aluminum and copper between the reaction material deposit and the aluminum workpiece. In another step, the localized molten phase of intermixed aluminum and copper is allowed to solidify into an aluminum-copper alloy that establishes a bonding interface with the reaction material deposit and the aluminum workpiece in the form of a primary fusion joint.
The method of the aforementioned embodiment may include further steps or be further defined. For instance, the copper-based reaction material may be pure unalloyed copper or a copper alloy having a minimum copper constituent content of 50 wt %. In particular, the copper alloy may be one of a copper-phosphorus alloy, a copper-silver-phosphorus alloy, a copper-tin-phosphorus alloy, a copper-zinc alloy, an aluminum-bronze alloy, or a silicon-bronze alloy. As another example, the step of depositing the reaction material onto the faying surface of the steel workpiece may involve the use of oscillating wire arc welding to transfer a molten reaction material droplet from a leading tip end of a consumable electrode rod onto the faying surface of the steel workpiece and allowing the molten reaction material droplet to solidify.
The method of the aforementioned embodiment may involve a particular practice of oscillating wire arc welding to deposit the reaction material deposit onto the faying surface of the steel workpiece. To that end, a leading tip end of a consumable electrode rod, which is comprises of the reaction material composition, may be brought into contact with the faying surface of the steel workpiece. An electrical current is then passed through the consumable reaction material electrode rod while the leading tip end of the consumable electrode rod is in contact with the faying surface of the steel workpiece. Next, the consumable electrode rod may be retracted away from the faying surface of the steel workpiece to thereby strike an arc across a gap formed between the consumable electrode rod and the faying surface of the steel workpiece. This arc initiates melting of the leading tip end of the consumable electrode rod. The consumable electrode rod is then protracted forward to close the gap and bring a molten reaction material droplet that has formed at the leading tip end of the electrode rod into contact with the faying surface of the steel workpiece. The contact between the molten reaction material droplet and the faying surface of the steel workpiece extinguishes the arc. Next, the consumable reaction material electrode rod is retracted away from the faying surface of the steel workpiece to transfer the molten reaction material droplet from the leading tip end of the consumable electrode rod to the faying surface of the steel workpiece. The molten reaction material droplet transferred to the faying surface of the steel workpiece eventually solidifies into all or part of the reaction material deposit.
The oscillating wire arc welding just discussed may be repeated one or more times to transfer multiple molten reaction material droplets to the faying surface of the steel workpiece. Those multiple molten reaction material droplets combine and solidify into the reaction material deposit. Moreover, as another variation, the electrical current applied to the consumable electrode rod may be increased when the molten reaction material droplet that has formed at the leading tip end of the electrode rod is in contact with the faying surface of the steel workpiece and the arc has been extinguished. In another variation, the step of compressing the reaction material deposit between the aluminum workpiece and the steel workpiece may be carried out by contacting a first side of the workpiece stack-up with a first electrode and contacting a second side of the workpiece stack-up with a second electrode, and converging the first and second welding electrodes to apply a clamping force against the first and second sides of the workpiece stack-up and to generate a compressive force on the reaction material deposit. In that regard, the step of heating the reaction material deposit may be carried out by passing an electrical current between the first and second welding electrodes and through the reaction material deposit. The electrical current that is passed between the first and second welding electrodes and through the reaction material deposit may be passed at a current level that ranges from 2 kA to 40 kA for a duration of 50 ms to 5000 ms.
The aforementioned embodiment of the disclosed method may produce supplemental bonding between the aluminum and steel workpieces beyond the primary braze and fusion joints. To be sure, the localized molten phase of intermixed aluminum and copper spreads laterally that is formed between the reaction material deposit and the aluminum workpiece may spread beyond the reaction material deposit between the aluminum and steel workpieces to provide a radially extended portion of the aluminum-copper alloy that surrounds the reaction material deposit. This extended portion of the aluminum-copper alloy may establish a secondary braze joint with the steel workpiece and a secondary fusion joint with the aluminum workpiece.
