This invention relates to a method of machining opposite ends of rod members with a grinding wheel.
Conventionally, machining of the opposite ends of a round rod member is performed by holding the rod member with a pair of rotating pinch rollers and moving the rod member towards a grinding wheel (Patent Document 1), one rod member at a time.
Patent Document 1: JPA Laid Open 2005-14130
In the prior art method mentioned above, rod members must be cut in advance to a predetermined finish length, and each end of the rod member must be machined separately. As a consequence, manufacture of round rod members having a predetermined length and chamfered ends is not efficient and requires a long machining time. Furthermore, need of independent facilities for such machining requires not only a high manufacturing cost but also a large work space.
It is, therefore, an object of the present invention to circumvent such drawbacks as mentioned above by providing a method of efficiently machining a long rod material into chamfered rod members with a grinding wheel.
To achieve the object above, there is provided in accordance with the invention a method of machining opposite ends of round rod members, comprising steps of: moving a long round rod material to a predetermined work position; chamfering a first portion of the long rod material on a first (or front) side of a rotating grinding wheel; cutting off the first portion and chamfering the leading end of a second portion of the long rod material in contact with a second (or rear) side of the grinding wheel; removing away from the work position the first portion cut off, and moving the chamfered second portion to the work position; and repeating the above-mentioned steps as needed. More particularly, the first portion of the long rod material on the front side of the grinding wheel is tapered by moving, towards and along the axis of the rod material in rotation, the periphery of the rotating grinding wheel in abutment against the first portion until the taper end has a predetermined diameter. Then, in a step of cutting and chamfering the rod material, the periphery of the grinding wheel is further moved towards the axis of the long rod material to cut the long rod material at the taper end, and at the same time to chamfer the leading end of the second portion of the long rod material in contact with the rear side of the grinding wheel to a configuration defined by the rear end configuration of the grinding wheel.
Said cutting-and-chamfering step is preferably performed by: first, bringing the periphery of the grinding wheel into contact with the long rod material at a position slightly offset rearward from the taper end; second, moving the grinding wheel forward towards the taper end while slightly moving the grinding wheel towards the axis of the long rod material to thereby roughly grind the leading end of the second portion of the long rod material; and third, further moving the grinding wheel to the axis of the rod to cut the first portion off the long rod material and simultaneously finish chamfering of the leading end of the second portion of the long rod material in contact with the rear side of the grinding wheel to the shape defined by the rear side configuration of the grinding wheel.
The grinding wheel is generally disk-shaped, and has a rounded periphery. The grinding wheel has: a rounded periphery; a flat front side adjacent the periphery; an annular flat region on the rear side of the grinding wheel and adjacent the periphery; and a concave region inside the annular flat region, having a thickness that increases towards the center of the grinding wheel. By providing the grinding wheel with different configurations, various types of chamfering can be achieved.
By use of an inventive method of machining rod members, cutting and chamfering of rod members can be simultaneously achieved efficiently in sequence. Since this method enables simultaneous cutting and chamfering of each rod member in a fewer manufacturing steps, machining cost, space, and facility are cut down. Further, the method not only shortens work lead time but also produces no goods-in-progress.
Referring to the accompanying drawings, the inventive method of cutting and chamfering opposite ends of rod members will now be described in detail by way of example with reference to an embodiment for manufacturing rod members of automobile engine valves. Automobile engine valves are generally manufactured from primary rod members by upset-forging the rod members with an upsetter. To do this a long rod material is first cut into rod members of a predetermined length. Then, one end of each rod member to be connected to the umbrella portion of a valve is chamfered to prevent the umbrella shaped bottom from getting wrinkled during forging. On the other hand, the other end is tapered to prevent the end from getting stuck with a mold when the rod member is inserted into the mold. The embodiment shown herein is a method of cutting and chamfering a long round rod material into chamfered rod members according to the invention.
First, a machining apparatus 1 for carrying out the invention will be briefly described before describing the method of this invention. As shown in
The main spindle 3 is adapted to rotatably retain a long round rod material 10a inserted thereinto from the rear end of the main spindle 3. The inserted long rod material 10a is gripped by the gripping member 2, and rotated by a motor (not shown) for example in the clockwise direction when viewed from the rear end thereof. The holding members 4a and 4b are adapted to pinch the long rod material 10a, and freely rotatable in association with the rotating rod. One of the holding members 4a and 4b, say 4a, can be moved to and away from the other member 4b.
As shown in
As shown in
Referring to
Under this condition, the main spindle 3 is rotated in a predetermined direction to rotate the long rod material 10a in the same direction. At the same time, the grinding wheel 5 is also rotated in a predetermined direction, and is moved in X- and Y-directions until the periphery 5a of the grinding wheel 5 reaches a predetermined position relative to the long rod material 10a, where the periphery abuts on the periphery of the long rod material 10a when grinding is started. (
Next, a cutting-and-chamfering process is performed on the long rod material 10a as follows. In this process, the grinding wheel 5 is once moved in X- and Y-direction so as to move the grinding wheel 5 away from the taper end towards the main spindle 3 (
The cut rod member 10 is removed from the paired holding members 4a and 4b by loosening the holding member 4a, and transferred to a temporary storage area 8 using, for example, a loader (not shown). The tailing end of the very first rod member 10 thus machined is tapered, but its leading end that had been in abutment on the positioning member 7 is not worked at all.
After the finished rod member is transferred to the temporary storage area 8, the gripping member 2 is loosened, and the remaining long rod material 10a having a chamfered leading end is moved forward until the chamfered end abuts on the positioning member 7. Then, the above sequence of tapering, cutting, and chamfering processes are repeated to obtain the next rod member 10 having one end tapered and the other end chamfered as shown in
It should be understood that the invention is not limited to the embodiment shown and described herein. The invention incorporates such modification that can manufacture rod members having arbitrary end configurations other than tapered and rounded ends. The opposite ends may have the same configuration. The grinding wheel 5 may have different configurations suitable for faceting or chamfering rod members to a preferred configuration.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/062405 | 5/15/2012 | WO | 00 | 10/21/2013 |