This application is the national phase entry of International Application No. PCT/CN2018/081211, filed on Mar. 30, 2018, which is based upon and claims priority to Chinese Patent Application No. 201711052286.8, filed on Oct. 31, 2017, the entire contents of which are incorporated herein by reference.
The present invention relates to a method of locating a coal-rock main fracture by an electromagnetic radiation from a precursor of a coal-rock dynamic disaster, belonging to the technical field of the coal-rock main fracture locating method.
Coal mining conditions are complex in China, and the coal-rock dynamic disaster is one of the major disasters that happens in coal mines. With the increase of mining depth, the frequency, intensity and degree of damage of coal-rock dynamic disasters present a rising trend. Meanwhile, the number of occurrences and casualties are relatively increasing. The monitoring and forewarning of coal-rock dynamic disasters mainly includes a static index method and a geophysical method. The static index method can only obtain limited information and has a low accuracy, while the geophysical method can achieve a real-time, dynamic and continuous monitoring.
Electromagnetic radiation generated by rock deformation and fracture is a common physical phenomenon. As a very promising geophysical method, a research of the electromagnetic radiation method has made considerable achievements in the aspects of the generation mechanism and signal characteristics of the electromagnetic radiation generated by coal-rock damage, and the application status, influencing factors, signal monitoring and data processing system of predicting coal-rock dynamic disasters in recent years. Based on electromagnetic radiation monitoring technology, the locating of the coal-rock main fracture of the precursor of the coal-rock dynamic disasters is realized, having great significance for an accurate monitoring and forewarning of the coal-rock dynamic disasters and preventing coal-rock dynamic disasters. In addition, this method is also applicable to the prevention and control of rock burst disasters in non-coal mines, and can effectively improve the safety situation of mine production.
In view of the above problems, the present invention provides a method for locating a coal-rock main fracture by an electromagnetic radiation from a precursor of a coal-rock dynamic disaster, which is suitable for preventing and controlling rock burst disasters in non-coal mines, and capable of effectively improving the safety situation of mine production.
In order to achieve the above-mentioned objective, the technical solution of the present invention is as follows. A method of locating a coal-rock main fracture by an electromagnetic radiation from a precursor of a coal-rock dynamic disaster includes the following steps:
step 1, collecting three-component electromagnetic signals generated from downhole coal-rock fractures, by using at least four groups of non-coplanar three-component electromagnetic sensors arranged in the underground tunnels, and ensuring that the non-coplanar three-component electromagnetic sensors in different groups receive the signal synchronously via an atomic clock;
step 2, analyzing frequency spectrums of the electromagnetic signals collected by each group of non-coplanar three-component electromagnetic sensors, and recognizing and ensuring the electromagnetic signals, received by different sensors, are from a same main fracture by a signal frequency criterion;
step 3, performing a vector superposition on strength of the three-component electromagnetic signals received by each group of sensors to determine a direction of a magnetic field line at a position where each group sensor is located;
step 4, determining a plane of electromagnetic wave propagation according to the direction of the magnetic field line at the position, wherein the electromagnetic wave is perpendicular to the direction of the magnetic field line; and
step 5, determining an intersection point of various planes of electromagnetic wave propagation as a location of an electromagnetic radiation source, wherein the various planes of electromagnetic wave propagation are determined by the multiple groups of three-component electromagnetic sensors, and the location of the electromagnetic radiation source is an area of the coal-rock main fracture of a precursor of the coal-rock dynamic disaster.
Further, in the step 1, the non-coplanar three-component electromagnetic sensors are provided with receiving antennas, the receiving antennas are wide-frequency directive antennas with a receiving frequency of 1 Hz-10 kHz, and each two of the three antennas in each group sensor are in an orthogonal arrangement in a form of three-dimensional Cartesian coordinate system.
Further, in the step 3, a method of the vector superposition includes:
Further, in the step 4, the plane of electromagnetic wave propagation is determined by a formula of a direction cosine orthogonal to the direction of the magnetic field line obtained according to {right arrow over (h)}=(cos α, cos β, cos γ) and {right arrow over (h)}·{right arrow over (r)}=0.
Further, in the step 5, a number of the multiple groups of three-component electromagnetic sensors are more than 4.
Compared with the prior art, the present invention has the following advantages.
