This invention relates to the method of lowering and raising payloads into ocean depths using a winch system.
Conventional lowering and lifting in subsea environments using an armored umbilical (lowering/communication cable) is by using a winch with the load rating suitable to the task. When lowering a load to extreme depth such as 10,000 feet, the weight of the armored umbilical in water will often exceed the weight of the payload. In the case of a remotely operated vehicle (ROV), the objective is to make the ROV as near neutrally buoyant for ease of operations with only enough weight to allow it to be lowered to the desired depth. The net weight of the ROV plus a handling cage or top hat will be in the range of 1000 lbs., and the armored umbilical getting it to the bottom can exceed 20,000 lbs. Some ROVs are lowered subsea in a heavy cage and swim out as a neutrally buoyant assembly on a short flexible lead. Some ROVs are lowered below a heavy top hat and are released when at the working depth with a short umbilical from a small reel mounted in the top hat.
The armored cable must have substantial capacity as the ROV plus cage or top hat will weigh 1000 lbs. in water, but may well weigh 30,000 lbs. when being lifted through the air/water interface and onto the deck. The winch system at the surface sees its maximum load condition either when it is being lifted through the air/water interface or when it is at its lowest operational depth. Although the ROV plus Top Hat will be only a smaller load such as 1000 lbs., the steel armored umbilical when fully deployed will represent a major load.
With the requirement for 10,000 feet or more in armored cable under tensions up to 30,000 lbs., the crushing load on the drum and the loading on the end flanges which acts similar to pressure, requiring the winch spool to be relatively heavy and expensive to manufacture. The winch torsional requirements for lifting the ROV system out of the water at the air/water interface mandate a substantial gear box to be provided.
An additional difficulty with the conventional winch arrangement is that the cable must be loaded onto the spool with tensions in the range of 12,000 lbs., or when a 30,000 lb. tension load is imparted the current outer wrap of the umbilical will “knife” into the inner wraps and damage in the cable. In some cases the clients insist that the pre-wrapping is at the full 30,000 lbs. tension for added safety. In addition to general difficulties, when a cable is to be replaced, it means it must be taken to shore to be reloaded with equipment which can hold a back tension of 12,000 lbs. (or 30,000 lbs.) tension as it is being spooled.
Some loads similar to this have been handled by coiled tubing injector heads such as the Beta Coiled Tubing Units manufactured by the Beta Division of Brown Oil Tools in the 1970 time frame (U.S. Pat. No. 4,265,304) and is contemporarily done with traction winches on offshore pipe laying vessels. Characteristically, the friction loading against the cable, coiled tubing, or pipeline is from two opposite directions, tending to squash the cable, coiled tubing, or pipeline to an out of round condition which tends to reduce the service life of the components.
Coiled tubing units have sought to engage the coiled tubing from two sides since the 1960s with the resulting loss in service life of the armored umbilical, coiled tubing, and pipeline. This has not been a detriment to pipe line installation as they are installed one time and left in place. However, coiled tubing and armored umbilicals are characteristically service tools deployed and retrieved repeatedly and the added stress of being deformed reduces their usable service life.
The object of this invention is to provide a method of lowering a subsea package system through the air/water interface and down to a working depth without requiring a winch drum which will sustain the loads inherent in the tension associated with the operations.
A second objective of the present invention is to have the gripping forces on the umbilical to be failsafe due to the mechanical storage of energy rather than depending on hydraulic force to generate the load.
A third object of this invention is to amplify the normal force provided by the failsafe mechanical loading such that the normal force against the umbilical or cable will exceed the normal force provided by the failsafe mechanical loading to a sufficient amount to allow the usage of smooth faced slip inserts rather than slip inserts with sharp teeth which will damage the umbilical.
A fourth objective of this invention is to provide a method of gripping the umbilical in a way which does not tend to squash it to an out of round condition and potentially damage the internal communication links.
Another objective of this invention is to provide a system which allow umbilical to be reinstalled in the field without the need for back tension as it is being installed.
Another objective of this invention is to eliminate the need of a high load sheave to change the direction of the umbilical from vertical to proximately horizontal.
Referring now to
The top hat 26 is a heavy member which will assist the near neutrally buoyant ROV 24 in being lowered to ocean 32 and includes a small reel with a short neutrally buoyant umbilical inside which will allow the ROV 24 to swim away from the top hat 26 to do subsea service operations.
Reel 30 is not a heavy duty winch as is normally associated with LARS systems, but is rather a light duty reel similar to the one as described in U.S. Pat. No. 5,959,953. The distinction between a winch and a reel in this context is that for a reel the load is carried by something else and the reel simply rolls the cable up. In the case of the reel as seen in U.S. Pat. No. 5,950,953, the umbilical is strapped to the blowout preventer drilling riser which carries its weight. As the blowout preventer drilling riser is pulled back to the surface, the reel simply rolls the umbilical up for storage. In contrast, a winch Is intended to pick up a load.
Referring now to
Referring now to
Referring now to
Latch and rotate section 42 includes slip assembly 92, latch assembly 94, and cushion assembly 96. Slip assembly 92 has internal smooth faced dogs (not shown) to provide failsafe support for the umbilical without scratching it as is illustrated in U.S. Pat. No. 6,820,705.
Latch assembly 94 provides dogs 100 to engage a profile on the top of the top hat 26 for support of the top hat 26 and the ROV 24 when parked at the surface. Dogs 100 are operated by cylinders 102 and linkages 104. Latch assembly 94 also includes a large gear 106, motor 108, and bearings 110 to rotate the top hat 26 and ROV 24 to the proper orientation for landing on the vessel as seen in
Cushion assembly 96 includes a ring 112 with a lower surface 114 for contacting the upper surface of the top hat 26, and dampening means 116 to slow the upward movement of the top hat 26 and the ROV 24 they approach the upper end of their travel to prevent damage.
Referring now to
Referring now to
Referring now to
Referring now to
As load cylinder 70 is capable of putting up a force 200 which may not provide enough friction causing load to support the umbilical, the reaction force 222 effectively doubles the friction causing load available and the wedging action caused by angled surfaces 202, 204, 218, and 220 enhances force 200 and reaction force 222 to an even greater extent thereby providing sufficient frictional support to safely support the umbilical 28.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
2792930 | Graham | May 1957 | A |
3150397 | Caperton | Sep 1964 | A |
3399416 | Caperton | Jul 1966 | A |
4090675 | Betta | May 1978 | A |
4265304 | Baugh | May 1981 | A |
5706755 | O'Brien | Jan 1998 | A |
5950953 | Baugh et al. | Sep 1999 | A |
6443383 | Stasny et al. | Sep 2002 | B1 |
6820705 | Baugh | Nov 2004 | B2 |
20060042534 | Pollack | Mar 2006 | A1 |
20110108786 | Meijer | May 2011 | A1 |
20110284234 | Portman | Nov 2011 | A1 |
20140284296 | Appels | Sep 2014 | A1 |
20150086299 | Jamieson | Mar 2015 | A1 |
20150256797 | Torben | Sep 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20180105232 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14515487 | Oct 2014 | US |
Child | 15782981 | US |