The present invention relates to the field of bowling lane maintenance machines, in particular, to machines that can both clean and dress the lanes as they move along the surface thereof. It relates especially to a machine whose various operating functions are carried out in such a manner as to render the machine suitable for, but not necessarily limited to, battery operation so as to eliminate the need for an electrical supply cord connecting the machine to a source of electrical house current.
It is well known in the prior art to provide a lane machine that applies cleaning liquid to the lane at the front of the machine, picks up the liquid, surface grime and old dressing (oil) near the middle of the machine, and then applies a new film of oil to the cleaned surface at the rear of the machine as the machine is traveling along the length of the lane. In the past, such machines have required connection to house current through a long, unwieldy supply cord because the sequence of operations performed by the machine drew too much electrical current to make battery operation practical considering the significant number of lanes in a bowling facility.
In a machine constructed in accordance with the principles of the present invention the operational steps of the machine are such that battery operation can become a practical reality, without sacrificing quality and speed. Although the inventive operating steps are beneficial even if not incorporated into a machine that is battery-powered, the convenience of battery operation makes incorporating these principles into a battery-powered machine particularly attractive.
The present invention is susceptible of embodiment in many different forms. While the drawings illustrate and the specification describes certain preferred embodiments of the invention, it is to be understood that such disclosure is by way of example only. There is no intent to limit the principles of the present invention to the particular disclosed embodiments.
The machine 10 illustrated in the drawings is similar in many respects to the machine disclosed in U.S. Pat. No. 5,729,855 and U.S. Pat. No. 6,939,404. Accordingly, the '855 and '404 patents are hereby incorporated by reference into the present specification. In view of the full disclosure in the '855 and '404 patents of the construction and operation of the lane machine, the construction and operation of the machine 10 will be described only generally herein.
The machine 10 has a cleaning system denoted broadly by the numeral 12 and located generally in the front of the machine. A dressing (preferably oil) application system is denoted broadly by the numeral 14 and located generally in the rear portion of the machine. These two systems perform their functions as the machine is propelled down the lane and back by lane-engaging drive wheels 16 and 18 fixed to a transverse shaft 20 that is powered by a drive motor 22 (Baldor 24VDC model 24A531Z019G1) and a chain and sprocket assembly 24. A conventional proximity sensor speed tachometer 25 (
The oil application system 14 includes an applicator roll 26 (hereinafter sometimes referred to as the “buffer”) disposed for engaging the lane surface, a reciprocating oil dispensing head 28 that travels back and forth across the width of the lane above buffer 26, and a brush assembly 30 between buffer 26 and dispensing head 28 for receiving oil from head 28 and delivering it to buffer 26. Buffer 26 is rotatably driven by a buffer motor 31 (Baldor 24 VDC model 24A532Z046G1) (
Details of the construction and manner of use of brush assembly 30 are disclosed in U.S. Pat. No. 7,056,384 titled “Strip Brush Bowling Lane Dressing Application Mechanism”, which is hereby incorporated by reference herein. Oil application system 14 additionally includes a reservoir 32, a positive displacement pump (not shown) (FMI model RHOCKC Lab Pump Jr.) having a motor 33 (
Oil dispensing head 28 is mounted for reciprocation along a transverse guide track 34 extending between the sidewalls of the machine. An endless drive belt 36 is secured to head 28 and has its opposite ends looped around a pair of pulleys 38 and 40, the pulley 40 being operably coupled with a reversible motor 42 (Crouzet 24 VDC model 808050Y07.66Z) to provide driving power to belt 36 and thus propel dispensing head 28 along track 34. A pair of left and right sensors in the form of proximity switches 44 and 46 adjacent opposite ends of the path of reciprocal travel of dispensing head 28 are operable to sense the presence of dispensing head 28 as it reaches the limits of its path of travel so as to signal the motor 42 to reverse directions and drive dispensing head 28 in the opposite direction along track 34.
