This invention relates, in general, to methods of making laminated trim components and, in particular, to molding methods of making laminated trim components at a molding station.
Compression molding has long been used to manufacture plastic parts or components. While widely used to manufacture thermoset plastic parts, compression molding is also used to manufacture thermoplastic parts. The raw materials for compression molding are typically placed in an open, heated, mold cavity. The mold is then closed and pressure is applied to force the materials to fill up the entire cavity. A hydraulic ram or punch is often utilized to produce sufficient force during the molding process. The heat and pressure are maintained until the plastic materials are cured.
Two types of plastic compounds frequently used in compression molding are Bulk Molding Compound (BMC) and Sheet Molding Compound (SMC).
In general, compression molding provides good surface finish and can be applied to composite thermoplastics with woven fabrics, randomly oriented fiber mat or chopped strand. Compression molding is thought to be largely limited to flat or moderately curved parts with no undercuts.
Vacuum during compression molding of thermoset parts has been used to minimize surface defects of the type known as porosity. Porosity is caused by air that is trapped between the molding compound (i.e. raw materials) and the surface of the mold cavity. The mold chamber or cavity is sealed from the surrounding atmosphere and then the chamber is evacuated before pressure is applied to the raw materials.
Many molded parts are used in the interior of vehicles. The substrate of the part is often made of plastic or preferably of a fibrous molding material.
Natural fiber composite panels utilized as a substrate have very important characteristics because of their light weight and high environmental sustainability.
As described in U.S. patent publication Nos. 2014/0342119 and 2015/0027622, the substrate of the molded part may be realized in a laminar fashion and has an essentially plane contour or a three-dimensional contour with convex and concave regions defined by the respective design, as well as, if applicable, one or more openings and recesses for trim strips and control elements such as pushbuttons, switches and rotary knobs for power windows and exterior rearview mirrors. In order to fix the molded parts in the passenger compartment or on the vehicle door and to mount handles, control elements and storage trays on the molded part, the molded part is also equipped with mounting parts that are also referred to as retainers.
The substrate typically consists of plastics or composite materials that contain plastics such as acrylonitrile-butadiene-styrene (ABS) or polypropylene (PP). Fibrous molding materials on the basis of textile fabrics of hemp, sisal, flax, kenaf and/or wood components such as wood fibers, wood dust, wood chips or paper bound with duroplastic binders are likewise used as material for the substrate. Foamed materials of polyurethane or epoxy resins that, if applicable, are reinforced with natural fibers or glass fibers may also be considered as material for the substrate.
As described in U.S. patent publication No. 2015/0027622, an interior covering part is produced which comprises a substrate or a carrier part component and a decorative film or a decorative layer. For producing the interior covering part, a substrate of fiber molding material, in particular a natural fiber molding material, and a decorative film or a decorative layer are formed in two steps, wherein these are pressed together in a first step of the two steps and in particular hot-pressed.
As starting material or semi-finished product for a substrate, which is used for producing the carrier component, a fiber molding material in the form of a plastic mat with fiber components and especially a polypropylene (PP)-bound fiber mat with natural fibers and/or plastic fibers, a polypropylene (PP)-bound fiber mat with ceramic, carbon or glass fibers is used especially. This (substrate) can be plasticisable in particular through the supply of heat. When using a polypropylene (PP)-bound fiber mat as substrate, this preferentially comprises a material component of a fiber material, which is preferentially formed of natural fibers or glass fibers as well as plastic or carbon fibers and in particular with polypropylene (PP)-fibers (binding function). Alternatively or additionally nature fiber PP (NFPP) or glass fiber PP can be used as fiber mat. As natural fibers, fibers of wood, kenaf, hemp, jute, flax, china grass, rattan, soya, ocra, banana, bamboo, coconut, coir, cotton, curaua, abaca, pine, pineapple, raffia palm and/or sisal can be used. Synthetic fibers can also be used. Chips of wood can also be used as starting material for the carrier material. As synthetic fibers, carbon fibers, fibers of polyester, acrylate, aramide, Twaron, Kevlar, Technora, vinylon, Cylon and/or polypropylene can be used. A combination of a plurality of types of the mentioned natural fibers or other fibers can also be used in the substrate. As part of the present invention, the term “polymers” comprises both homopolymers as well as copolymers of the mentioned polymer types
U.S. patent publication No. 2013/0052412 discloses a vehicular trim component made by concurrent compression forming and injection molding.