A workpiece stack-up that includes an aluminum workpiece and a steel workpiece joined together may, according to one embodiment, include a steel workpiece, an aluminum workpiece, and a metallurgical joint that secures the steel workpiece and the aluminum workpiece together. The metallurgical joint may comprise a copper-based reaction material that establishes a bonding interface with the steel workpiece in the form of a primary braze joint and further establishes a bonding interface with the aluminum workpiece in the form of a fusion joint through an aluminum-copper alloy. The copper-based reaction material may pure unalloyed copper or a copper alloy having a minimum copper constituent content of 50 wt %. Some specific copper alloys that may be employed include one of a copper-phosphorus alloy, a copper-silver-phosphorus alloy, a copper-tin-phosphorus alloy, a copper-zinc alloy, an aluminum-bronze alloy, or a silicon-bronze alloy. Additionally, in at least some instances, the metallurgical joint may also comprise a radially extended portion of the aluminum-copper alloy that surrounds the reaction material and establishes a secondary braze joint with the steel workpiece and a secondary fusion joint with the aluminum workpiece. The workpiece stack-up may include an additional aluminum workpiece and/or an additional steel workpiece in addition to the aluminum workpiece and the steel workpiece between which the metallurgical joint is formed.
A method of joining an aluminum workpiece and a steel workpiece through reaction metallurgical joining is disclosed. Reaction metallurgical joining is a process in which a reaction material is heated and compressed between the opposed faying surfaces of the aluminum and steel workpieces to metallurgically join together the two workpiece surfaces. The reaction material is formulated to metallurgically react with the aluminum and the steel included in the aluminum and steel workpieces, respectively, when the reaction material is heated. A copper-based reaction material composition such as, for instance, pure unalloyed copper or a suitable copper alloy, can metallurgically react with both the aluminum and steel workpieces by having the capacity to wet steel on one hand and form a low-melting point eutectic alloy with aluminum on the other hand. Such a reaction material composition can thus form a bonding interface with both steel and aluminum when heated and then subsequently cooled.
The mechanism by which the reaction material interacts with the steel and aluminum to form a bonding interface occurs at different temperatures. Because the aluminum workpiece melts at a significantly lower temperature compared to the steel workpiece, the reaction material is first deposited onto the faying surface of the steel workpiece such that a bonding interface in the form of a primary braze joint is formed between the reaction material and the steel workpiece. Next, the steel workpiece with its adherently brazed reaction material is assembled in stacked relation with the aluminum workpiece such that the reaction material is positioned between the two workpieces at a faying interface. The reaction material is then heated and a compressive force is applied to the workpiece stack-up. The heating and compression causes the reaction material to form a bonding interface with the aluminum workpiece in the form of a primary fusion joint established by an aluminum-copper alloy. Moreover, in some instances, the aluminum-copper alloy may even extend laterally beyond the reaction material to provide additional supplemental bonding between the workpieces in the form of a secondary braze joint along the steel workpiece and a secondary fusion joint along the aluminum workpiece. The primary joints along with the secondary joints, if present, together constitute the overall metallurgical joint that secures the workpieces together.
The deposition of the reaction material onto the faying surface of the steel workpiece is preferably carried out by way of oscillating wire arc welding, although other techniques may certainly be used as well. Oscillating wire arc welding is preferred here since that process can apply the reaction material in a molten state onto the faying surface of the steel workpiece from a consumable electrode rod. In this way, a specified amount of the reaction material can be consistently applied in a particular location, and the size and shape of the brazed-in-place reaction material can be precisely controlled. Moreover, because the reaction material is brazed to the faying surface of the steel workpiece, the oscillating wire arc welding process does not have to be practiced just prior to commencement of the reaction metallurgical joining process. In fact, if desired, the reaction material can be deposited long before the corresponding steel workpiece is expected to undergo reaction metallurgical joining. Such process flexibility even permits the brazed application of the reaction material to be carried out on dedicated equipment completely independent from the reaction metallurgical joining equipment.
The aluminum workpiece 12 includes an aluminum substrate that is either coated or uncoated. The aluminum substrate may be composed of unalloyed aluminum or an aluminum alloy that includes at least 85 wt % aluminum. Some notable aluminum alloys that may constitute the coated or uncoated aluminum substrate are an aluminum-magnesium alloy, an aluminum-silicon alloy, an aluminum-magnesium-silicon alloy, and an aluminum-zinc alloy. If coated, the aluminum substrate may include a refractory oxide surface layer of a refractory oxide material comprised of aluminum oxide compounds and possibly other oxide compounds as well, such as magnesium oxide compounds if, for example, the aluminum substrate is an aluminum-magnesium alloy. Such a refractory oxide material may be a native oxide coating that forms naturally when the aluminum substrate is exposed to air and/or an oxide layer created during exposure of the aluminum substrate to elevated temperatures during manufacture, e.g., a mill scale. The aluminum substrate may also be coated with a layer of zinc, tin, or a metal oxide conversion coating comprised of oxides of titanium, zirconium, chromium, or silicon, as described in US2014/0360986. The surface layer may have a thickness ranging from 1 nm to 10 μm and may be present on each side of the aluminum substrate. Taking into account the thickness of the aluminum substrate and any surface coating that may be present, the aluminum workpiece 12 has a thickness that ranges from 0.3 mm to about 6.0 mm, or more narrowly from 0.5 mm to 3.0 mm, at least at the joining zone 24.
