The present invention relates to a method of laundry washing in a washing machine, wherein the concentration of one or more ingredients changes during a wash cycle.
Washing machines commonly operate on a cyclical programme basis. For example, a typical wash will comprise a wash cycle, a rinse cycle and a spin cycle when the clothes are respectively, washed, rinsed and spin dried. There is normally a draining of liquor between these respective cycles. It is known to provide a pre-wash cycle before the main wash cycle, when it is desired to clean heavily soiled items. Again, there is normally a draining of the pre-wash liquor before dosing of the main wash liquor and execution of the wash cycle.
In the pre-wash, normally the same laundry cleaning product is used as in the main wash. However, it is also known to provide pre-wash compositions to be used in the pre-wash cycle alone, or in combination with some of the main wash composition. These pre-wash products or additives are often formulated so as to attack particularly difficult kinds of soil. When a pre-wash cycle is not used, tough stains may be pre-treated by for example applying undiluted detergent composition to the stained area before laundry is washed in the main wash-cycle. However, the use of a pre-wash cycle or pre-treatment costs extra time and energy. Therefore, there is still a need for an energy efficient laundry cleaning method which optimises the cleaning ability of cost-effective cleaning products. EP-A-1,375,728 discloses an electric washing machine which uses a drastically reduced amount of detergent but instead electrolysed water, and it is shown in this document that said electrolysed water has an enhanced cleaning capability.
Furthermore, U.S. Pat. No. 5,965,505 discloses a detergent composition containing a heavy metal ion sequestrant and an organic peroxyacid bleaching system, whereby means is provided for delaying the release of said bleach system to a wash system.
We have now discovered that in a single wash cycle, a change in the wash liquor content can optimise the cleaning ability of the wash liquor.
The present invention resides in changing the ionic strength of the wash liquor during the wash cycle. Although not wishing to be bound by theory, it is hypothesised that this influences the interaction between the stain and the surfactant (or a mixture thereof) enabling the removal of a wider variety of stains.
In a first aspect, the present invention provides a method of washing a laundry fabric in a wash liquor in a washing machine, said wash liquor containing surfactant material, wherein during a single wash cycle no more than 10% by weight of the wash liquor is drained from the washing machine, wherein said method comprises the step of varying the ionic strength of the wash liquor over at least 10% of the duration of the wash cycle by addition of one or more ionic ingredients to the wash liquor, and wherein the lowest ionic strength of the wash liquor is from 0.001 to 0.06 M and the highest ionic strength of the wash liquor is from 0.01 to 0.5 M.
In connection with the present invention, the washing machine in which the method of the invention is carried is intended to be a common European laundry washing machine.
The Wash Cycle
As opposed to having separate pre-wash and wash cycles, in the context of the present invention, “a single wash cycle” is a washing regime during which a substantial amount of wash liquor is retained, i.e. is not drained. During the entire wash cycle, particularly during the variation of ionic strength, some wash liquor may be drained but it will be no more than 10%, preferably no more than 1% by weight of the wash liquor and most preferably, substantially no wash liquor will be drained away.
The ionic strength of the wash liquor may be changed during whole or part of the wash cycle, preferably over at least 50% of the duration of the wash cycle, more preferably over at least 75% of the wash cycle, e.g. over substantially the whole wash cycle and most preferably, from the beginning of the wash cycle. The variation in ionic strength is deliberately effected by controlled dosing of additional materials during the wash cycle.
The variation in ionic strength may be gradually e.g., effected by use of a delayed release formulation designed to slowly dissolve during whole or part of the wash cycle.
Addition of such an ingredient or ingredients to change the ionic strength may be effected by dosing from a dosing device attached to the machine, cycling at least part of the wash liquor through an external dosing device and back into the machine or use of a delayed release formulation (eg a temperature sensitive delayed release formulation whereby a controlled increase or decrease in the wash liquor temperature initiates release of the additive ingredient(s)). Preferably, a delayed release formulation is used for changing the ionic strength.
The ionic strength of the wash liquor is preferably gradually increased during the wash cycle. Preferably, the duration of the single wash cycle is from 2 to 120, more preferably from 2 to 60, still more preferably from 3 to 40 and most preferably from 4 to 30 minutes.
The ionic strength of the wash liquor depends on the amount and types of water soluble salt(s) in the detergent product applied and dissolved in the liquor. Use of varying salt concentration, alone or optionally in combination with changing temperature, has been found to improve the removal or even reduce the need for higher temperatures. It therefore contributes to an overall energy saving in the wash process.