The side of the respective molded part or substrate that faces the vehicle interior is usually referred to as the visible side. In order to provide the visible side with an attractive appearance, the substrate is equipped with one or more decorative elements of a textile material or a plastic film. The plastic films used for this purpose are usually colored and have a relief-like embossed surface. If applicable, the decorative elements comprise a cushioning layer of a foamed plastic that faces the substrate and provides the molded part with pleasantly soft haptics. The decorative elements are usually laminated onto the substrate or bonded thereto during the manufacture of the substrate by means of thermoplastic back-injection molding.
On its edge and/or on an installation side that lies opposite of the visible side, the substrate is advantageously equipped with projections, depressions and bores. The projections, depressions and bores serve for non-positively connecting the molded part to sections of the car body such as a car door or the roof of a passenger compartment by means of retaining elements such as clips, pins and screws.
The respective mounting parts or retainers are made of plastic or a metallic material such as sheet steel and mechanically connected to the substrate by means of retaining elements such as pins, screws or clips or by means of interlacing, clawing or clamping. Retainers advantageously comprise claws and/or clips as integral components. The claws and clips are respectively provided for engaging into recesses of the substrate or for being bent around the edge of the substrate, as well as for being fixed by means of clamping, during the installation of the retainers.
Different methods that typically comprise two or more production steps are known for the manufacture of molded parts for the interior trim of vehicles.
According to one known method, a substrate is initially produced of a fibrous molding material by means of hot-pressing. Subsequently, retainers are attached to the installation side of the substrate, e.g., by means of friction welding or bonding. In a third step, one or more decorative elements are laminated onto the visible side of the substrate. In a simplified two-step variation of the method, retainers of a metallic material with integrated retaining elements, particularly with claws, are compressed together with the fibrous molding material, wherein the retaining elements penetrate into the fibrous molding material and non-positively anchor the retainers on the substrate after the fibrous molding material has cured.
According to another known method, a substrate is manufactured of a thermoplastic by means of injection molding, particularly by means of back-injection molding. One or more decorative elements are preferably arranged in a back-injection mold and back-injected with the thermally plasticized plastic. After the molten plastic has cooled and solidified, the decorative elements are non-positively bonded to the substrate. In another step, mounting parts or retainers are respectively mounted on the installation side of the substrate.
One example of a surface texture is disclosed in WO 2010/080967 A1, according to which an interior trim panel of fibrous molding material is equipped with a smooth, transparent, liquid-impermeable, scratch-resistant and UV-resistant coating of a material, preferably a thermoplastic polymer, with a melting point in the range of 60 to 170.degree. C. The coating is applied by means of hot-pressing, wherein the material of the coating partially sinks into the fibrous molding material such that the coating is non-positively connected to the fibrous molding material.
As described in U.S. Pat. No. 5,462,421 and U.S. patent publication No. 2004/0150127, current vehicle inner door panels comprise laminates of various types. In some inner door panels, a structural backing material is covered by an embossed covering, which is often vinyl. These panels are formed by bonding the covering to the backing in a mold which embosses the covering. Sometimes a filler material, such as cellulose or a foam sheet, is bonded between the backing and covering. After bonding, the periphery of these panels must be trimmed before vehicle installation. In the past, this trimming has been usually accomplished in a separate trim fixture.
The industry has developed a mold apparatus wherein the laminate is formed in a mold that also includes external trimming knives that provide a finished panel ready for vehicle installation. Such apparatus is shown in U.S. Pat. No. 4,692,108 to Cesano. All of the materials used in forming the Cesano type of laminated panel are preformed.
Another type of inner door panel in use is a laminate comprising a structural substrate of reinforced foam covered by a vinyl covering. This type of laminate is formed by placing the vinyl and reinforcing material in a mold and thereafter injecting foamable materials, which expand, set up and cure in the mold. After curing, this unfinished laminate requires further processing before it is ready for vehicle installation. It is removed from the mold and transferred to a trim fixture, where it is finally trimmed by accurately cutting the periphery with a water jet or the like.
Some problems attend this post-formation trimming operation. For example, the unfinished panel must be accurately positioned in the fixture. If it is not, the final panel will be out of dimension and unusable. Such a panel must be scrapped. Also, this post-formation trimming operation requires additional handling, equipment and labor.
