Claims
- 1. A method of forming and assembling a clamping device for gripping a workpiece or workpieces between clamp pads disposed at the distal ends of a pair of pivotally-retained arms, these steps including:
- (a) pivotally retaining a pair of C-shaped arm assemblies at one end and at the other end of each arm assembly retaining a pressure clamp pad, with each arm assembly of two substantially alike plate-like members of metal, and arranging and maintaining said members in spaced array by spacer and securing means, and at the pivotally-retained end disposing these arms in overlaid condition, and in each plate forming a pivot aperture, with the formed apertures disposed for axial alignment;
- (b) positioning and retaining a pivot cam at one end of the overlapped arm members and forming on this pivot cam two eccentric cam surfaces sized to be engaged with each of the apertured surfaces of the two plate-like members of only one of the pair of arms and forming the intermediate portion of the pivot cam with an enlarged portion sized to be slideably retained between the smallest distance between plate-like arm members when in overlaid condition;
- (c) forming a pair of trunnion blocks with pivot portions and mounting one trunnion block so as to be pivotally carried between said plate-like members in each arm, and positioning each trunnion block intermediate the extent of the C-shaped arm assemblies, with each block disposed to be a precisely equal distance from the axis of the mounted pivot cam, on trunnion block having threads formed therein and the other trunnion block having a smooth bore therethrough;
- (d) mounting in the trunnion blocks a threaded cap screw having a head member adapted for rotative manipulation and having a shank portion with a threaded end portion, with these threads compatible with those threads in the threaded trunnion block, and providing limiting means for longitudinal retention of the cap screw in that trunnion block having a smooth bore and inserting the threads on the cap screw in the threads formed in the threaded trunnion block, said cap screw providing an adjusting means and a force member that brings the pressure clamp pads toward and away from each other;
- (e) mounting a first rivet near the pivot cam, said rivet having an enlarged midportion of a determined size and length so as to establish and maintain the plate-like members of a first arm in spaced array, and securing this first rivet at a precise location and distance from the axis of the pivot cam;
- (f) mounting a second rivet near the pivot cam, this second rivet also having an enlarged midportion of a size like that provided by the first rivet, this second rivet having a length so as to establish and maintain the plate-like members of this other clamp arm in spaced array, and securing this second rivet at a precise location and distance from the axis of the pivot cam, the first and second rivets so positioned that their axes establish a theoretical line therebetween so as to be always parallel to a theoretical line through the pivot axes of the trunnion blocks, said first and second rivets and their precise location at a like distance from the axis of the pivot cam;
- (g) mounting another pair of rivets, each having enlarged midportions, one rivet positioned in said first arm assembly adjacent a trunnion block, and another similar rivet positioned in the other arm assembly and also adjacent the trunnion block in said other arm assembly, and
- (h) forming a hole and fixedly inserting in said hole a stop pin in the enlarged portion of the pivot cam, this stop pin of sufficient length so that said stop pin as it is swung in an arc is limited by said first or second rivet, this stop pin being secured so that when the stop pin engages one of the first or second rivets, the cam surfaces formed on the pivot cam engage the apertures in that arm assembly disposed to be actuated by the eccentric cam, the maximum throw of the arm assembly moving the pressure clamp pads closer together and, when the stop pin is moved to the other limit, the clamp pads are moved away from each other.
- 2. A method of forming and assembling a clamping device as in claim 1 which includes the further step of forming each platelike member with a substantially identical configuration and apertures and with an upper end providing at the overlaid end an offset, which offset extent is about one-half the thickness of the material used in the making of each plate-like member, and also forming the pivot cam with a through hexagonal aperture and forming the smaller diameter end portions of the pivot cam so as to be rotatable in like diameter apertures in the upper extent of each plate-like member.
- 3. A method of forming and assembling a clamping device as in claim 2 which further includes the step of providing on the trunnion blocks integral pivot pin portions and adjacent these pivot pin portions positioning a rivet between said trunnion block and a pivoted clamp pad.
- 4. A method of forming and assembling a clamping device as in claim 3 which further includes forming each of the clamp pads of hardened steel with rounded workpiece-gripping pad portions and reduced diameter shank portions sized to be retained between the fixed plate-like members, and forming the reduced diameter portions with a transverse hole sized to rotatably retain the central portion of a rivet whose ends are mounted in and pass through holes formed in the end portions of the plate-like arm member portions.
- 5. A method of forming and assembling a clamping device as in claim 4 in which the limiting means for longitudinal retention of the threaded cap screw further includes providing a screw having a head that is less in diameter than the inner distance of the plate-like members that form the C-shaped arm assemblies, and forming said head with a shoulder terminating with a shank portion sized to be rotatably retained in the smooth bore formed in the trunnion block, the shoulder providing a limiting longitudinal movement control against the outside face of said trunnion, and removably mounting a retainer in a groove formed in the shank of the cap screw, this retainer, when mounted in the groove in the shank, engaging the inner face of the trunnion block.
- 6. A method of forming and assembling a clamping device as in claim 5 which also includes forming a groove in the threaded cap screw near the outer end of the threaded portion and mounting in this groove a retainer, this retainer providing an outer stop to movement of the threaded trunnion block outwardly along the thread portion of the cap screw.
- 7. A method of forming and assembling a clamping device as inclaim 6 which also includes the step of forming the two eccentric cam surfaces on the pivot cam adjacent the intermediate enlarged portion, and with said cam surfaces of a width substantially the thicknesses of the metal providing the platelike members, and adjacent these eccentric cam portions the pivot cam has outer diameters rotatable in apertures formed in said plate-like members.
CROSS-REFERENCE TO RELATED PATENTS
This is a divisional application drawn to the method of making a clamping device, as shown in granted U.S. patent application Ser. No. 783,655, filed Oct. 3, 1985 now U.S. Pat. No. 4,619,447 issued Oct. 28, 1986. Also, to the extent applicable, reference is made to my U.S. Pat. No. 3,736,629, as issued June 5, 1983. This improved clamping device is much like the device shown in this patent, but changes in concept of construction and actuation have made the improved clamp of this invention simple, rugged, and inexpensive to produce in place of clamp of U.S. Pat. No. 3,736,629 that is complex, fragile, and too expensive to produce.
US Referenced Citations (6)
Divisions (1)
|
Number |
Date |
Country |
Parent |
783655 |
Oct 1985 |
|