The pulley 38 is fixed to a long fore-and-aft extending shaft 48 disposed just outboard of the right sidewall of the machine. Near its rear end, just forwardly of pulley 38, shaft 48 is provided with a notched wheel 50 whose rotation is sensed by a sensor 52. An output from sensor 52 is sent to the control system of the machine (described in more detail below) for the purpose of determining the precise location of the oil dispensing head 28 across the width of the machine and the bowling lane. Such location is coordinated with a particular lane oil pattern that has been programmed into the control system of the machine so that oil dispensing head 28 may be actuated to precisely dispense oil at predetermined locations along its path of reciprocation.
Distance down the lane is determined by a pair of lane-engaging wheels 53 (
The cleaning system 12 includes one or more cleaning liquid dispensing heads 58 that reciprocate across the path of travel of the machine as it moves along the lane. While system 12 may also include one or more pressurized spray nozzles as in conventional machines, in a preferred embodiment no such conventional spray nozzles are utilized. In the particular embodiment disclosed herein, only a single dispensing head 58 is utilized, such head 58 traveling essentially the full transverse width of the machine to the same extent as the oil dispensing head 28.
Dispensing head 58 includes a vertically disposed, depending discharge tube 60 provided with a tip 62 that is located close to the lane surface. In one form of the invention, tip 62 is not in the nature of an atomizing nozzle but is instead configured and arranged to emit liquid in a fairly coherent stream so that a bead of cleaning liquid is laid down on the lane surface. One suitable tip 62 for carrying out this particular non-atomizing function is available from the Value Plastics Company of Fort Collins, Colo. as part number VPS5401001N. Other types of tips (not shown) that atomize, breakup or diffuse liquid supplied to the tip may also be utilized where broader surface area coverage by the cleaning liquid is desired. In either case, tip 62 is preferably provided with an internal check valve (not shown).
Cleaning system 12 further includes a guide track 64 attached to the front wall of machine 10 that slidably supports dispensing head 58 for its reciprocal movement. Track 64 extends across substantially the entire width of machine 10 to the same extent as the track 34 associated with oil dispensing head 28. An endless drive belt 66 is attached to dispensing head 58 for providing reciprocal drive thereto, the belt 66 at its opposite ends being looped around a pair of pulley wheels 68 and 70 respectively.
Although pulley 68 may be driven in a number of different ways, including by its own separate drive motor, in a preferred form of the invention pulley 68 is fixed to the forward most end of shaft 48 from pulley 38 so that both dispensing heads 28 and 58 are driven by the same reversible motor 42. Consequently, both oil dispensing head 28 and cleaning liquid dispensing head 58 are reciprocated simultaneously by motor 42 when the latter is actuated. However, it will be noted that oil dispensing head 28 and cleaning liquid dispensing head 58 reciprocate in mutually opposite directions due to the fact that oil dispensing head 28 is secured to the upper run 36a of its drive belt 36 while cleaning liquid dispensing head 58 is secured to the lower run 66b of its drive belt 66.
Cleaning system 12 further includes a cleaning solution reservoir 72 at the rear of machine 10. A supply line 74 leading from reservoir 72 is coupled in flow communication with a reversible peristaltic pump 76 (Barnant 24 VDC model D-3138-0009). An outlet line 80 from pump 76 leads to discharge tube 60 of dispensing head 58 for supplying cleaning liquid to head 58. A cleaner control 82 (
Because pump 76 is preferably a peristaltic pump, it supplies liquid to dispensing head 58 in constant volume slugs or squirts that enable the cleaning liquid to be very precisely and accurately metered onto the lane surface. Furthermore, it permits the supply of liquid to dispensing head 58 to be essentially instantaneously stopped and started, which, in conjunction with the control valve, affords precise, board-by-board control over the pattern of cleaning liquid applied to the lane surface by dispensing head 58.