Although in principle, the present invention may be effected at any desired temperature, most preferably the wash liquor during variation of ionic strength is for most of its time in the temperature range, of from 5° C. to 100° C., ore preferably from 5° C. to 60° C., still more preferably from 5° C. to 38° C. and most preferably from 10° C. to 30° C. However, as indicated above, the separate phases may in principle be effected at generally different temperatures from each other.
An ion is an atom or group of atoms that is not electronically neutral but instead carries a positive or negative charge, as a result of the loss of take-up of an electron. In solution the total concentration of ions is defined as:
Ionic Strength (in mol per litre or M)=IS=½×(m1Z12+m2Z22+m3Z32+ . . . )
where m1, m2, m3, . . . represent the molar concentration of the various ions in the solution, and Z1, Z2, Z3, . . . are their respective charges.
For example, using this, the IS of a 0.1 M solution of potassiumnitrate (KNO3) is calculated as follows:
mK+ and mNO3−=0.1. Hence, IS=½×(0.1×12+0.1×12)=0.1 M.
Likewise that of a 0.1 M solution of sodiumsulphate (Na2SO4) is calculated by: mNa+=0.2 and mSO4−2=0.1. Hence, IS=½×(0.2×12+0.1×22)=0.3 M.
Ionic strength is measured by measuring conductivity of a diluted concentration of ions and taking into account the respective activity coefficients i.e. 0.9 or higher for most mentioned salts applied in detergent products in the concentration range from 0.001 M to 0.01 M concentration. The activity coefficient decreases gradually at higher concentrations.
Typical salts comprise sodium, potassium or ammonium salts of sulphate, triphosphate, phosphate, chloride, citrate, carbonate, percarbonate, perborate, silicate, natural soaps, acetates, alumiumsilicate (incl. Zeolites), nitrilotriacetates, alkyl sulphonates (incl. alkylbenzene sulphonates) or alkyl sulphates (incl. alkylethoxy or alkylpropoxy sulphates) and mixtures thereof. Many of these materials are normal ingredients in laundry wash compositions as will be further described hereinbelow. In special cases, magnesium salts of these materials may also be used.
A preferred list of salts comprises the sodium or magnesium salts of sulphate, carbonate, citrate, percarbonate, perborate, silicate, natural soaps and Zeolite. However, the ionic strength of the wash liquor is mainly determined by those salts which are readily water-soluble at the relevant wash liquor temperature.
The ionic strengths of conventional wash liquor solutions depend on the composition of the product in question and its dosing rates. Further, different product forms (low bulk density powders, concentrated or high bulk density powders, tablets, liquids etc) as well as the particular type within a format (eg for heavy duty or for delicate or coloured washes) have different compositions of dissociable salts and therefore represent a broad range of ionic strengths in the wash liquors in practice. Roughly speaking, wash liquors of single phase isotropic liquids for delicates, as well as non-soap detergent (NSD) bars deliver a low ionic strength (eg 0.001M to 0.03M), modern high bulk density zeolite-built powders deliver a moderate ionic strength (eg. 0.02M to 0.1M) and traditional low density phosphate-built powders deliver a high ionic strength (e.g. 0.06 M to 0.2 M). The product dosage per wash also varies and this contributes to the range of ionic strengths resulting from the different product types. The moderate ionic strengths of the high bulk density powders constitutes a significant cause of their shortcoming in removal of specific stains in comparison to that of traditional lower bulk density powders that have much higher ionic strengths. Moreover, the latter are conventionally dosed at higher rates.
The lowest ionic strength during the wash cycle is preferably from 0.002 to 0.04, more preferably from 0.003 to 0.03. The highest ionic strength is preferably from 0.02 to 0.3, more preferably from 0.03 to 0.2.
The Wash Liquor
The wash liquor contains one or more surfactants. Preferably, the concentration of the surfactant material present in the wash liquor is substantially constant during the wash cycle. This means that the change of said concentration during the wash cycle will preferably be lower than 10%, more preferably lower than 5%.
Anionic Surfactants
Preferably, the wash liquor comprises at least one anionic surfactant. Preferably, at some time, its concentration is from 0.1 g/l to 10 g/l, more preferably from 0.3 g/l to 4 g/l, even more preferably from 0.4 to 2 g/l. It may for example be selected from one or more of alkylbenzene sulphonates, alkyl sulphonates, primary and secondary alkyl sulphates (in free acid and/or salt forms). The total amount of anionic surfactant may be from 0.001% to 75% by eight of the added composition.
