1. Field of the Invention
This invention relates to a method of making a double-sided embossed non-woven fabric, more particularly to a method involving suctioning a stack of semi-molten fibers on a screen assembly to form a double-sided embossed non-woven fabric.
2. Description of the Related Art
U.S. Pat. No. 5,555,801 discloses a method of making a double-sided embossed fibrous web. The method is capable of overcoming a tendency of undesirably breaking or rupturing the fibrous web during embossing by using conventional embossing rollers. The method of the patent includes passing a fibrous web through a nip between a pressure roller and an embossing roller. The pressure roller has a smooth and hard surface so as to create the effect of a double sided three dimensional embossing on the fibrous web. However, the method is disadvantageous in that the material of the embossed regions of the embossed fibrous web that are brought into contact with the pressure and embossing rollers is undesirably hardened and shrunk due to melting, pressurizing and cooling of the material in the embossing process. In addition, the thickness of the embossed regions tends to become thinner as compared to that of the non-embossed regions of the embossed fibrous web.
Therefore, the object of the present invention is to provide a method of making a double-sided embossed non-woven fabric that can overcome the aforementioned drawbacks associated with the prior art.
According to the present invention, there is provided a method of making a double-sided embossed non-woven fabric. The method comprises: forming a stack of semi-molten fibers on a screen assembly on a suctioning device, the screen assembly including a first layer structure that has a plurality of suction holes arranged into a first pattern, and a second layer structure that is disposed on the first layer structure and that has a plurality of elements arranged into a second pattern; and embossing the stack of the semi-molten fibers on the screen assembly by suctioning the stack of the semi-molten fibers using the suctioning device such that the stack of the semi-molten fibers is drawn into the holes to wrap the elements, thereby forming the stack of the semi-molten fibers into a non-woven fabric with a raised pattern corresponding to the second pattern of the screen assembly and a recess pattern corresponding to the first pattern of the screen assembly.
In drawings which illustrate embodiments of the invention,
Before the present invention is described in greater detail with reference to the accompanying preferred embodiments, it should be noted herein that like elements are denoted by the same reference numerals throughout the disclosure.
The method includes the steps of: directly stacking semi-molten fibers 50 (the term “semi-molten” as used herein represents a state in which liquid and solid phases coexists) on a screen assembly 4 on a suctioning device 6 so as to form an air permeable stack 5 of the semi-molten fibers 50 on the screen assembly 4, the screen assembly 4 including a first layer structure 41 that has a screen wall body 410 and that has a plurality of suction holes 411 formed in the screen wall body 410 and arranged into a first pattern, and a second layer structure 42 that is disposed on the screen wall body 410 of the first layer structure 41 and that has a plurality of elements 421 arranged into a second pattern; and embossing the stack 5 of the semi-molten fibers 50 on the screen assembly 4 by suctioning the stack 5 of the semi-molten fibers 50 using the suctioning device 6 such that the stack 5 of the semi-molten fibers 50 is drawn into the holes 411 to wrap the elements 421 and an area of the screen wall body 410 which is not covered by the second layer structure 42, thereby forming the stack 5 of the semi-molten fibers 50 into a non-woven fabric 7 having a base portion 70 covering the area of the screen wall body 410, a first level 71 of recessed portions 711 extending downwardly from the base portion 70 and having a recess pattern corresponding to the first pattern, and a second level 72 of protuberant portions 721 extending upwardly from the base portion 70 and having a raised pattern corresponding to the second pattern. It is noted that fiber-to-fiber bonding among the semi-molten fibers 50 of the stack 5 occurs during the embossing step.
In this embodiment, the stack 5 of the semi-molten fibers 50 is formed by melting raw materials 21, such as resin pellets, wood fibers and plastic fibers, using an extruder 2 to form a melt, followed by feeding the melt through a fiber-forming device 22 to form the semi-molten fibers 50 and subsequently and directly discharging the semi-molten fibers 50 from the fiber-forming device 22 onto the screen assembly 4.
In this embodiment, the fiber-forming device 22 is a spinnerette which is used for forming spunbound fibers. Alternatively, the fiber-forming device 22 can be a melt-blowing die which is used for forming meltblown fibers.
Preferably, the method of this invention further includes a step of heating the semi-molten fibers 50 using a heater 23 during discharging of the semi-molten fibers 50 from the fiber-forming device 22 onto the screen assembly 4 so as to control and maintain a desired melt viscosity of the semi-molten fibers 50 and to facilitate formation of the non-woven fabric 7 in the subsequent embossing process.
In this embodiment, the elements 421 are in the form of elongate ribs that are formed into a net body 420 (see
In this embodiment, the suctioning device 6 is a conveyor-type suction device and includes a suction box 61 surrounded by the screen assembly 4. The screen wall body 410 serves as a conveyor belt trained on and driven by a pair of driving wheels 62.
The screen assembly 4 can be modified into one having more layer structures (not shown) or having a structure shown in
Alternatively, the suctioning device 6 can be a drum-type suction device (see
In a modified embodiment, formation of the stack 5 of the semi-molten fibers 50 on the screen assembly 4 can be conducted by directly stacking non-molten fibers onto the screen assembly 4 to form a stack of the non-molten fibers, followed by passing the stack of the non-molten fibers through a heater or an oven (not shown) so as to form the non-molten fibers into the semi-molten fibers 50.
By stacking the semi-molten fibers 50 on the screen assembly 4, followed by suctioning the stack 5 of the semi-molten fibers 50 in a manner to draw the stack 5 into the suction holes 411 according to the method of this invention, the aforesaid drawbacks associated with the prior art can be alleviated. In addition, the heating of the semi-molten fibers 50 during discharging thereof onto the screen assembly 4 to control the melt viscosity of the stack 5 can facilitate formation of the double-sided embossed non-woven fabric 7.
With the invention thus explained, it is apparent that various modifications and variations can be made without departing from the spirit of the present invention. It is therefore intended that the invention be limited only as recited in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3322617 | Osborne | May 1967 | A |
4741941 | Englebert et al. | May 1988 | A |
5143774 | Cancio et al. | Sep 1992 | A |
5399174 | Yeo et al. | Mar 1995 | A |
5555801 | Kroyer | Sep 1996 | A |
5575874 | Griesbach, III et al. | Nov 1996 | A |
7530150 | Brennan et al. | May 2009 | B2 |
20030201579 | Gordon et al. | Oct 2003 | A1 |
20120066855 | Schmidt et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1273288 | Sep 2006 | CN |
39 20 066 | Jan 1991 | DE |
41 23 122 | Jan 1993 | DE |
10 2005 055 607 | Mar 2007 | DE |
1 217 107 | Jun 2002 | EP |
1 228 798 | Aug 2002 | EP |
1 430 861 | Jun 2004 | EP |
1 455 050 | Sep 2004 | EP |
1 455 080 | Sep 2004 | EP |
1063672 | Mar 1967 | GB |
200806456 | Feb 2008 | TW |
WO 9216361 | Oct 1992 | WO |
WO 9944809 | Sep 1999 | WO |
WO 2005013873 | Feb 2005 | WO |
WO 2007053204 | May 2007 | WO |
Entry |
---|
Hutten, “Process for Nonwoven Filter Media,” Handbook of Nonwoven Filter Media, 2007, pp. 209-219. |
Number | Date | Country | |
---|---|---|---|
20130285294 A1 | Oct 2013 | US |