In both U.S. patent publications U.S. Pat. No. 5,462,421 and 2004/0150127 trim blades are carried by a mold member. In 2004/0150127 a mechanism is provided to perform perimeter edge folding and perimeter trimming of a cladding layer in a single operation.
U.S. patent publications U.S. Pat. No. 8,833,829 and 2012/0091698 disclose polymer skin/foam bilaminate sheets. These all-olefin sheets are low cost, low weight, recyclable sheets which can be formed into vehicle interior components.
The term “facing material” refers to a material used to conceal and/or protect structural and/or functional elements from an observer. Common examples of facing materials include upholstery, carpeting, and wall coverings (including stationary and/or movable wall coverings and cubicle wall coverings). Facing materials typically provide a degree of aesthetic appearance and/or feel, but they may also provide a degree of physical protection to the elements that they conceal. In some applications, it is desirable that the facing material provide properties such as, for example, aesthetic appeal (for example, visual appearance and/or feel) and abrasion resistance. Facing materials are widely used in motor vehicle construction.
In the automotive industry, it is common practice to refer to various surfaces as being A-, B-, or C-surfaces. As used herein, the term “A-surface” refers to an outwardly-facing surface for display in the interior of a motor vehicle. This surface is a very high visibility surface of the vehicle that is most important to the observer or that is most obvious to the direct line of vision. With respect to motor vehicle interiors, examples include dashboards, door panels, instrument panels, steering wheels, head rests, upper seat portions, headliners, load floors and pillar coverings.
As described in U.S. patent publication 2014/0225296, one problem associated with one method of making a panel of sandwich-type composite structure is that during the cold-pressing in a compression mold one or both of the skins does not fully contact or achieve abutting engagement with its respective mold half or die during the molding process. Consequently, the resulting compression-molded, composite component fails to achieve the desired component shape, as defined by the opposing surfaces of upper and lower dies.
The following U.S. patent documents are related to at least one embodiment of the present invention: U.S. Pat. Nos. 5,324,384; 5,352,397; 5,370,521; 5,502,930; 5,506,029; 5,718,791; 5,746,870; 5,915,445; 6,050,630; 6,102,464; 6,435,577; 6,537,413; 6,655,299; 6,682,675; 6,682,676; 6,695,998; 6,748,876; 6,790,026; 6,823,803; 6,843,525; 6,890,023; 6,981,863; 7,090,274; 7,419,713; 7,909,379; 7,919,031; 8,117,972; 2003/0194542; 2005/0189674; 2006/0255611; 2008/0185866; 2011/0281076; 2011/0315310; 2013/0260112; and 2013/0273191.
An object of at least one embodiment of the present invention is to provide a simplified method of making a laminated trim component at a molding station which method saves cycle time and labor costs.
In carrying out the above object and other objects of at least one embodiment of the present invention, a method of making a laminated trim component at a molding station is provided. The method includes providing a natural fiber, plastic composite sheet having inner and outer surfaces and heating the composite sheet to a first softening temperature. The composite sheet is stretchable when heated to the first softening temperature. A laminated sheet overlying the outer surface of the composite sheet is provided. The laminated sheet has a support layer with inner and outer surfaces and a plastic cushioning layer laminated to the support layer at the inner surface of the support layer. The laminated sheet is heated to a second softening temperature. The laminated sheet is stretchable when heated to the second softening temperature. The composite sheet is pressed against the laminated sheet after the steps of providing and the steps of heating to bond the plastic cushioning layer to the plastic composite sheet at the molding station. The step of pressing compresses a portion of the laminated sheet spaced inwardly from an outer periphery of the laminated sheet to locally compact and thin the cushioning layer at the portion to form a compressed portion of the cushioning layer. Interior portions of the sheets stretch during the step of pressing while remaining intact. A plastic compatible with the plastic of the composite sheet is molded around the composite sheet to form at least one component at the inner surface of the composite sheet.
The method may further include applying a vacuum at the outer surface of the support layer to pull the outer surface of the support layer into contact with a forming surface while the support layer is still soft to improve appearance of the outer surface and improve component shape.
The cushioning support layer may be a thermoplastic foam layer compatible with the plastic of the composite sheet.
The laminated plastic sheet may be a polymer bi-laminate sheet.
The support layer may be a thermoplastic outer skin layer.
The thermoplastic outer skin layer may be a TPO outer skin layer.
The composite sheet may include a thermoplastic resin.
The thermoplastic resin of the composite sheet may be polypropylene.