A composition according to the present invention may, for example contain from 0.1% to 70%, preferably from 1% to 40%, more preferably from 2% to 30%, especially from 3% to 20% of alkylbenzene sulphonic acid surfactant (in free acid and/or salt form), or primary alcohol sulphate surfactant or a mixture of these two in any ratio.
When it is desired to enhance calcium tolerance, then any anionic surfactant in the composition may comprise (preferably at a level of 70 wt % or more of the total anionic surfactant) or consist only of one or more calcium-tolerant non-soap anionic surfactants.
As referred to herein, a “calcium tolerant” anionic surfactant is one that does not precipitate at a surfactant concentration of 0.4 g/l (and at an ionic strength of a 0.040 M 1:1 salt solution) with a calcium concentration up to 20° FH (French hardness degrees), i.e. 200 ppm calcium carbonate.
A preferred additional class of non-soap calcium tolerant anionic surfactants for use in the compositions of the present invention comprises the alpha-olefin sulphonate.
Another preferred class on calcium tolerant anionic surfactants comprise the mid-chain branched materials disclosed in WO-A-97/39087, WO-A-97/39088, WO-A-97/39089, WO-A-97/39090, WO-A-98/23712, WO-A-99/19428, WO-A-99/19430, WO-A-99/19436, WO-A-99/19437, WO-A-99/19455, WO-A-99/20722, WO-A-99/05082, WO-A-99/05084, WO-A-99/05241, WO-A-99/05242, WO-A-99/05243, WO-A-99/05244 and WO-A-99/07656.
Yet another suitable class of calcium tolerant anionic surfactants comprises the alkyl ether sulphates (ie the (poly)alkoxylated alkyl sulphates).
Another suitable calcium tolerant anionic surfactants to be used in combination comprises alpha-olefin sulphonate and alkyl ether sulphate in a weight ratio of from 5:1 to 1:15.
Other calcium-tolerant anionic surfactants that may be used are alkyl ethoxy carboxylate surfactants (for example, Neodox (Trade Mark) ex Shell), fatty acid ester sulphonates (for example, FAES MC-48 and ML-40 ex Stepan), alkyl xylene or toluene sulphonates, dialkyl sulphosuccinates, alkyl amide sulphates, sorpholipids, alkyl glycoside sulphates and alkali metal (e.g. sodium) salts of saturated or unsaturated fatty acids.
Yet other suitable anionic surfactants in addition to the calcium tolerant anionics are well-known to those skilled in the art. Examples include primary and secondary alkyl sulphates, particularly C8-C15 primary alkyl sulphates; and dialkyl sulphosuccinates.
Sodium salts are generally preferred.
Soaps
Optionally, a soap may also be present in the wash liquor. Preferably, the concentration is from 0.01 g/l to 10 g/l, more preferably from 0.03 g/l to 4 g/l and most preferably from 0.05 g/l to 2 g/l. Suitable soaps include those having a chain length ranging from C12 to C20, mainly saturated, and optionally containing limited levels of 1 or 2 unsaturated bonds, and derived from natural oils and fats such as for example: (hardened or non-hardened) Tallow, Coconut, or Palm Kernel.
In a solid formulation, the amount of optional soap is preferably from 0.1% to 10%, more preferably from 0.1% to 5% by weight of the composition. In liquid compositions, the level of optional soap is preferably from 0.1% to 20%, more preferably from 5% to 15% by weight of the composition.
Optional Other Surfactants
Optional other surfactants include nonionic surfactants, cationic surfactants (for detergency enhancement and/or fabric softening), amphoteric and zwitterionic surfactants.
If desired, nonionic surfactant may also be included. Preferably, the concentration will be from 0.1 g/l to 10 g/l, more preferably from 0.3 g/l to 4 g/l and most preferably from 0.4 g/l to 2 g/l. The amount of these materials, in total, is preferably from 0.01% to 50%, preferably from 0.1% to 35%, more preferably from 0.5% to 25%, still more preferably from 0.7% to 20%, even more preferably from 0.8% to 15%, especially from 1% to 10% and even more especially from 1% to 7% by weight of the composition.
Preferred nonionic surfactants are ethoxylated aliphatic alcohols having an average degree of ethoxylation of from 2 to 12, more preferably from 3 to 10. Preferably, the aliphatic alcohols are C8-C16, more preferably C10-C15.
The mid-chain branched hydrophobe nonionics disclosed in WO-A-98/23712 are another class of suitable nonionic surfactants.
