1. Field of the Invention
The present invention relates to stepper motors generally and, more particularly, but not by way of limitation, to a novel method of magnetizing the shaft of a linear stepper motor.
2. Background Art
Some linear stepper motors convert rotary motion to linear motion by mechanical means such as through the use of a threaded nut and lead screw. Conventional linear motors that directly transfer electromagnetic energy in the stator poles to linear movement of a shaft typically employ toothed structures or have relatively complicated slide/stator arrangements. In either case, the manufacture of such motors is relatively expensive and the motors typically have high parts counts.
A problem resides in producing a linear motor with a smooth shaft with alternating N and S poles. One technique is to glue together cylindrical segments of N and S magnets. That technique, however, is time consuming and results in a somewhat weak structure. Another technique is to roll a cylinder of ferromagnetic material over a flat plate orthogonal to a series of alternating N and S magnetic strips. This technique is somewhat clumsy and suffers from the fact that the resulting magnetized shaft is of fairly weak magnetic strength.
Some conventional motors are described in the following patent documents:
U.S. Pat. No. 3,867,676, issued Feb. 18, 1975, to Chai et al., and titled VARIABLE RELUCTANCE LINEAR STEPPER MOTOR, describes such a motor that has toothed structures on the coils and on the linear member. The novelty of the patent appears to reside in the arrangement of the coils and the manner in which they are energized.
U.S. Pat. No. 4,198,582, issued Apr. 15, 1980, to Matias et al., and titled HIGH PERFORMANCE STEPPER MOTOR, describes, in part, a variable reluctance linear stepper motor in which both the stator and the slider have nonmagnetic materials arranged therein such that flux leakage is reduced.
U.S. Pat. No. 4,286,180, issued Aug. 25, 1981, to Langley, and titled VARIABLE RELUCTANCE STEPPER MOTOR, describes, in part, such a motor having helically toothed stator and slide structures, the respective widths of the teeth having a predetermined relationship.
U.S. Pat. No. 4,408,138, issued Oct. 4, 1983, to Okamoto, and titled LINEAR STEPPER MOTOR, describes a linear stepper motor having toothed structures on the stator and on the slider. Coil-wound salient poles are provided on the slider. The novelty of the patent appears to reside in the arrangement of rollers and rails disposed between the stator and the slider.
U.S. Pat. No. 4,607,197, issued Aug. 19, 1986, to Conrad, and titled LINEAR AND ROTARY ACTUATOR, describes a variable reluctance linear/rotary motor in which the armature has axial rows of teeth radially spaced around the surface thereof. Selective energization of stator windings provides linear, rotary, or both linear and rotary motion of the armature.
U.S. Pat. No. 4,622,609, issued Nov. 11, 1986, to Barton, and titled READ/WRITE HEAD POSITIONING APPARATUS, describes a variable reluctance positioning device having toothed structures on facing surfaces of the stator and the armature and with coils placed on the armature.
U.S. Pat. No. 4,695,777, issued Sep. 22, 1987, to Asano, and titled VR TYPE LINEAR STEPPER MOTOR, describes such a motor having toothed structures on the stator and on the slider, the toothed structures on the stator being on coil-wound salient poles. The toothed structures bear a predetermined relationship therebetween.
U.S. Pat. No. 4,712,027, issued Dec. 8, 1987, to Karidis, and titled RADIAL POLE LINEAR RELUCTANCE MOTOR, describes such a motor having a smooth double-helix stator shaft and a smooth laminated armature of alternate radial pole laminations and spacer laminations. This arrangement permits a balanced flux path and uses the stator and armature surfaces as slider bearing surfaces.
U.S. Pat. No. 4,810,914, issued Mar. 7, 1989, to Karidis et al., and titled LINEAR ACTUATOR WITH MULTIPLE CLOSED LOOP FLUX PATHS ESSENTIALLY ORTHOGONAL TO ITS AXIS, describes a variable reluctance actuator similar in pertinent respects to that described in the '027 patent above.
U.S. Pat. No. 6,016,021, issued Jan. 18, 2000, to Hinds, and titled LINEAR STEPPER MOTOR, describes a variable reluctance stepper motor similar in pertinent respects to the motor described in the '609 patent above. The novelty of the patent appears to reside in the method of forming the teeth.
Accordingly, it is a principal object of the present invention to provide a method of magnetizing a permanent magnet shaft for a linear stepper motor that has a smooth, external peripheral surface.
It is a further object of the invention to provide such a method that is quick and economical.
Other objects of the present invention, as well as particular features, elements, and advantages thereof, will be elucidated in, or be apparent from, the following description and the accompanying drawing figures.
The present invention achieves the above objects, among others, by providing, in a preferred embodiment, a method of providing axially alternating N and S poles in a portion of an axially extending, cylindrical, smooth shaft for a linear stepper motor, comprising: providing a magnetizing fixture comprising: a hollow cylindrical mandrel formed from a non-magnetic material; a conductive wire disposed in parallel, circumferential channels defined in an outer surface of said mandrel; a potting compound surrounding said mandrel to secure said conductive wire in place; and a central bore defined axially and centrally through said mandrel and exposing or nearly exposing said conductive wire; and said central bore being sized to accept axially inserted therein said portion of said axially extending, cylindrical, smooth shaft; inserting said portion of said axially extending, cylindrical shaft in said central bore; and providing a direct current through said conductive wire said conductive wire is placed in said parallel, circumferential channels such that direction of flow in said conductive wire of a direct current in adjacent ones of said parallel, circumferential channels is in opposite directions. A method of manufacturing said magnetizing fixture is also provided.