Cleaning system 12 additionally includes a wiping assembly 88 immediately behind cleaning liquid dispensing head 58. Assembly 88 includes a web 90 of soft material such as duster cloth looped around a lower compressible back-up member 92 in the nature of a roller that extends across the full width of the machine. Cloth 90 is stored on a roll 94 and is paid out at intervals selected by the operator and taken up by a takeup roll 96. Wiping assembly 88 is similar in principle to the corresponding wiping assembly disclosed in U.S. Pat. No. 6,615,434, which patent is hereby incorporated by reference into the present specification. A duster unwind motor 95 (
A further component of cleaning system 12 comprises a vacuum pickup head 98 located behind wiping assembly 88. Vacuum pickup head 98 extends essentially the full width of machine 10 and includes a squeegee assembly 99 comprising a pair of resilient, squeegee-type blades 100 and 102 that assist in picking up the thin film of cleaning liquid left on the lane surface after the wiping assembly 88 has acted upon the liquid. Lift linkage 101 is connected to a squeegee lift motor 103 (
An electrical power supply system 120 for machine 10 is illustrated in
Operation
The operation of machine 10 is controlled by way of the programmed operating controller 110. Although machine 10 may be selectively operated through appropriate switches to clean the lanes only, or to oil the lanes only, in the following example machine 10 is operated to both clean and oil the lanes.
Initially machine 10 is placed on the approach of a bowling lane just behind the foul line. The operator presses start switch 116 one time, which initiates the sequence of maintenance operations. A variety of lane oil patterns can be selected byway of the key pad and display 130 (
The machine 10 is then pushed onto the lane and properly seated. The start switch 116 is pressed a second time and the dispensing heads motor 42 will start up and cause both heads 28 and 58 to begin moving. Oil dispensing head 28 moves from left to right, as the lane is viewed from the foul line looking toward the pin deck, while cleaner head 58 moves from right to left.
Cleaner pump motor 76 is energized at the same time as heads motor 42. Thus, as cleaner head 58 starts to move, it also starts to apply cleaner instantly to the lane and does not stop until the last programmed “squirt distance” down the lane has been reached. When the oil head 28 reaches the right board edge proximity switch 46, the moving heads 28, 58 will reverse their directions and oil head 28 will begin to apply the first stream of oil.
The oiling head 28 is now moving in a right-to-left direction, while cleaner head 58 is moving in a left-to-right direction. When oiling head 28 reaches the left board edge proximity switch 44, the heads motor 42 will reverse, at which time buffer motor 31 starts up and drive motor 22 is energized to start the machine moving down the lane. Vacuum motor 107 has remained in an “off” condition during this initial startup phase, but after machine 10 has traveled about two feet down the lane, vacuum motor 107 turns on. It is also to be noted that after start switch 116 has been pressed a second time, machine 10 will start a clock (not shown) to record the total amount of run time on the display 130. The total amount of time the three-way valve 35 dispenses oil for each lane is also shown in the display 130.
As machine 10 travels forward down the lane, the oiling and cleaning heads 28, 58 continue to operate, applying oil and cleaner. The board-counting sensor 52 monitors the positions of the moving heads 28, 58. If the motion is interrupted, an error message will be displayed.
During movement of the machine 10 down the lane, the lane distance sensor 57 counts inches traveled and monitors movement of the machine. If travel is interrupted, an error message will be displayed. The speed of machine 10 is also being monitored by the speed tack 25 and is displayed continuously. As the machine continues to move forward, speeds will change (through a drive motor speed control (KB model KBBC-24)) and oil and cleaner will continue to be dispensed to the lane as programmed. As the machine approaches the applied oil distance in accordance with the selected program, the oil pump motor 33 turns off but the buffer motor 31 stays on so buffer 26 continues to buff oil onto the lane.
When the oil distance is reached, buffer 26 stops and buffer lift motor 29 is energized to raise buffer 26 off the lane until buffer up limit switch 23 is operated. If the contacts for raising buffer 26 do not close, there will be an error message displayed. If the up switch 23 sticks closed when it should be open, a “brush down” error message will be displayed.
Additionally, when the oil distance has been reached machine 10 will shift into high speed and continue to travel toward the pin deck. As the machine approaches the pin deck, the programmed distance for the application of cleaner will be reached, causing cleaner pump motor 76 to be turned off and heads motor 42 to be deenergized so as to stop movement of dispensing heads 28, 58. At the same time the machine will down-shift to low speed to reduce its momentum into the pin deck.
When machine 10 enters the pin deck, the duster windup motor 97 will turn on and start to windup the cloth to raise the backup member 92. The normally open contacts of the duster up switch 134 will close to turn off the duster windup motor 97. If the contacts do not close, there will be a “duster did not wind up” error message displayed.