Suitable other non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).
Optionally, a composition according to the present invention may comprise from 0.05% to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 2.5%, especially from 0.5% to 1% by weight of cationic surfactant.
Suitable cationic fabric softening compounds are substantially water-insoluble quaternary ammonium materials comprising a single alkyl or alkenyl long chain having an average chain length greater than or equal to C20 or, more preferably, compounds comprising a polar head group and two alkyl or alkenyl chains having an average chain length greater than or equal to C14. Preferably the fabric softening compounds have two long chain alkyl or alkenyl chains each having an average chain length greater than or equal to C16. Most preferably at least 50% of the long chain alkyl or alkenyl groups have a chain length of C18 or above. It is preferred if the long chain alkyl or alkenyl groups of the fabric softening compound are predominantly linear.
Quaternary ammonium compounds having two long-chain aliphatic groups, for example, distearyldimethyl ammonium chloride and di(hardened tallow alkyl) dimethyl ammonium chloride, are widely used in commercially available rinse conditioner compositions. Other examples of these cationic compounds are to be found in “Surfactants Science Series” volume 34 ed. Richmond 1990, volume 37 ed. Rubingh 1991 and volume 53 eds. Cross and Singer 1994, Marcel Dekker Inc. New York”.
It is also possible to include certain mono-alkyl cationic surfactants which can be used for their detergency. Cationic surfactants that may be used for this purpose include quaternary ammonium salts of the general formula R1R2R3R4N+X− wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which R1 is a C8-C22 alkyl group, preferably a C8-C10 or C12-C14 alkyl group, R2 is a methyl group, and R3 and R4, which may be the same or different, are methyl or hydroxyethyl groups); and cationic esters (for example, choline esters).
Detergency Builders
The wash liquor quite often also contains one or more detergency builders. Detergency builders can be considered to fall into two classes, namely those which are relatively soluble at the relevant wash liquor temperature(s) such as carbonates, phosphates (including orthophosphates and triphosphates, a common term for one of the latter being “sodium tripolyphosphate”), citrates, bicarbonates etc which contribute significantly to the ionic strength of the wash liquor. On the other hand, the second class comprises those relatively insoluble builders which do not contribute very much at all to ionic strength, for example the aluminosilicates (zeolites), silicates etc.
For the water soluble types, the total amount may be deduced from the aforementioned recited preferred etc ranges of ionic strengths rising from water soluble salts.
The concentration of water insoluble builders will preferably be from 0.01 g/l to 10 g/l, more preferably from 0.1 g/l to 4 g/l and most preferably from 0.5 g/l to 2 g/l. The total amount of detergency builder in the compositions will typically range from 1% to 80 wt %, preferably from 2% to 60 wt %, more preferably from 4% to 30% by weight of the total composition.
Inorganic builders that may be present include the soluble builders such as sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB-A-1 437 950 and sodium bicarbonate; the insoluble crystalline and amorphous aluminosilicates, for example, zeolites as disclosed in GB-A-1 473 201, amorphous aluminosilicates as disclosed in GB-A-1 473 202 and mixed crystalline/amorphous aluminosilicates as disclosed in GB-A-1 470 250; and layered silicates as disclosed in EP-A-164 514. Soluble inorganic phosphate builders, for example, sodium orthophosphate, sodium pyrophosphate and sodium tri(poly)phosphate (STP) are also suitable for use with this invention. In this context “soluble” and “insoluble” are relative terms.
The compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder. Sodium aluminosilicates may generally be incorporated in amounts of from 10 to 70% by weight (anhydrous basis), preferably from 20 to 50 wt %.
When the aluminosilicate is zeolite, preferably the maximum amount is 30% by weight.
The alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8−1.5 Na2O.Al2O3.0.8−6 SiO2.
These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg Ca/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units (in the formula above). Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in GB-A-1 429 143. The preferred sodium aluminosilicates of this type are the well-known commercially available zeolites A and X, and mixtures thereof.
The zeolite may be the commercially available zeolite 4A now widely used in laundry detergent powders. However, according to a preferred embodiment of the invention, the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in EP-A-384,070. Zeolite MAP is defined as an alkali metal aluminosilicate of the zeolite P type having a silicon to aluminium ratio not exceeding 1.33, preferably within the range of from 0.90 to 1.33, and more preferably within the range of from 0.90 to 1.20.