The present invention provides a method of locating a coal-rock main fracture by an electromagnetic radiation from a precursor of a coal-rock dynamic disaster. At least four groups of three-component electromagnetic sensors are arranged in the underground tunnels. Each group of three-component electromagnetic sensors includes three directive antennas for receiving electromagnetic signals orthogonal to each other, and collects the electromagnetic signals by a monitoring host. In the present invention, the signals are ensured to be synchronously received by different sensors via an atomic clock. Moreover, the electromagnetic signals received by different antennas which are ensured to be from the same fracture are selected by using electromagnetic signal frequency as the characteristic parameter. Furthermore, the direction of the magnetic field line at the position where each group of sensors is located is determined by performing a vector superposition on strengths of the three-component electromagnetic signals of each group of sensors. The planes of electromagnetic wave propagation perpendicular to the direction of the magnetic field line are determined according to the direction of the magnetic field line. The location of the coal-rock fracture is determined by the intersection point of the planes of electromagnetic wave propagation determined by the multiple groups of sensors. The present invention is suitable for the prevention and control of rock burst disasters in non-coal mines, and can effectively improve the safety situation of mine production.
The technical solutions in the embodiments of the present invention will be described definitely and completely with reference to the accompanying drawings in the embodiments of the present invention. It will be apparent that the embodiments described herein are a mere part of the embodiments of the present invention, rather than all embodiments. Based on the embodiments of the present invention, all other embodiments made by those skilled in the art without creative work belong to the protective scope of the present invention.
Now referring to
step 1, a working surface to be monitored is selected, two groups of three-component electromagnetic sensors are arranged on each of a working surface track roadway and a belt conveyance roadway, a distance between the two groups of sensors in the working surface track roadway or the belt conveyance roadway is 100 m; three-component electromagnetic signals are collected by a monitoring host in real time, and the three-component electromagnetic signals are ensured to be received by sensors in different groups synchronously via an atomic clock;
step 2, frequency spectrums of abnormal signals are analyzed, and the electromagnetic signals received by antennas of different three-component electromagnetic sensors are ensured to be from a same main fracture;
step 3, a vector superposition is performed on strengths of the three-component electromagnetic signals received by different electromagnetic sensors to determine a direction of a magnetic field line at a position where each group of sensors is located;
step 4, a plane of electromagnetic wave propagation is determined according to the direction of the magnetic field line at the position; and
step 5, a location of an electromagnetic radiation source is determined by an intersection point of the planes of electromagnetic wave propagation.
In the present embodiment, in the step 1, the non-coplanar three-component electromagnetic sensors are provided with receiving antennas, the antennas for receiving the electromagnetic radiation are wide-frequency directive antennas, and the antennas are in an orthogonal arrangement in a form of three-dimensional Cartesian coordinate system.
In the step 2, a receiving frequency of each antenna is 1 Hz-10 kHz.
In the step 3, a method of the vector superposition includes:
In the step 4, a method of determining a direction of the plane of electromagnetic wave propagation is as follows:
a formula of a direction cosine orthogonal to the direction of the magnetic field line is determined according to {right arrow over (h)}·{right arrow over (r)}=0.
In the step 5, the same vector superposition is performed on antennas at different positions as that in the step 3. Multiple planes of electromagnetic wave propagation are determined in the step 4, and an intersection point of the multiple planes is determined as an electromagnetic radiation source.
Although preferred embodiments of the present invention have been described in detail, it will be understood by those skilled in the art that various changes, modifications, replacements, and variations can be made to the embodiments without departing from the principle and spirit of the present invention, the scope of the present invention is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201711052286.8 | Oct 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/081211 | 3/30/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/085384 | 5/9/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3594633 | Barringer | Jul 1971 | A |
3662260 | Thomas | May 1972 | A |
4884030 | Naville | Nov 1989 | A |
4904943 | Takahashi | Feb 1990 | A |
5694129 | Fujinawa | Dec 1997 | A |
6191587 | Fox | Feb 2001 | B1 |
6873265 | Bleier | Mar 2005 | B2 |
6985817 | Saenz Alvarado | Jan 2006 | B2 |
Number | Date | Country |
---|---|---|
103197356 | Jul 2013 | CN |
103995296 | Aug 2014 | CN |
104090306 | Oct 2014 | CN |
105807256 | Jul 2016 | CN |
105807256 | Jul 2016 | CN |
106970424 | Jul 2017 | CN |
107843874 | Mar 2018 | CN |
2012169937 | Dec 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20190277942 A1 | Sep 2019 | US |