Machine 10 then continues the rest of its travel with squeegee assembly 99 engaging the lane in the manner illustrated in
Drive motor 50 is then driven in reverse for a short duration, causing machine 10 to move in the reverse direction toward the foul line and stop after moving four inches. The squeegee assembly 99 and suction head 98 are then lowered to re-engage the blades 100, 102 with the pin deck 138. Drive motor 50 is then driven in forward to advance the machine forwardly four inches, whereupon it stops to once again cause squeegee assembly 99 to overhang the edge 136 of pin deck 138. Blades 100, 102 snap forwardly to flip off any excess moisture. The squeegee assembly 99 then lifts.
Drive motor 50 now reverses to cause machine 10 to move in the reverse direction toward the foul line at high speed. At the same time vacuum motor 107 is turned off and cleaner pump motor 76 is run in reverse for one second to help reduce the possibility of dripping cleaner out of tip 62 of the cleaner head 58.
As machine 10 travels in reverse, the lane distance sensor 57 counts inches traveled and continuously monitors movement of the machine. If travel is interrupted, an error message will be displayed. As the machine reaches the oil distance, buffer 26 begins to lower and stops in its down position when the normally open contacts of the buffer down switch 21 close. If the contacts do not close, an error message is displayed. If the down switch 21 sticks closed when it should be open, a “brush up” error message will be displayed.
Buffer motor 31 is then energized, causing buffer 26 to begin buffing as the machine continues its travel in reverse. The oil head 28 starts dispensing oil again when the machine reaches the first “reverse load” distance on the lane according to the selected oil pattern program. The machine progressively down-shifts to lower speeds as it continues toward the foul line. When the last reverse load of oil has been applied, the oil head 28 stops and parks. Once the machine reaches the foul line, drive motor 50 is deactivated, causing the machine to stop and await operator attention to move it to the approach of the next lane.
If at any time during its travel up and down the lane machine 10 stops and displays a “LOW BATTERY OR E-STOP PRESSED” warning, this means either battery voltage has dropped below seventeen volts or the emergency stop switch 117 (
The constant voltage regulator 128 plays a significant role in the machine 10 if it is battery-powered (there is no requirement that the machine functions as above described be incorporated into battery-powered machines. However, significant ease-of-use benefits are achieved when they are.) Because the constant voltage regulator 128 is capable of maintaining a constant voltage of twenty-four volts to the key functions of the machine even though the batteries may run down to twenty or twenty-one volts, there is no gradual loss of performance. The machine shows no signs of losing battery power until the voltage drops so low (such as seventeen volts) that the controller 110 simply shuts down and the machine stops and displays the warning. The dispensing head motor 42, oil pump motor 33, buffer motor 31, three-way valve 35, and drive motor 22 all operate from the constant voltage regulator 128.
The inventor(s) hereby state(s) his/their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of his/their invention as pertains to any apparatus not materially departing from but outside the literal scope of the invention as set out in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2763019 | Huber | Sep 1956 | A |