Especially preferred is zeolite MAP having a silicon to aluminium ratio not exceeding 1.07, more preferably about 1.00. The calcium binding capacity of zeolite MAP is generally equivalent to at least 150 mg CaO per g of anhydrous material.
Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts. This list is not intended to be exhaustive.
Especially preferred organic builders are citrates, suitably used in amounts of from 2 to 30 wt %, preferably from 5 to 25 wt %; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt %, preferably from 1 to 10 wt %.
Builders, both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form.
Bleaches
The wash liquor may also suitably contain a bleach system. The total concentration of all bleaches or all bleach components is preferably from 0.001 g/l to 10 g/l, more preferably from 0.1 g/l to 1 g/l. Fabric washing compositions may desirably contain peroxygen bleaching agents and precursors thereof, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
Peroxygen bleaching agents include those peroxygen bleaching compounds which are capable of yielding hydrogen peroxide in an aqueous solution. These compounds are well known in the art and include hydrogen peroxide and the alkali metal peroxides, organic peroxide bleaching compounds such as urea peroxide, and inorganic persalt bleaching compounds, such as the alkali metal perborates, percarbonates, perphosphates, and the like. Mixtures of two or more such compounds may also be suitable.
Preferred peroxygen bleaching agents include peroxygen bleach selected from the group consisting of perborates, percarbonates, peroxyhydrates, peroxides, persulfates, and mixtures thereof. Specific preferred examples include: sodium perborate, commercially available in the form of mono- and tetra-hydrates, sodium carbonate peroxyhydrate, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Particular preferred are sodium perborate tetrahydrate, and especially, sodium perborate monohydrate. Sodium perborate monohydrate is especially preferred because it is very stable during storage and yet still dissolves very quickly in the bleaching solution. Sodium percarbonate may also be preferred for environmental reasons.
The amount thereof in the composition of the invention usually will be within the range of about 1-35% by weight, preferably from 5-25% by weight. One skilled in the art will appreciate that these amounts may be reduced in the presence of a bleach precursor e.g., N,N,N′N′-tetraacetyl ethylene diamine (TAED).
Another suitable hydrogen peroxide generating system is a combination of a C1-C4 alkanol oxidase and a C1-C4 alkanol, especially a combination of methanol oxidase (MOX) and ethanol or glucose oxidase (GOX) and glucose. Such combinations are disclosed in e.g. WO-98/56885 (Unilever).
Alkylhydroperoxides are another class of peroxy bleaching compounds. Examples of these materials include cumene hydroperoxide, t-butylhydroperoxide and hydroperoxides originated from unsaturated compounds, such as unsaturated soaps.
Further, useful compounds as oxygen bleaches include superoxide salts, such as potassium superoxide, or peroxide salts, such as disodiumperoxide, calcium peroxide or magnesium peroxide.
Organic peroxyacids may also be suitable as the peroxy bleaching compound. Such materials normally have the general formula:
wherein R is an alkylene or substituted alkylene group containing from 1 to about 20 carbon atoms, optionally having an internal amide linkage; or a phenylene or substituted phenylene group; and Y is hydrogen, halogen, alkyl, aryl, an imido-aromatic or non-aromatic group, a
group (giving di(peroxyacids)) or a quaternary ammonium group.
Typical monoperoxy acids useful herein include, for example:
Typical diperoxyacids useful herein include, for example:
Also inorganic peroxyacid compounds are suitable, such as for example potassium monopersulphate (MPS). If organic or inorganic peroxyacids are used as the peroxygen compound, the amount thereof will normally be within the range of about 2-10% by weight, preferably from 4-8% by weight.
Peroxyacid bleach precursors are known and amply described in literature, such as in EP-A-185522; EP-A-0174132; EP-A-0120591; and U.S. Pat. No. 3,332,882; U.S. Pat. No. 4,128,494; U.S. Pat. No. 4,412,934 and U.S. Pat. No. 4,675,393.
Another useful class of peroxyacid bleach precursors is that of the cationic i.e. quaternary ammonium substituted peroxyacid precursors as disclosed in U.S. Pat. No. 4,751,015 and U.S. Pat. No. 4,397,757, in EP-A-284,292 and EP-A-331,229. Examples of peroxyacid bleach precursors of this class are:
A further special class of bleach precursors is formed by the cationic nitrites as disclosed in EP-A-303,520, EP-A-458,396 and EP-A-464,880.
Any one of these peroxyacid bleach precursors can be used in the present invention, though some may be more preferred than others.