The aluminum substrate of the aluminum workpiece 12 may be provided in wrought or cast form. For example, the aluminum substrate may be composed of a 4xxx, 5xxx, 6xxx, or 7xxx series wrought aluminum alloy sheet layer, extrusion, forging, or other worked article. Alternatively, the aluminum substrate may be composed of a 4xx.x, 5xx.x, 6xx.x, or 7xx.x series aluminum alloy casting. Some more specific kinds of aluminum alloys that may constitute the aluminum substrate include, but are not limited to, AA5754 and AA5182 aluminum-magnesium alloy, AA6111 and AA6022 aluminum-magnesium-silicon alloy, AA7003 and AA7055 aluminum-zinc alloy, and Al-10Si-Mg aluminum die casting alloy. The aluminum substrate may further be employed in a variety of tempers including annealed (O), strain hardened (H), and solution heat treated (T), if desired. The term “aluminum workpiece” as used herein thus encompasses unalloyed aluminum and a wide variety of aluminum alloys, whether coated or uncoated, in different spot-weldable forms including wrought sheet layers, extrusions, forgings, etc., as well as castings.
The steel workpiece 14 includes a steel substrate from any of a wide variety of strengths and grades that is either coated or uncoated. The steel substrate may be hot-rolled or cold-rolled and may be composed of steel such as mild steel, interstitial-free steel, bake-hardenable steel, high-strength low-alloy (HSLA) steel, dual-phase (DP) steel, complex-phase (CP) steel, martensitic (MART) steel, transformation induced plasticity (TRIP) steel, twining induced plasticity (TWIP) steel, and boron steel as is typically used in the production of press-hardened steel (PHS). Preferred compositions of the steel substrate, however, include mild steel, dual phase steel, and boron steel used in the manufacture of press-hardened steel. Those three types of steel have ultimate tensile strengths that, respectively, range from 150 MPa to 500 MPa, from 500 MPa to 1100 MPa, and from 1200 MPa to 1800 MPa.
The steel substrate, if coated, preferably includes a surface layer of zinc (galvanized), a zinc-iron alloy (galvanneal), an electrodeposited zinc-iron alloy, a zinc-nickel alloy, nickel, aluminum, an aluminum-magnesium alloy, an aluminum-zinc alloy, or an aluminum-silicon alloy, any of which may have a thickness of up to 50 μm and may be present on each side of the steel substrate. Taking into account the thickness of the steel substrate and any surface coating that may be present, the steel workpiece 14 has a thickness that ranges from 0.3 mm and 6.0 mm, or more narrowly from 0.6 mm to 2.5 mm, at least at the joining site 24. The term “steel workpiece” as used herein thus encompasses a wide variety of spot-weldable steels, whether coated or uncoated, of different strengths and grades.
When the aluminum and steel workpieces 12, 14 are stacked-up for spot welding in the context of a “2T” stack-up embodiment, which is illustrated in
The term “faying interface 22” is used broadly in the present disclosure and is intended to encompass any overlapping and confronting relationship between the faying surfaces 30, 34 of the aluminum and steel workpieces 12, 14 in which reaction metallurgical joining can be practiced through the reaction material deposit 16. Each of the faying surfaces 30, 34 may, for example, be in direct contact with the reaction material deposit 16 within the joining zone 24. As another example, the faying surface 30 of the aluminum workpiece 12 may be in indirect contact with the reaction material deposit 16 such as when the faying surface 30 is separated from the reaction material deposit 16 by an intervening organic material layer such as a heat-curable adhesive or sealer. This type of indirect contact between the faying surface 30 of the aluminum workpiece 12 and the reaction material deposit 16 can result, for example, when an adhesive layer (not shown) is applied over one or both of the faying surfaces 30, 34 before the workpieces 12, 14 are stacked against each other to assemble the workpiece stack-up 10. Any such adhesive layer will be laterally displaced from the joining zone 24 and any residual from that layer will be thermally decomposed during the reaction metallurgical joining process so as not to interfere with the formation of the overall metallurgical joint that ultimately secures the workpieces 12, 14 together.