3042950 | Ludwig, Jr. et al. | Jul 1962 | A |
3083390 | Wroten | Apr 1963 | A |
3099851 | Unterbrink | Aug 1963 | A |
3105987 | Riedi | Oct 1963 | A |
3116504 | Unterbrink et al. | Jan 1964 | A |
3150395 | Lucky | Sep 1964 | A |
3150396 | Unterbrink | Sep 1964 | A |
3150407 | Mitchell | Sep 1964 | A |
3216036 | Rockwood et al. | Nov 1965 | A |
3216037 | Stevens et al. | Nov 1965 | A |
3217347 | Domecki | Nov 1965 | A |
3319600 | Regan | May 1967 | A |
3321331 | McNeely | May 1967 | A |
3340559 | Klose | Sep 1967 | A |
3418672 | Regan | Dec 1968 | A |
3604037 | Varner | Sep 1971 | A |
3729769 | Sharpless | May 1973 | A |
3785001 | Niemi et al. | Jan 1974 | A |
3787916 | Akagi et al. | Jan 1974 | A |
3868738 | Horst et al. | Mar 1975 | A |
4134361 | Benjamin | Jan 1979 | A |
4246674 | Ingermann et al. | Jan 1981 | A |
4463469 | Green | Aug 1984 | A |
4510642 | Ingermann et al. | Apr 1985 | A |
D281362 | Ingermann et al. | Nov 1985 | S |
4562610 | Davis et al. | Jan 1986 | A |
4727615 | Kubo | Mar 1988 | A |
4738000 | Kubo | Apr 1988 | A |
4856138 | Ingermann et al. | Aug 1989 | A |
4920604 | Ingermann et al. | May 1990 | A |
4937911 | Picchietti et al. | Jul 1990 | A |
4959884 | Ingermann et al. | Oct 1990 | A |
4962565 | Ingermann et al. | Oct 1990 | A |
4980815 | Davis | Dec 1990 | A |
5063633 | Ingermann et al. | Nov 1991 | A |
5133280 | Kubo | Jul 1992 | A |
5161277 | Ingermann et al. | Nov 1992 | A |
5181290 | Davis et al. | Jan 1993 | A |
5185901 | Davis et al. | Feb 1993 | A |
5194077 | Bargiel et al. | Mar 1993 | A |
5243728 | Smith et al. | Sep 1993 | A |
5274871 | Smith et al. | Jan 1994 | A |
5455977 | Caffrey et al. | Oct 1995 | A |
5517709 | Caffrey et al. | May 1996 | A |
5629049 | Caffrey et al. | May 1997 | A |
5641538 | Caffrey et al. | Jun 1997 | A |
5650012 | Davis | Jul 1997 | A |
5679162 | Caffrey et al. | Oct 1997 | A |
5729855 | Davis | Mar 1998 | A |
5753043 | Davis | May 1998 | A |
5761762 | Kubo | Jun 1998 | A |
5935333 | Davis | Aug 1999 | A |
6023813 | Thatcher et al. | Feb 2000 | A |
6090203 | Gebhardt et al. | Jul 2000 | A |
6383290 | Davis et al. | May 2002 | B1 |
6615434 | Davis et al. | Sep 2003 | B1 |
6685778 | Davis et al. | Feb 2004 | B2 |
6790282 | Davis et al. | Sep 2004 | B2 |
6923863 | Baker et al. | Aug 2005 | B1 |
6939404 | Davis et al. | Sep 2005 | B1 |
7014714 | Buckley et al. | Mar 2006 | B2 |
7056384 | Davis et al. | Jun 2006 | B2 |
7060137 | Davis et al. | Jun 2006 | B2 |
D530463 | Ambasz et al. | Oct 2006 | S |
D531766 | Ambasz et al. | Nov 2006 | S |
7531041 | Davis | May 2009 | B2 |
7578020 | Jaworski et al. | Aug 2009 | B2 |
7611583 | Buckley et al. | Nov 2009 | B2 |
7784139 | Sawalski et al. | Aug 2010 | B2 |
7784147 | Burkholder et al. | Aug 2010 | B2 |
20030140848 | Davis et al. | Jul 2003 | A1 |
20040010873 | Davis et al. | Jan 2004 | A1 |
20050081782 | Buckley et al. | Apr 2005 | A1 |
20050196544 | Davis et al. | Sep 2005 | A1 |
20050229340 | Sawalski et al. | Oct 2005 | A1 |
20050255248 | Baker et al. | Nov 2005 | A1 |
20060107894 | Buckley et al. | May 2006 | A1 |
20060130754 | Sias et al. | Jun 2006 | A1 |
20060278161 | Burkholder et al. | Dec 2006 | A1 |
20060288519 | Jaworski et al. | Dec 2006 | A1 |
20070012247 | Davis | Jan 2007 | A1 |
20070289086 | Davis et al. | Dec 2007 | A1 |
20080109983 | Davis | May 2008 | A1 |
20090019652 | Goldberg et al. | Jan 2009 | A1 |
20100006028 | Buckley et al. | Jan 2010 | A1 |
20110162156 | Burkholder et al. | Jul 2011 | A1 |
20110183065 | Schlegel et al. | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20070289086 A1 | Dec 2007 | US |