Of the above classes of bleach precursors, the preferred classes are the esters, including acyl phenol sulphonates and acyl alkyl phenol sulphonates; the acyl-amides; and the quaternary ammonium substituted peroxyacid precursors including the cationic nitriles.
Examples of said preferred peroxyacid bleach precursors or activators are sodium-4-benzoyloxy benzene sulphonate (SBOBS); N,N,N′N′-tetraacetyl ethylene diamine (TAED); sodium-1-methyl-2-benzoyloxy benzene-4-sulphonate; sodium-4-methyl-3-benzoloxy benzoate; SSPC; trimethyl ammonium toluyloxy-benzene sulphonate; sodium nonanoyloxybenzene sulphonate (SNOBS); sodium 3,5,5-trimethyl hexanoyl-oxybenzene sulphonate (STHOBS); and the substituted cationic nitriles.
Each of the above precursor may be applied in mixtures, eg combination of TAED (hydrophylic precursor) with more hydrophobic precursor, such as sodium nonanoyloxybenzene sulphonate.
The precursors may be used in an amount of up to 12%, preferably from 2-10% by weight, of the composition.
Other classes of bleach precursors for use with the present invention are found in WO-00/15750 and WO-94/28104, for example 6-(nonanamidocaproyl)oxybenzene sulphonate. See WO-00/02990 for cylic imido bleach activators.
The precursors may be used in an amount of up to 12%, preferably from 2-10% by weight, of the composition.
The bleaching composition of the present invention has particular application in detergent formulations, especially for laundry cleaning. Accordingly, in another preferred embodiment, the present invention provides a detergent bleach composition comprising a bleaching composition as defined above and additionally a surface-active material, optionally together with detergency builder.
Also useful as bleaching agents in the compositions according to any aspect of the present invention are any of the known organic bleach catalysts, oxygen transfer agents or precursors therefor. These include the compounds themselves and/or their precursors, for example any suitable ketone for production of dioxiranes and/or any of the heteroatom containing analogs of dioxirane precursors or dioxiranes, such as sulfonimines R1R2C═NSO2R3 (EP-A-446,982) and sulfonyloxaziridines, for example:
EP 446,981A. Preferred examples of such materials include hydrophilic or hydrophobic ketones, used especially in conjunction with monoperoxysulfates to produce dioxiranes in situ, and/or the imines described in U.S. Pat. No. 5,576,282 and references described therein. Oxygen bleaches preferably used in conjunction with such oxygen transfer agents or precursors include percarboxylic acids and salts, percarbonic acids and salts, peroxymonosulfuric acid and salts, and mixtures thereof. See also U.S. Pat. No. 5,360,568; U.S. Pat. No. 5,360,569; U.S. Pat. No. 5,370,826; and U.S. Pat. No. 5,710,116.
Transition-metal bleach catalysts are well-known in the art. Various classes have been disclosed based on especially cobalt, manganese, iron and copper transition-metal complexes. Most of these bleach catalysts are claimed to yield hydrogen peroxide or peroxyacid activation, certain classes of compounds are also disclosed to give stain bleaching by atmospheric oxygen.
One type of manganese-containing bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. No. 5,246,621 and U.S. Pat. No. 5,244,594. Preferred examples of theses catalysts include [Mn2IV(μ-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2] (PF6)2, [Mn2III(μ-O) (μ-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2](ClO4)2, [Mn4IV(μ-O)6(1,4,7-triazacyclononane)4] (ClO4)2, MnIIIMnIV(μ-O) (μ-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2] (ClO4)3, and mixtures thereof. See also EP-A-549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-trimethyl-1,4,7-triazacyclononane, and mixtures thereof. See also U.S. Pat. No. 5,194,416 which teaches mononuclear manganese (IV) complexes such as [Mn(1,4,7-trimethyl-1,4,7-triazacyclononane) (OCH3) 3] (PF6). EP-A-549,271 teaches the use of free ligand 1,4,7-trimethyl-1,4,7-triazacyclononane in detergent formulations. A dinuclear manganese compound, [LMnIIIMnIV(μ-O) (p-OAc)2] (ClO4)2 with L being an ethylene-bridged-bis(1,4-dimethyl-1,4,7-triazacyclononane) ligands has been disclosed in WO-96/06154.
Still another type of bleach catalyst, as disclosed in U.S. Pat. No. 5,114,606, is a water-soluble complex of manganese (II), (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C—OH groups. Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylitol, arabitol, adonitol, mesoerythritol, meso-inositol, lactose, and mixtures thereof.