A plurality of plastic edge components may be formed about a periphery of the composite sheet during the step of molding wherein the method may further include folding the laminated sheet at the compressed portion of the cushioning layer and bonding outer peripheral portions of the folded laminated sheet to the plastic edge components.
Further in carrying out the above object and other objects of at least one embodiment of the invention, a method of making a laminated, vehicle trim component at a molding station is provided. The method includes providing a natural fiber, plastic composite sheet having inner and outer surfaces and heating the composite sheet to a first softening temperature. The composite sheet is stretchable when heated to the first softening temperature. A laminated sheet overlying the outer surface of the composite sheet is provided. The laminated sheet has a support layer with inner and outer surfaces and a plastic cushioning layer laminated to the support layer at the inner surface of the support layer. The laminated sheet is heated to a second softening temperature. The laminated sheet is stretchable when heated to the second softening temperature. The composite sheet is pressed against the laminated sheet after the steps of providing and the steps of heating to bond the plastic cushioning layer to the plastic composite sheet at the molding station. The step of pressing compresses a portion of the laminated sheet spaced inwardly from an outer periphery of the laminated sheet to locally compact and thin the cushioning layer at the portion to form a compressed portion of the cushioning layer. Interior portions of the sheets stretch during the step of pressing while remaining intact. A plastic compatible with the plastic of the composite sheet is molded around the composite sheet to form at least one component at the inner surface of the composite sheet.
The method may further include applying a vacuum at the outer surface of the support layer to pull the outer surface of the support layer into contact with a forming surface while the support layer is still soft to improve appearance of the outer surface and improve component shape.
The cushioning support layer may be a thermoplastic foam layer compatible with the plastic of the composite sheet.
The laminated plastic sheet may be a polymer bi-laminate sheet.
The support layer may be a thermoplastic outer skin layer.
The thermoplastic outer skin layer may be a TPO outer skin layer.
The composite sheet may include a thermoplastic resin.
The thermoplastic resin of the composite sheet may be polypropylene.
A plurality of plastic edge components may be formed about a periphery of the composite sheet during the step of molding wherein the method further includes folding the laminated sheet at the compressed portion of the cushioning layer and bonding outer peripheral portions of the folded laminated sheet to the plastic edge components.
Still further in carrying out the above object and other objects of at least one embodiment of the invention, a method of making a laminated, vehicle interior trim component at a molding station is provided. The method includes providing a natural fiber, plastic composite sheet having inner and outer surfaces and heating the composite sheet to a first softening temperature. The composite sheet is stretchable when heated to the first softening temperature. A laminated sheet overlying the outer surface of the composite sheet is provided. The laminated sheet has a support layer with inner and outer surfaces and a plastic cushioning layer laminated to the support layer at the inner surface of the support layer. The laminated sheet is heated to a second softening temperature. The laminated sheet is stretchable when heated to the second softening temperature. The composite sheet is pressed against the laminated sheet after the steps of providing and the steps of heating to bond the plastic cushioning layer to the plastic composite sheet at the molding station. The step of pressing compresses a portion of the laminated sheet spaced inwardly from an outer periphery of the laminated sheet to locally compact and thin the cushioning layer at the portion to form a compressed portion of the cushioning layer. Interior portions of the sheets stretch during the step of pressing while remaining intact. A plastic compatible with the plastic of the composite sheet is molded around the composite sheet to form at least one component at an inner surface of the composite sheet at the molding station.
The method may further include applying a vacuum at the outer surface of the support layer to pull the outer surface of the support layer into contact with a forming surface while the support layer is still soft to improve appearance of the outer surface and improve component shape.
The cushioning support layer may be a thermoplastic foam layer compatible with the plastic of the composite sheet.
The laminated plastic sheet may be a polymer bi-laminate sheet.
The outer skin layer may be a thermoplastic outer skin layer.
The thermoplastic outer skin layer may be a TPO outer skin layer.
The composite sheet may include a thermoplastic resin.
The thermoplastic resin of the composite sheet may be polypropylene.
The plastic edge components may be formed about a periphery of the composite sheet during the step of molding. The method may further include folding the laminated sheet at the compressed portion of the cushioning layer and bonding outer peripheral portions of the folded laminated sheet to the plastic edge components.
