Method of locating a particle on a surface

Information

  • Patent Grant
  • 5988001
  • Patent Number
    5,988,001
  • Date Filed
    Wednesday, October 8, 1997
    26 years ago
  • Date Issued
    Tuesday, November 23, 1999
    24 years ago
  • Inventors
  • Examiners
    • Norri; Max
    Agents
    • Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
Abstract
A method of locating a single particle on a target surface includes the steps of providing, on the target surface, a droplet of a liquid capable of wetting the surface of the particle, causing the particle to come into contact with the liquid, and allowing the liquid to evaporate. The method has particular application to the testing of the strength of a diamond and other abrasive particles.
Description

BACKGROUND OF THE INVENTION
This invention relates to a method of locating a particle on a surface. For quality control and also research purposes, it is necessary to be able to evaluate the strength of a particle such as a diamond particle. A crushing machine is used for this purpose. In use, the particle to be tested is placed between opposed anvils, the anvils brought together and a load applied. The particle will fracture and crush at a given load and from the data derived therefrom the strength of the particle can be determined.
It is important in the practical operation of a machine of this nature that a single particle be accurately placed between the anvils. This may be achieved by use of a vacuum needle which picks up a sample from a source of the particles. Vacuum needles rarely pick up a single particle alone. The extra, unwanted particles may be removed by repeating the process of vibrating the needle and then passing the needle carefully over a prepared brush which physically removes stubborn particles.
The needle, now carrying the single particle, is moved to a target area where the vacuum is released. However, owing to the electrical or mechanical attraction between the particle and the needle the particle remains attached to the needle. A small jet of air may be used to dislodge the particle but this usually results in the particle bouncing away from the target area. A further problem with this method is that the positioning of the particle on the target area is random. The particle can end up on an edge or a flat surface, or a point and will not always be centrally located in the target area. This can affect the results which are obtained.
SUMMARY OF THE INVENTION
According to the present invention, a method of locating a particle on a target surface includes the steps of providing, on the target surface, a liquid capable of wetting the surface of the particle, causing the particle to come into contact with the liquid, and allowing the liquid to evaporate.
The liquid on the target surface will typically be in the form of a droplet, layer or film. The particle may be brought close to the liquid and the force of attraction between the particle and liquid causing or resulting in the particle then coming into contact with the liquid.





BRIEF DESCRIPTION OF THE DRAWINGS
The drawing illustrates schematically the various steps in an embodiment of the method of the invention.





DESCRIPTION OF EMBODIMENTS
The method of the invention has application, in particular, to the locating of an abrasive particle, particularly a diamond particle, on a target surface for a strength test apparatus. It has been found that the liquid locates the particle positively. Further, the particle is influenced by the surface tension of the liquid which pulls it down on to the surface as the liquid evaporates. This tends to result in a flat region of the surface of the particle coming to rest on the target surface. Yet a further consequence and advantage of the method of the invention is that for small particles, e.g. a less than 1 mm and typically in the range 200 to 600 mm, the droplet exerts an attractive force which assists in dislodging the particle from its captive position, e.g. on a vacuum needle.
The liquid must have the ability to wet the surface of the particle and evaporate, generally under ambient conditions. In the case of diamond particles, examples of suitable liquids are aliphatic alcohols, particularly methanol.
An embodiment of the invention will now be described with reference to the accompanying drawings. A low vacuum, high air-flow carrying hypodermic needle was lowered into a sample bowl containing a mass of diamond particles, for example, SDA particles, and picked up a particle(s) on the needle tip as it was retracted. Ideally, only one particle is selected, but normally more than one particle adheres to the needle tip.
As the vacuum needle reached the end of its vertical stroke, it was rapidly decelerated and then rapidly accelerated on its horizontal stroke. This caused the relatively long needle to vibrate and displace any particles not directly in an air stream passing across the needle. The vacuum needle was then passed over a carefully selected and prepared brush which physically removed stubborn particles unaffected by the vibratory dislodgement.
A second hypodermic needle was used to deliver a small droplet 10, typically 0,5 .mu.l, of methanol on to a target surface 12. Methanol is an active diamond wetting agent.
The vacuum needle 14 and the accompanying single particle 16 were then placed vertically above the methanol droplet 10 and the vacuum released.
If the particle is dislodged from the needle it falls into and is retained by the methanol droplet. If the particle remains attached the vacuum needle, the particle is brought into the vicinity of the methanol drop and may be allowed to touch the methanol droplet. The attraction between the droplet 10 and the particle 16 results in the particle being dislodged and falling into the droplet, where it is retained. As the methanol evaporated, the droplet 10 reduced in size and the surface tension caused the particle to move in the direction of the arrow 18. The end result was that the particle was so located on the target surface 12 that a flat surface 20 thereof came to rest on, and in contact with, this surface. This is a stable position for the particle and also a desirable one for a strength test to be performed on the particle.
The target surface may have an adhesive coating to ensure that the particle remains in position.
The embodiment described above uses a droplet to capture the particle. A layer or film of the liquid may be used as an alternative. The liquid layer or film may be applied to the target surface by a felt-tipped applicator, for example.
Claims
  • 1. A method of locating a single particle on a target surface includes the steps of:
  • providing, on the target surface, a droplet of liquid capable of wetting the surface of the particle;
  • causing the particle to come into contact with the droplet of liquid; and
  • allowing the droplet of liquid to evaporate.
  • 2. A method according to claim 1 wherein the liquid is an aliphatic alcohol.
  • 3. A method according to claim 1 wherein the droplet of liquid on the target surface is in the form of a layer or film.
  • 4. A method according to claim 1 wherein the single particle is brought close to the droplet of liquid and the force of attraction between the liquid and the particle causes the single particle to come into contact with the droplet of liquid.
  • 5. A method according to claim 1 wherein the single particle has a flat region and that flat region comes to rest on the target surface after the droplet of liquid is allowed to evaporate.
  • 6. A method according to claim 1 wherein the single particle has a size of less than 1 mm.
  • 7. A method according to claim 1 wherein the particle has a size in the range of 200 to 600 .mu.m.
  • 8. A method according to claim 1 wherein the single particle is located on an end of a vacuum needle when it is caused to be brought into contact with the droplet of liquid.
  • 9. A method according to claim 1 wherein the single particle is an abrasive particle.
  • 10. A method according to claim 9 wherein the abrasive particle is a diamond particle.
  • 11. A method according to claim 2 wherein the aliphatic alcohol is methanol.
Priority Claims (1)
Number Date Country Kind
96/8473 Oct 1996 ZAX
US Referenced Citations (3)
Number Name Date Kind
3919042 Spiller Nov 1975
5039487 Smith Aug 1991
5243864 Duummyre et al. Sep 1993
Foreign Referenced Citations (3)
Number Date Country
2 302 540 Sep 1976 FRX
57-125340 Aug 1982 JPX
1599703 Oct 1990 SUX