An adhesive layer that may be present between the faying surfaces 30, 34 of the aluminum and steel workpieces 12, 14 is one that preferably includes a structural thermosetting adhesive matrix. The structural thermosetting adhesive matrix may be any curable structural adhesive including, for example, as a heat curable epoxy or a heat curable polyurethane. Some specific examples of heat-curable structural adhesives that may be used as the adhesive matrix include DOW Betamate 1486, Henkel Terokal 5089, and Uniseal 2343, all of which are commercially available. Additionally, the adhesive layer may further include optional filler particles, such as fumed silica particles, dispersed throughout the thermosetting adhesive matrix to modify the viscosity profile or other properties of the adhesive layer for manufacturing operations. The adhesive layer, if present, preferably has a thickness of 0.1 mm to 2.0 mm and is typically intended to provide additional bonding between the workpieces 12, 14 outside of the joining zone 24 upon being cured in an ELPO-bake oven or other heating apparatus following the reaction metallurgical joining process.
Of course, as shown in
As shown in
In another example, as shown in
Turning now to
The pre-placement of the reaction material deposit 16 onto the steel workpiece 14 is illustrated in
The reaction material composition incorporated into the reaction material electrode rod 54 may be a copper-based reaction material composition since copper can readily wet steel and also form a relatively low-melting point eutectic (˜542° C.) with aluminum. For example, the reaction material composition may be pure unalloyed copper that meets the ASTM/UNS designations C10100, C11000, or C13000. In other examples, the reaction material composition may be a copper alloy with a minimum copper constituent content of 50 wt %. A sampling of suitable copper alloys includes a copper-phosphorus alloy, a copper-silver-phosphorus alloy, a copper-tin-phosphorus alloy, a copper-zinc alloy (i.e., brass), an aluminum-bronze alloy, or a silicon-bronze alloy. Some of these copper alloys—in particular a copper-phosphorus alloy and a copper-silver-phosphorus alloy—are self-fluxing and would therefore help remove oxide remnants from the faying surface 30 of the aluminum workpiece 12 if melted in that vicinity. Copper-phosphorus and copper-silver-phosphorus alloys derive their self-fluxing nature from the high affinity that phosphorus has for oxygen.
Referring still to
After contact is established between the tip end 56 and the faying surface 34 and current is flowing, the reaction material electrode rod 54 is retracted from the faying surface 34 of the steel workpiece 14 along its longitudinal axis A, as shown in
The melting of the reaction material electrode rod 54 by the arc 60 causes a molten reaction material droplet 64 to collect at the tip end 56 of the electrode rod 54, as depicted in
Once the molten reaction material droplet 64 has formed and attained a desired volume, the electrode material rod 54 is protracted along its longitudinal axis A to bring the molten material droplet 64 into contact with the faying surface 34 of the steel workpiece 14, as shown in
The retraction of the electrode rod 54 away from the faying surface 34 transfers the molten reaction material droplet 64 to the faying surface 34 of the steel workpiece 14. Such detachment and transfer of the molten reaction material droplet 64 is believed to be aided in part by the increase in the applied current after the droplet 64 is brought into contact with the faying surface 34. That is, the 125% to 150% increase in the applied current helps detach the molten reaction material droplet 64 by ensuring that any surface tension that may be acting to hold the molten reaction material droplet 64 onto the electrode material rod 54 is overcome. The transfer of the molten reaction material droplet 64 to the faying surface 34 through a single cycle of oscillating wire arc welding, as just described, may be sufficient in some circumstances from a size, shape, and quantity standpoint. In other circumstances, however, it may be desirable to carry out one or more additional oscillating wire arc welding cycles. Performing one or more additional oscillating wire arc welding cycles allows various aspects of the molten reaction material droplet 64 to be managed such as the volume, shape, and internal consistency of the transferred molten reaction material droplet 64.