Other technical advantages will be readily apparent to one skilled in the art from the following figures, descriptions and claims. Moreover, while specific advantages have been enumerated, various embodiments may include all, some, or none of the enumerated drawings.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
At least one embodiment of the present invention provides a method of making a laminated trim component, such as vehicle trim component or upper interior door panel, generally indicated at 10 in
Referring now to
The composite sheet 40 is heated in an oven (now shown) while on a conveyor 46 to a first softening temperature. The composite sheet 40 is stretchable when heated to the first softening temperature. The heated composite sheet 40 is transferred or conveyed by a conveyor 46 to a position between mold halves 52 and 54 of a compression mold, generally indicated at 56. The heated composite sheet 40 may then be molded into the shape defined by the mold halves 52 and 54 at that time or can be molded together with a laminated sheet, generally indicated at 50 in
The laminated sheet 50 overlies the outer surface 44 of the composite sheet 40 after the sheet 40 is in its molded or unmolded condition. Like the sheet 40, the sheet 50 is transported between the mold halves 52 and 54 of the compression mold 56 by a conveyor 58. Because the sheet 50 is flexible, the sheet 50 is supported by a frame 60. The laminated sheet 50 has a support layer 62 with inner and outer surfaces and a plastic cushioning or foam layer 68 laminated to the support layer 62 at the inner surface 66 of the support layer 62.
The foam layer 68 may be cross-linked polypropylene (XLPP) foam and the support or outer skin layer 62 may be suitable thermoplastic materials including but are not limited to polyethylene-based polyolefin elastomer or polypropylene-based thermoplastic elastomer, poly-urethane resins and other co-polymers and equivalents thereof. Non-limiting examples include; thermoplastic elastic olefin (TEO), thermoplastic elastomer (TPE), thermoplastic elastomer-oefinic (TPE-O, TPO), thermoplastic elastomer-styrenic (TPE-S), Polycarbonate (PC), Polycarbonate/Acrylonitrile-Butadiene-Styrene (PC/ABS), Acrylonitrile-Butadiene-Styrene (ABS) copolymers, Poly-urethane (TPU) and Polyvinyl-Chloride (PVC). The outer skin layer may also be vinyl or leather.
The laminated sheet 50 is heated to a second softening temperature in an oven (not shown) while being supported by the frame 60. The laminated sheet 50 is stretchable when heated to the second softening temperature.
Referring specifically to
Referring again to
The cushioning support layer 62 preferably is a thermoplastic foam layer compatible with the plastic of the composite sheet 40.
The laminated plastic sheet 50 is preferably a polymer bi-laminate sheet.
The support layer 62 is preferably a thermoplastic outer skin layer 62. The thermoplastic outer skin layer 62 is preferably a TPO outer skin layer.
The composite sheet 40 typically includes a thermoplastic resin. The thermoplastic resin of the composite sheet 40 is preferably polypropylene.
The method may further include folding the laminated sheet 50 at the compressed portion 74 of the cushioning layer 68 and bonding outer peripheral uncompressed portions of the folded laminated sheet 50 to the inner surface 42 of the composite sheet 40 as shown in
As shown in
The bonded sheets 40 and 50 may be transferred by a conveyor 85 without injection molding at the first molding station to a second molding station 82 as shown in the upper right-hand portion of
At the second molding station 82, a plastic compatible with the plastic of the composite sheet 40 is molded around the composite sheet 40 to form at least one component such as the components 24, 26, 28, 32, 34 and 36 at the inner surface 42 of the composite sheet 40.
The plurality of plastic edge components 24, 26 and 28 may be formed about the periphery 72 of the composite sheet 40 during the step of injection molding. The method may further include folding the laminated sheet 50 at the compressed portion 70 of the cushioning layer 68 and bonding outer peripheral uncompressed portions of the folded laminated sheet 50 to the plastic edge components 24, 26 and 28.
The method also typically includes trimming unwanted portions of the laminated sheet as shown in
In
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 13/762,956 filed Feb. 8, 2013.