U.S. Pat. No. 5,114,611 teaches another useful bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand. Preferred ligands include pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, and triazole rings. Optionally, said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and nitro. Particularly preferred is the ligand 2,2′-bispyridylamine. Preferred bleach catalysts include Co—, Cu—, Mn—, or Fe— bispyridylmethane and bispyridylamine complexes. Highly preferred catalysts include Co(2,2′-bispyridylamine)Cl2, Di(isothiocyanato)bispyridylamine-cobalt (II), trisdipyridylamine-cobalt (II) perchlorate, [Co(2,2-bispyridylamine)2O2]ClO4, Bis-(2,2′-bispyridylamine)copper(II) perchlorate, tris(di-2-pyridylamine) iron (II) perchlorate, and mixtures thereof.
Various manganese and iron complexes containing (pyridin-2ylmethyl)amine moieties as bleach catalysts are disclosed in U.S. Pat. No. 5,850,086, EP-A-782,998, EP-A-782,999, WO-97/48787, WO-97/30144, WO-00/27975, WO-00/27976, WO-00/12667, and WO-00/12668. Preferred ligands include bis(CH2COOH) (pyridin-2-ylmethyl)amine, tris(pyridin-2ylmethyl)amine, bis(pyridin-2-ylmethylamine), N,N,N′,N′-tetrakis(pyridin-2ylmethyl)-ethylenediamine, N,N,N′,N′tetrakis(benzimidazol-2ylmethyl)-propan-2-ol, N-methyl-N,N′,N′-tris(3-methyl-pyridin-2ylmethyl)-ethylenediamine, N-methyl-N,N′,N′-tris(5-methyl-pyridin-2ylmethyl)-ethylenediamine, N-methyl-N,N′,N′-tris(3-ethyl-pyridin-2ylmethyl)-ethylenediamine, N-methyl-N,N′,N′-tris(3-methyl-pyridin-2ylmethyl)-ethylenediamine.
A series of patent applications deal with iron complexes containing the bis(pyridin-2yl)methyl-amine moiety both for peroxy bleaching activation and atmospheric air bleaching of stains, i.e. WO-95/34628, WO-00/60044, WO-00/32731, WO-00/12667, and WO-00/12668, wherein the iron complexes containing N,N-bis(pyridin-2-yl-methyl)-1,1-bis(pyridin-2-yl)-1-aminoethane are often the most preferred catalysts.
Manganese complexes containing 1,10-phenanthroline and 2,2′-bipyridine as bleaching catalysts have been disclosed in WO-96/15136 and WO-99/64554. Manganese complexes with Schiff-base ligands to bleach stains or dyes in solution have been disclosed in various patent applications (WO-A-00/053708, EP-A-896,171 WO-A-97/44430, WO-A-97/07191, and WO-A-97/07192).
Another preferred class of manganese complexes include mononuclear manganese complexes containing cross-bridged macrocyclic ligands. These complexes have been claimed with peroxy compounds and without peroxy compounds present in the formulation (WO-A-98/39098, WO-A-98/39405 and WO-A-00/29537). The most preferred complexes include dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane anganese (II)and dichloro-4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese (II).
Further a class of manganese complexes containing bispidon as ligand has been disclosed as a family of bleach catalysts in the presence and absence of peroxy compounds (WO0060045), wherein dimethyl 2,4-di-(2-pyridyl)-3,7-dimethyl-3,7-diaza-bicyclo[3.3.1]nonan-9one-1,5-dicarboxylate is the preferred ligand.
Other bleach catalysts are described, for example, in EP-A-0 408,131 (dinuclear cobalt Schiff-base complex catalysts), EP-A-384,503, and EP-A-306,089 (metallo-porphyrin catalysts), U.S. Pat. No. 4,711,748 and EP-A-224,952, (absorbed manganese on aluminosilicate catalyst), U.S. Pat. No. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. Pat. No. 4,626,373 (manganese/ligand catalyst), U.S. Pat. No. 4,119,557 (ferric complex catalyst), U.S. Pat. No. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S. Pat. No. 4,728,455 (manganese gluconate catalysts).
Inorganic polyoxometallates as bleaching/oxidation catalysts with peroxy bleaches and air have been claimed in various patent applications, e.g. WO-A-97/07886, WO-A-99/28426, and WO-A-00/39264.
The bleach catalysts may be used in an amount of up to 5%, preferably from 0.001-1% by weight, of the composition.