Understanding of the present invention and the various aspects thereof will be facilitated by reference to the accompanying drawing figures, provided for purposes of illustration only and not intended to define the scope of the invention, on which:
Reference should now be made to the drawing figures on which similar or identical elements are given consistent identifying numerals throughout the various figures thereof, and on which parenthetical references to figure numbers direct the reader to the view(s) on which the element(s) being described is (are) best seen, although the element(s) may be seen on other figures also.
Shaft 30 includes a plurality of alternating N and S nonsalient poles, as at 34 and 36, respectively, formed around the periphery thereof, which poles may be formed as described below. Shaft 30 is preferably a hollow cylinder of ceramic or rare earth magnetic material, although the shaft may be solid or may have a core of ferromagnetic or other material with a hollow cylinder of the magnetic material disposed around the core. Shaft 30 can be economically constructed, for example, by conventional extrusion techniques that can produce a shaft of any given length or the shaft can be cut to a suitable length from extruded stock. At least the portion of shaft 30 containing the N and S poles is non-segmented and is constructed of a single piece of material.
Stator structure 32 includes first and second, cylindrical, coils 40 and 42, respectively, encircling shaft 30, and conventionally wound on first and second annular bobbins 44 and 46. Bobbins 44 and 46 are formed of an electrically insulating material such as Delrin®. First and second bobbins 44 and 46 are spaced apart by a first spacer 50 and the second bobbin may be spaced apart from an end plate 52 of motor 20 by a second spacer 54. First and second spacers 50 and 54 may also provide bearing surfaces for shaft 30, in which case the first and second spacers are preferably of a material having a high degree of lubricity such as Delrin®.
First bobbin 44 spaces apart annular pole plates 60 and 62, while second bobbin 46 spaces apart annular pole plates 64 and 66. A steel band 68 surrounds and is in good electrical contact with annular pole plates 60, 62, 64, and 66, thus completing the circular electromagnetic circuit. Annular pole plates 60, 62, 64, and 66 have nonsalient poles.
It will be understood that, by suitable energization of first and second coil-wound bobbins in a conventional manner, shaft 30 may be made to incrementally “step” to the left or right on
While motor 20 is shown as having one set of two-phase stator sections, that is, the motor has two coils, it will be understood that other arrangements are possible as well. For example, two or more sets of two-phase stator sections may be provided for greater power, the additional sets of stator sections being added serially in a modular manner.
Thus arranged, motor 20 as shown (
Shaft 30 of motor 20 (
Motor 20 (
In the embodiments of the present invention described above, it will be recognized that individual elements and/or features thereof are not necessarily limited to a particular embodiment but, where applicable, are interchangeable and can be used in any selected embodiment even though such may not be specifically shown.
Terms such as “upper”, “lower”, “inner”, “outer”, “inwardly”, “outwardly”, “vertical”, “horizontal”, and the like, when used herein, refer to the positions of the respective elements shown on the accompanying drawing figures and the present invention is not necessarily limited to such positions.
It will thus be seen that the objects set forth above, among those elucidated in, or made apparent from, the preceding description, are efficiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown on the accompanying drawing figures shall be interpreted as illustrative only and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
The present application is a divisional application of U.S. application Ser. No. 10/794,148, filed Mar. 8, 2004, now U.S. Pat. No. 7,296,342, which is a divisional application of U.S. application Ser. No. 09/783,179, filed Feb. 12, 2001, now U.S. Pat. No. 6,756,705, which claims the benefit of the filing dates of U.S. Provisional Applications Nos. 60/181,449, filed Feb. 10, 2000, and 60/220,369, filed Jul. 24, 2000.
Number | Name | Date | Kind |
---|---|---|---|
2095420 | Polydoroff | Oct 1937 | A |
2880335 | Dexter | Mar 1959 | A |
2882335 | Gibson et al. | Apr 1959 | A |
3407473 | Rushing | Oct 1968 | A |
3620133 | Feucht | Nov 1971 | A |
3683481 | Blackburn et al. | Aug 1972 | A |
3828211 | Laronze | Aug 1974 | A |
3867676 | Chai et al. | Feb 1975 | A |
4060190 | Paolini | Nov 1977 | A |
4166284 | Daniels | Aug 1979 | A |
4198582 | Matthias et al. | Apr 1980 | A |
4286180 | Langley | Aug 1981 | A |
4408138 | Okamoto | Oct 1983 | A |
4504750 | Onodera et al. | Mar 1985 | A |
4514712 | McDougal | Apr 1985 | A |
4575652 | Gogue | Mar 1986 | A |
4607197 | Conrad | Aug 1986 | A |
4622609 | Barton | Nov 1986 | A |
4695777 | Asano | Sep 1987 | A |
4712027 | Karidis | Dec 1987 | A |
4810914 | Karidis et al. | Mar 1989 | A |
5157331 | Smith | Oct 1992 | A |
5277058 | Kalyon et al. | Jan 1994 | A |
5284411 | Enomoto et al. | Feb 1994 | A |
5659280 | Lee et al. | Aug 1997 | A |
5796186 | Nanba et al. | Aug 1998 | A |
5943760 | Barzideh et al. | Aug 1999 | A |
5949161 | Nanba | Sep 1999 | A |
5955798 | Ishiyama et al. | Sep 1999 | A |
6016021 | Hinds | Jan 2000 | A |
Number | Date | Country |
---|---|---|
62-94903 | May 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20090134720 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60181449 | Feb 2000 | US | |
60220369 | Jul 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10794148 | Mar 2004 | US |
Child | 11985906 | US | |
Parent | 09783179 | Feb 2001 | US |
Child | 10794148 | US |