Number | Name | Date | Kind |
---|---|---|---|
3355850 | Rohe | Dec 1967 | A |
3512328 | Eriksson | May 1970 | A |
3514798 | Ellis | Jun 1970 | A |
3543315 | Hoffman | Dec 1970 | A |
3568254 | Stolki | Mar 1971 | A |
3551563 | Volkmann | Mar 1972 | A |
3651563 | Volkmann | Mar 1972 | A |
3750525 | Waters et al. | Aug 1973 | A |
3789728 | Shackelford | Feb 1974 | A |
3955266 | Honami et al. | May 1976 | A |
4175995 | Walter | Nov 1979 | A |
4204822 | Hewitt | May 1980 | A |
4529639 | Peoples, Jr. et al. | Jul 1985 | A |
4550854 | Schellenberg | Nov 1985 | A |
4692108 | Cesano | Sep 1987 | A |
4717612 | Shackelford | Jan 1988 | A |
4737390 | Fricano et al. | Apr 1988 | A |
4835030 | Squier et al. | May 1989 | A |
4836380 | Walter et al. | Jun 1989 | A |
4846612 | Worthing | Jul 1989 | A |
4941785 | Witten | Jul 1990 | A |
5022943 | Zaima | Jun 1991 | A |
5026445 | Mainolfi et al. | Jun 1991 | A |
5037498 | Umeda | Aug 1991 | A |
5074726 | Betchel et al. | Dec 1991 | A |
5076870 | Sanborn | Dec 1991 | A |
5143778 | Shuert | Sep 1992 | A |
5198175 | Kato et al. | Mar 1993 | A |
5217563 | Niebling et al. | Jun 1993 | A |
5253962 | Close, Jr. | Oct 1993 | A |
5266374 | Ogata | Nov 1993 | A |
5269660 | Pradelle | Dec 1993 | A |
5294223 | Phillips, II | Mar 1994 | A |
5298694 | Thompson et al. | Mar 1994 | A |
5316604 | Fell | May 1994 | A |
5324384 | Spengler | Jun 1994 | A |
5352397 | Hara et al. | Oct 1994 | A |
5370521 | McDougall | Dec 1994 | A |
5417179 | Niemier et al. | May 1995 | A |
5423933 | Horian | Jun 1995 | A |
5433151 | Ohara et al. | Jul 1995 | A |
5462421 | Stein et al. | Oct 1995 | A |
5474008 | Vespoli et al. | Dec 1995 | A |
5502930 | Burkette et al. | Apr 1996 | A |
5506029 | Hara | Apr 1996 | A |
5514017 | Chimiak | May 1996 | A |
5534097 | Fasano et al. | Jul 1996 | A |
5614285 | Gardill | Mar 1997 | A |
5683782 | Duchene | Nov 1997 | A |
5700050 | Gonas | Dec 1997 | A |
5718791 | Spengler | Feb 1998 | A |
5744210 | Hofmann et al. | Apr 1998 | A |
5746870 | Tomioka et al. | May 1998 | A |
5750160 | Weber et al. | May 1998 | A |
5827595 | Jones | Oct 1998 | A |
5888610 | Fournier et al. | Mar 1999 | A |
5911360 | Schellenberg | Jun 1999 | A |
5915445 | Rauenbusch | Jun 1999 | A |
5925207 | Itoh | Jul 1999 | A |
5925304 | Kudoh | Jul 1999 | A |
5928735 | Padmanabhan et al. | Jul 1999 | A |
5979962 | Valentin et al. | Nov 1999 | A |
6030490 | Francisco et al. | Feb 2000 | A |
6050630 | Hochet | Apr 2000 | A |
6066217 | Dibble et al. | May 2000 | A |
6102464 | Schneider et al. | Aug 2000 | A |
6102630 | Flolo | Aug 2000 | A |
6280551 | Hilligoss | Aug 2001 | B1 |
6435577 | Renault | Aug 2002 | B1 |
6537413 | Hochet et al. | Mar 2003 | B1 |
6546694 | Clifford | Apr 2003 | B2 |
6615762 | Scott | Sep 2003 | B1 |
6631785 | Khambete et al. | Oct 2003 | B2 |
6648554 | Sehl | Nov 2003 | B1 |
6655299 | Preisler et al. | Dec 2003 | B2 |
6659223 | Allison et al. | Dec 2003 | B2 |
6682675 | Vandangeot et al. | Jan 2004 | B1 |
6682676 | Renault et al. | Jan 2004 | B1 |
6695998 | Sandefer et al. | Feb 2004 | B2 |
6748876 | Preisler et al. | Jun 2004 | B2 |
6752443 | Thompson et al. | Jun 2004 | B1 |