Chelating Agents
To the wash liquor may optionally be added, one or more heavy metal chelating agents. Generally, chelating agents suitable for use herein can be selected from the group consisting of aminocarboxylates, aminophosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove heavy metal ions from washing solutions by formation of soluble chelates; other benefits include inorganic film or scale prevention. Other suitable chelating agents for use herein are the commercial DEQUESTO series, and chelants from Monsanto, DuPont, and Nalco, Inc.
Aminocarboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, and diethylenetriamine-pentaacetates, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
Aminophosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates). Preferably, these aminophosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Pat. No. 3,812,044. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes.
A chelator for use herein is ethylenediamine disuccinate (“EDDS”), especially (but not limited to) the [S,S] isomer as described in U.S. Pat. No. 4,704,233. The trisodium salt is preferred though other forms, such as magnesium salts, may also be useful.
If utilized, these chelating agents or transition-metal-selective sequestrants will preferably comprise from about 0.001% to about 10%, more preferably from about 0.05% to about 1% by weight of the added composition.
Enzymes
The wash liquor may also contain one or more enzyme(s). Suitable enzymes include the proteases, amylases, cellulases, oxidases, peroxidases and lipases usable for incorporation in detergent compositions. Preferred proteolytic enzymes (proteases) are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
Proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention. Examples of suitable proteolytic enzymes are the subtilisins which are obtained from particular strains of B. Subtilis B. licheniformis, such as the commercially available subtilisins Maxatase (Trade Mark), as supplied by Gist Brocades N.V., Delft, Holland, and Alcalase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
Particularly suitable is a protease obtained from a strain of Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark). The preparation of these and analogous enzymes is described in GB-A-1 243 785. Other commercial proteases are Kazusase (Trade Mark obtainable from Showa-Denko of Japan), Optimase (Trade Mark from Miles Kali-Chemie, Hannover, West Germany), and Superase (Trade Mark obtainable from Pfizer of U.S.A.).
Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt %. However, any suitable physical form of enzyme may be used.
Other Optional Minor Ingredients
The wash liquor may contain alkali metal, preferably sodium carbonate, in order to increase detergency and ease processing. Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt %, preferably from 2 to 40 wt %. However, compositions containing little or no sodium carbonate are also within the scope of the invention.
Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate. One preferred powder structurant is fatty acid soap, suitably present in an amount of from 1 to 5 wt %.
Yet other materials that may be present in detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; inorganic salts such as sodium sulphate; lather control agents or lather boosters as appropriate; dyes; coloured speckles; perfumes; foam controllers; fluorescers and decoupling polymers. This list is not intended to be exhaustive.
Product Form
Compositions to be dosed in the wash liquor to carry out the method of the present invention may for example be provided as solid compositions such as powders or tablets, or non-solid compositions such as substantially aqueous or substantially non-aqueous liquids, gels or pastes. Optionally, liquid compositions may be provided in water soluble sachets. Non-solid, eg liquid, compositions may have different compositions from solid compositions and may for example comprise from 5% to 60%, preferably from 10% to 40% by weight of anionic surfactant (at least some of which will, of course, be aromaticalkyl sulphonic surfactant, from 2.5% to 60%, preferably from 5% to 35% by weight of nonionic surfactant and from 2% to 99% by weight of water. Optionally, liquid compositions may for example contain from 0.1% to 20%, preferably from 5% to 15% by weight of soap.
Non-solid, eg liquid, compositions may also comprise one or more hydrotropes, especially when an isotropic composition is required. Such hydrotropes may, for example, be selected from arylsulphonates, eg benzene sulphonate, any of which is optionally independently substituted on the aryl ring or ring system by one or more C1-6 eg C1-4 alkyl groups, benzoic acid, salicylic acid, naphthoic acid, C1-6, preferably C1-4 polyglucosides, mono-, di- and triethanolamine. Where any of these compounds may exist in acid or salt (whether organic or inorganic, such as sodium), either may be used provided compatible with the remainder of the formulation.
Preparation of the Compositions
The compositions to be added to the wash liquor may be prepared by any suitable process.
The choice of processing route may be in part dictated by the stability or heat-sensitivity of the surfactants involved, and the form in which they are available. For granular products, ingredients such as enzymes, bleach ingredients, sequestrants, polymers and perfumes which are traditionally added separately (e.g. enzymes postdosed as granules, perfumes sprayed on) may be added after the processing steps outlined below.
Suitable processes include:
Number | Date | Country | Kind |
---|---|---|---|
03078920.0 | Dec 2003 | EP | regional |
04077791.4 | Oct 2004 | EP | regional |