The disclosure relates to methods of joining thin metal foil layers together to form joined stacks that are electrically conductive, for example, a stack of electrically conductive tabs for electrodes for an electrochemical cell.
Stacked plate electrochemical cells contain layers of metal foils or coated metal foils that are stacked upon one another. Typically, such stacked metal foils have tabs that are joined together at a common location to form an electrical contact point. Welding the stack of metal foil tabs together using penetration or edge welding techniques is difficult due to the difficulty in fixturing the individual layers tightly together with no gaps in between any of the layers. Gaps in between the layers can cause the individual layer to burn or to not melt completely through.
The present disclosure discloses methods of welding stacks of metal foil layers together. In one embodiment, the method includes stacking a plurality of metal foil layers to form a metal foil layer stack, the metal foil layer stack having a width, a length, and a metal foil layer stack edge, sandwiching the metal foil layer stack between top and bottom end plates, aligning the edges of the top and bottom end plates with the edge of the metal foil layer stack and pressing or compressing the metal foil layers together between the top and bottom end plates and welding the metal foil layer stack and the top and bottom end plates together.
In certain embodiments, the thickness of the end plates is at least 20 micrometers thick. In certain embodiments, the welding of the metal foil layer stack and the top and bottom end plates together is a penetration weld. In certain embodiments, the penetration weld is a laser penetration weld.
Once the electrodes 12 are stacked, tabs 18 of the metal foil layers are gathered together by pressing or compressing the tabs of the metal foil layers together and then sandwiched between top or first and bottom or second end plates 20, 22 as shown in
Referring to
The metal foil layers can be made from any electrically conductive and weld-able materials. Examples of such materials are copper, aluminum nickel, titanium or alloys of or containing any of them. The thickness of the metal foil layers range from 5 micrometers to 40 micrometers, in other embodiments, from 10 micrometers to 20 micrometers. The range from 5 micrometers to 40 micrometers is intended to include any range or value within the range of 5 to 40 micrometers.
The metal foil layers in some embodiments may be partially coated with a coating, for example, an active coating for an electrode. The coating thickness may range from 25 micrometers to about 250 micrometers. In other embodiments, the coating thickness may range from 50 micrometers to 125 micrometers. The range from 25 micrometers to 250 micrometers is intended to include any range or value within the range of 25 to 250 micrometers.
Stacks of coated metal foil sheets can contain as many layers or sheets as desired, provided that the compressed foil layer sheet stack and the end plates can be adequately welded together. In specific embodiments, coated aluminum and copper metal foil sheets can contain up to 20, up to 16, or up to 14 layers each, and may range from 1 each to 20 each, including any range or number in between 1 and 20. The total number of coated metal foil layers ranges from up to 40 layers, up to 32 layers, or up to 28 layers.
The end plates can also be made from any electrically conductive and weld-able materials. Examples of such materials are metals comprising titanium, vanadium, aluminum, nickel or alloys of or containing any of them. Within this group, the end plates should be made from a metal that is metallurgically compatible with the metal of the metal foil layers and stack. Typically, the end plates have a thickness of at least 20 micrometers. In other embodiments, the end plates have a thickness of at least 20 micrometers or 2× the thickness of the compressed metal foil layer stack, whichever is less. The end plates should also be thick enough to be rigid enough to transfer clamping or compression forces to eliminate gaps between the individual metal foil layers before welding.
The end plates and the compressed metal foil layer stack are welded together using a penetration weld. A penetration weld is defined as “a weld that melts through the entire thickness of the welded part.” Typically, a laser penetration welding process is used. Desirably, the top end plate has low electrical resistivity in order to provide adequate coupling of the laser energy. For example, a top end plate made of or comprising nickel could be used to weld a metal foil layer stack made from copper metal foil layers. The bottom plate may also have low electrical resistivity, but it is not required of the bottom end plate. Otherwise, the requirements of the bottom end plate are identical to the requirements of the top end plate.
In use, an end plate is fitted over the alignment pins 89 and the metal foil layers are stacked within the stacking nest 88 with the tabs extending out through channels 83 in the stacking nest. Another end plate is fitted over the alignment pins and placed on top of the stack of tabs. The tab gatherers 90 and stack plunger 92 are fixed on the alignment pins and over the stacked metal foil layers and within the stacking nest 88, respectively.
The clamp plate 94 is placed over the stack plunger and tightened down which applies a load to the stack plunger and the tab gatherers. The excess metal foil layer tab material is trimmed prior to welding. The fixture assembly with the stacked metal foil layers can be placed onto a welding fixture which aligns the compressed end plate and metal foil layer tabs with a laser welding head. In this embodiment, a fully assembled fixture assembly with the metal foil layers having the orientation shown in
After welding, the stack ejector assembly 81 is used to apply uniform load to eject the welded stacked metal foil layers from the stacking nest.
One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.