In one embodiment, for example, after the reaction material electrode rod 54 is retracted from the faying surface 34 of the steel workpiece 14 and the molten reaction material droplet 64 is transferred, thus completing the first oscillating wire arc welding cycle, a second oscillating wire arc welding cycle may be performed. In particular, the applied current provided by the welding power supply may be returned to its initial level and an arc 60 may once again be struck across the gap G between the tip end 56 of the reaction material electrode rod 54 and the faying surface 34 (which now includes the applied reaction material droplet). The resultant heating of the reaction material electrode rod 54 causes another molten reaction material droplet 64 to collect at the tip end 56 of the electrode rod 54. The reaction material electrode rod 54 is then protracted along its axis A to join the molten reaction material droplet 64 held by the tip end 56 of the electrode rod 54 with the molten reaction material droplet already on the faying surface 34 of the steel workpiece 14. The reaction material electrode rod 54 may then be retracted along its longitudinal axis A with an increased applied current level (e.g., 125% to 150%) to facilitate transfer of the second molten reaction material droplet 64, which completes the second oscillating wire arc welding cycle. Multiple additional cycles may be carried out in the same way.
The molten reaction material that is transferred from the reaction material electrode rod 54 to the faying surface 34—through one or multiple oscillating wire arc welding cycles—eventually solidifies into the reaction material deposit 16, as illustrated in
The steel workpiece 14 is now ready for reaction metallurgical joining (sometimes referred to hereafter as “RMJ”) as part of joining the workpiece stack-up 10. Referring now to
The first and second electrodes 72, 74 are each constructed from an electrically conductive material such as a copper alloy including, for instance, a zirconium copper alloy (ZrCu) that contains 0.10 wt % to 0.20 wt % zirconium and the balance copper, a copper-chromium alloy (CuCr) that includes 0.6 wt % to 1.2 wt % chromium and the balance copper, or a copper-chromium-zirconium alloy (CuCrZr) that includes 0.5 wt % to 1.5 wt % chromium, 0.02 wt % to 0.20 wt % zirconium, and the balance copper. The first and second electrodes may also be constructed from a dispersion strengthened copper material such as copper with an aluminum oxide dispersion or a more resistive refractory metal composite such as a tungsten-copper composite. The two electrodes 72, 74 are electrically coupled to the power source 76 and are electrically and mechanically configured within the RMJ apparatus to pass an electrical current, preferably a DC current, through the workpiece stack-up 10 at the joining zone 24. The power supply 76 that supplies the electrical current may be a medium-frequency direct current (MFDC) inverter power supply that includes an inverter and a MFDC transformer. A MFDC transformer can be obtained commercially from a number of suppliers including Roman Manufacturing (Grand Rapids, Mich.), ARO Welding Technologies (Chesterfield Township, Mich.), and Bosch Rexroth (Charlotte, N.C.). The controller 78 interfaces with the power supply 76 and can be programmed to control the characteristics of the electrical current being exchanged between the electrodes 72, 74. For instance, the controller 78 can be programmed to administer passage of the electrical current at a constant current level or as a series of current pulses, among other options.
The workpiece stack-up 10 is positioned between the first and second electrodes 72, 74 such that the first electrode 72 confronts the aluminum workpiece surface 26 of the first side 18 of the workpiece stack-up 10 and the second electrode 74 confronts the steel workpiece surface 28 of the second side 20 of the stack-up 10. The first and second electrodes 72, 74 are then brought into contact with their respective sides 18, 20 of the workpiece stack-up 10 at the joining zone 24. A weld gun or other mechanical apparatus that carries the electrodes 72, 74 is operated to clamp or converge the two electrodes 72, 74 (either one or both of the electrodes 72, 74 being mechanically moveable) to apply a clamping force against the sides 18, 20 of the workpiece stack-up 10 at the joining zone 24 through the application of pressure by the first and second electrodes 72, 74. This generates a compressive force on the reaction material deposit 16. The imposed clamping force preferably ranges from 400 lb (pounds force) to 2000 lb or, more narrowly, from 600 lb to 1300 lb. And, to help establish good mechanical, electrical, and thermal contact at the aluminum workpiece surface 26, especially if a surface layer of a refractory oxide material is present, the contacting weld face portion of the first electrode 72 may include a series of upstanding circular ridges or a series of recessed grooves that surround a central axis of the weld face portion.
After the electrodes 72, 74 are in position against the workpiece stack-up 10 and a clamping force is applied, an electrical current is passed between the electrodes 72, 74 and through the stack-up 10 at the joining site 16. This electrical current passes through the reaction material deposit 16 located at the faying interface 22 of the confronting faying surfaces 30, 34 of the aluminum and steel workpiece 12, 14. The flow of current through the reaction material deposit 16 is controlled by the controller 78 to heat the reaction material deposit 16 to a temperature above the aluminum-copper eutectic temperature, which is approximately 548° C., but below the solidus temperature of the base aluminum substrate of the aluminum workpiece 12, which typically lies somewhere between 570° C. and 640° C. depending on the composition of the aluminum substrate. While the characteristics of the electrical current exchanged between the electrodes 72, 74 and passed through the reaction material deposit 16 can vary, in many instances the electrical current is passed at a current level that ranges from 2 kA to 40 kA for a duration of 50 ms to 5000 ms.
