The present invention relates to light-emitting diodes (LEDs), and to replacement of bulbs used for lighting by LED bulbs. More particularly, it relates to the preferential scattering of certain wavelengths of light and dispersion of the light generated by the LEDs in order to permit the LEDs to more closely match the color of incandescent bulbs, or to the preferential scattering of certain wavelengths of light and dispersion of the light of the LEDs used in the replacement bulbs to match the light color and spatial pattern of the light of the bulb being replaced.
An LED consists of a semi-conductor junction, which emits light due to a current flowing through the junction. At first sight, it would seem that LEDs should make an excellent replacement for the traditional tungsten filament incandescent bulb. At equal power, they give far more light output than do incandescent bulbs, or, what is the same thing, they use much less power for equal light; and their operational life is orders of magnitude larger, namely, 10-100 thousand hours vs. 1-2 thousand hours.
However, LEDs, and bulbs constructed from them, suffer from problems with color. “White” LEDs, which are typically used in bulbs, are today made from one of two processes. In the more common process, a blue-emitting LED is covered with a plastic cap, which, along with other possible optical properties, is coated with a phosphor that absorbs blue light and re-emits light at other wavelengths. A major research effort on the part of LED manufacturers is design of better phosphors, as phosphors presently known give rather poor color rendition. Additionally, these phosphors will saturate if over-driven with too much light, letting blue through and giving the characteristic blue color of over-driven white LEDs.
An additional problem with the phosphor process is that quantum efficiency of absorption and re-emission is less than unity, so that some of the light output of the LED is lost as heat, reducing the luminous efficacy of the LED, and increasing its thermal dissipation problems.
The other process for making a “white” LED today is the use of three (or more) LEDs, typically red, blue and green (RGB), which are placed in close enough proximity to each other to approximate a single source of any desired color. The problem with this process is that the different colors of LEDs age at different rates, so that the actual color produced varies with age. One additional method for getting a “white LED” is to use a colored cover over a blue or other colored LED, such as that made by JKL Lamps™. However, this involves significant loss of light.
LED bulbs have the same problems as do the LEDs they use, and further suffer from problems with the fact the LEDs are point sources. Attempts to do color adjustment by the bulb results in further light intensity loss.
Furthermore, an LED bulb ought to have its light output diffused, so that it has light coming out approximately uniformly over its surface, as does an incandescent bulb, to some level of approximation. In the past, LEDs have had diffusers added to their shells or bodies to spread out the light from the LED. Another method has been to roughen the surface of the LED package. Neither of these methods accomplishes uniform light distribution for an LED bulb, and may lower luminous efficiency. Methods of accomplishing approximate angular uniformity may also involve partially absorptive processes, further lowering luminous efficacy. Additionally, RGB (red, green, blue) systems may have trouble mixing their light together adequately at all angles.
This invention has the object of developing a means to create light from LEDs and LED bulbs that are closer to incandescent color than is presently available, with little or no loss in light intensity.
In one embodiment of the present invention, at least one shell that is normally used to hold a phosphor that converts the blue light from an LED die to “white” light contains particles of a size a fraction of the dominant wavelength of the LED light, which particles Rayleigh scatter the light, causing preferential scattering of the red. In another embodiment of the present invention, the at least one shell has both the phosphor and the Rayleigh scatterers.
A further object of this invention is developing a means to create light from LED bulbs that is closer to incandescent color than is available using presently available-methods, with little or no loss in light intensity. In one embodiment of the present invention, the bulb contains particles of a size a fraction of the dominant wavelength of the LED light, which particles Rayleigh scatter the light, causing preferential scattering of the red. In another embodiment of the present invention, only the at least one shell of the bulb has the Rayleigh scatterers.
A yet further object of this invention is developing a means to disperse light approximately evenly over the surface of an LED bulb, with little or no loss in light intensity. In one embodiment of the present invention, the bulb contains particles with size one to a few times larger than the dominant wavelength of the LED light, or wavelengths of multiple LEDs in a color-mixing system, which particles Mie scatter the light, causing dispersion of the light approximately evenly over the surface of the bulb. In another embodiment of the present invention, only the at least one shell of the bulb has the Mie scatterers.
In accordance with another embodiment, the method comprises emitting light from at least one LED; and dispersing the light from the at least one LED by distributing a plurality of particles having a size one to a few times larger than a dominant wavelength of the light from the at least one LED or wavelengths of multiple LEDs in a color-mixing system in at least one shell of the LED bulb.
In accordance with a further embodiment, a method for creating light in an LED bulb that is closer to incandescent color than is available using presently available methods, the method comprises: emitting light from at least one LED; and preferential scattering of the red light from the at least one LED by dispersing a plurality of particles having a size a fraction of a dominant wavelength of the light from the at least one LED or wavelengths of multiple LEDs in a color-mixing system in an outer shell of the LED bulb.
In accordance with another embodiment, a method for dispersing light in an LED bulb, the method comprises: emitting light from at least one LED; and scattering the light from the at least one LED by distributing a plurality of particles having a size one to a few times larger than a dominant wavelength of the light from the at least one LED or wavelengths of multiple LEDs in a color-mixing system in an LED bulb.
In accordance with a further embodiment, a method for preferentially scattering light in an LED bulb, the method comprises emitting light from at least one LED; and scattering the light from the at least one LED by distributing a plurality of particles having a size one to a few times larger than a dominant wavelength of the light from the at least one LED or wavelengths of multiple LEDs in a color-mixing system in an LED bulb.
In accordance with another embodiment, an LED comprises an LED die; a shell encapsulating or partially encapsulating the die and having a plurality of particles dispersed therein, and wherein the plurality of particles are such a size as to disperse and/or preferentially scatter the wavelength of the light emitted from the LED.
In accordance with a further embodiment, an LED bulb comprises a bulb having at least one shell having a plurality of particle dispersed therein or in the bulb; at least one LED inside or optically coupled to said bulb; and wherein said plurality of particles are of such a size as to disperse and/or preferentially scatter the wavelength of the light emitted from the at least one LED.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. According to the design characteristics, a detailed description of each preferred embodiment is given below.
This application is a Continuation of U.S. patent application Ser. No. 12/299,088, with a filing date of Oct. 30, 2008, which is an application filed under 35 U.S.C. §371 and claims priority to International Application Serial No. PCT/US2007/010467, filed Apr. 27, 2007, which claims priority to U.S. Patent Provisional Application No. 60/797,118 filed May 2, 2006 which is incorporated herein by this reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60797118 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14040446 | Sep 2013 | US |
Child | 14198528 | US | |
Parent | 13476986 | May 2012 | US |
Child | 14040446 | US | |
Parent | 12299088 | Oct 2008 | US |
Child | 13476986 | US |