Upon being heating to above the aluminum-copper eutectic temperature, the reaction material deposit 16 and the adjacent faying surface 30 of the aluminum workpiece 12 contribute to the formation of a localized molten phase comprised of intermixed aluminum and copper derived from coalescence of the copper from the reaction material deposit 16 and aluminum from the aluminum workpiece 12. The localized molten phase of intermixed aluminum and copper establishes a transition between the solid portions of the reaction material deposit 16 and the aluminum workpiece 12 and, in some instances, may spread laterally beyond the reaction material deposit 16 along the faying interface 22 and between the faying surfaces 30, 34 of the aluminum and steel workpieces 12, 14. This localized molten phase initially includes approximately 67 wt % aluminum and approximately 33 wt % copper given that such a ratio of aluminum:copper corresponds to the aluminum-copper eutectic temperature, although the aluminum and copper content ultimately attained in the localized molten phase over time may vary from the eutectic Al:Cu ratio depending on the temperature to which the reaction material deposit 16 is heated. Additionally, in some embodiments, such as when the reaction material deposit 16 is composed of a Cu—Ag—P reaction material composition, the formation of the localized molten phase of intermixed aluminum and copper may be self-fluxing.
The electrical current being passed between the electrodes 72, 74 and through the reaction material deposit 16 is ceased after the localized molten phase of intermixed aluminum and copper has formed due to an interaction at the interface of the reaction material deposit 16 and the aluminum workpiece 12. The disruption of current flow through the reaction material deposit 16 causes the localized molten phase of intermixed aluminum and copper to cool and solidify into an aluminum-copper alloy 80 (
The reaction metallurgical joining process completes the formation of a metallurgical joint 82 that secures the aluminum and steel workpieces 12, 14 together within the workpiece stack-up 10, as shown in the general representative illustration of
In addition to the primary braze and fusion joints 66, 88 that provide the bonding interfaces 84, 86 between the reaction material deposit 16 and the steel and aluminum workpieces 12, 14, the aluminum-copper alloy 80 may optionally provide supplemental bonding between the aluminum and steel workpieces 12, 14 outside of and around the reaction material deposit 16. In this way, the metallurgical joint 82 may optionally include a secondary braze joint 90 and a secondary fusion joint 92, each of which is provided by a radially extended portion 94 of aluminum-copper alloy 80 that surrounds the reaction material deposit 16 along the faying interface 22. In particular, the extended portion 94 of the aluminum-copper alloy 80 establishes the secondary braze joint 90 with the steel workpiece 14 since the molten phase of intermixed aluminum and copper wets, but does not melt, the faying surface 34 of the steel workpiece 14 when it spreads laterally along the faying interface 22 during reaction metallurgical joining. Moreover, the extended portion 94 of the aluminum-copper alloy 80 establishes the secondary fusion joint 92 with the aluminum workpiece 12 in the same way as the primary fusion joint 88. The secondary braze and fusion joints 90, 92, if present, are part of the overall metallurgical joint 82 that secures the aluminum and steel workpieces 12, 14 together.
The imposed clamping pressure applied on the workpiece stack-up 10 at the joining zone 24 by the opposed electrodes 72, 74 is released and the electrodes 72, 74 are retracted away from their respective sides 18, 20 of the workpiece stack-up 10 following formation of the molten phase of intermixed aluminum and copper. Preferably, the clamping pressure is relieved after the molten phase of intermixed aluminum and copper has fully solidified into the aluminum-copper alloy 80 in order to help ensure that the alloy 80 is formed under pressure. The process detailed above and described with respect to
The above description of preferred exemplary embodiments is merely descriptive in nature; they are not intended to limit the scope of the claims that follow. Each of the terms used in the appended claims should be given its ordinary and customary meaning unless specifically and unambiguously stated otherwise in the specification.
This application claims the benefit of U.S. Provisional Application No. 62/324,658 filed on Apr. 19, 2016. The entire contents of the aforementioned provisional application are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62324658 | Apr 2016 | US |