6790026 | Vandangeot et al. | Sep 2004 | B2 |
6793747 | North et al. | Sep 2004 | B2 |
6823803 | Preisler | Nov 2004 | B2 |
6843525 | Preisler | Jan 2005 | B2 |
6890023 | Preisler | Jan 2005 | B2 |
6862863 | McCorkle et al. | Mar 2005 | B2 |
6905155 | Presley et al. | Jun 2005 | B1 |
6926348 | Krueger et al. | Aug 2005 | B2 |
6945594 | Bejin et al. | Sep 2005 | B1 |
6981863 | Renault et al. | Jan 2006 | B2 |
7014259 | Heholt | Mar 2006 | B2 |
7059646 | DeLong et al. | Jun 2006 | B1 |
7059815 | Ando et al. | Jun 2006 | B2 |
7090274 | Khan et al. | Aug 2006 | B1 |
7093879 | Putt et al. | Aug 2006 | B2 |
7121128 | Kato et al. | Oct 2006 | B2 |
7188881 | Sturt et al. | Mar 2007 | B1 |
7204056 | Sieverding | Apr 2007 | B2 |
7207616 | Sturt | Apr 2007 | B2 |
7222915 | Philippot et al. | May 2007 | B2 |
7264685 | Katz et al. | Sep 2007 | B2 |
7316788 | Autrey et al. | Jan 2008 | B2 |
7320739 | Thompson, Jr. et al. | Jan 2008 | B2 |
7393036 | Bastian et al. | Jul 2008 | B2 |
7402537 | Lenda et al. | Jul 2008 | B1 |
7419713 | Wilkens et al. | Sep 2008 | B2 |
7530322 | Angelini | May 2009 | B2 |
7628440 | Bernhardsson et al. | Dec 2009 | B2 |
7713011 | Orszagh et al. | May 2010 | B2 |
7837009 | Gross et al. | Nov 2010 | B2 |
7854211 | Rixford | Dec 2010 | B2 |
7909379 | Winget et al. | Mar 2011 | B2 |
7918313 | Gross et al. | Apr 2011 | B2 |
7919031 | Winget et al. | Apr 2011 | B2 |
7942475 | Murray | May 2011 | B2 |
7963243 | Quigley | Jun 2011 | B2 |
8052237 | Althammer et al. | Nov 2011 | B2 |
8062762 | Stalter | Nov 2011 | B2 |
8069809 | Wagenknecht et al. | Dec 2011 | B2 |
8117972 | Winget et al. | Feb 2012 | B2 |
8133419 | Burks et al. | Mar 2012 | B2 |
8226339 | Neri | Jul 2012 | B2 |
8262968 | Smith et al. | Sep 2012 | B2 |
8298675 | Alessandro et al. | Oct 2012 | B2 |
8475884 | Kia | Jul 2013 | B2 |
8622456 | Preisler et al. | Jan 2014 | B2 |
8651549 | Raffel et al. | Feb 2014 | B2 |
8690233 | Preisler et al. | Apr 2014 | B2 |
8764089 | Preisler et al. | Jul 2014 | B2 |
8795465 | Preisler et al. | Aug 2014 | B2 |
8795807 | Preisler et al. | Aug 2014 | B2 |
8808827 | Preisler et al. | Aug 2014 | B2 |
8808828 | Preisler et al. | Aug 2014 | B2 |
8808829 | Preisler et al. | Aug 2014 | B2 |
8808830 | Preisler et al. | Aug 2014 | B2 |
8808831 | Preisler et al. | Aug 2014 | B2 |
8808833 | Preisler et al. | Aug 2014 | B2 |
8808835 | Preisler et al. | Aug 2014 | B2 |
8833829 | Wenzel et al. | Sep 2014 | B2 |
8834985 | Preisler et al. | Sep 2014 | B2 |
8859074 | Preisler et al. | Oct 2014 | B2 |
8883285 | Preisler et al. | Nov 2014 | B2 |
9302315 | Verbeek et al. | Apr 2016 | B2 |
9364975 | Preisler et al. | Jun 2016 | B2 |
20020096804 | Gupte | Jul 2002 | A1 |
20030106741 | Tompson et al. | Jun 2003 | A1 |
20030194542 | Springer | Oct 2003 | A1 |
20030197400 | Preisler et al. | Oct 2003 | A1 |
20040078929 | Schoemann | Apr 2004 | A1 |
20040150127 | Sandefer et al. | Aug 2004 | A1 |
20040151566 | Nick et al. | Aug 2004 | A1 |
20050189674 | Hochet et al. | Sep 2005 | A1 |
20050233106 | Imamura et al. | Oct 2005 | A1 |
20060008609 | Snyder et al. | Jan 2006 | A1 |
20060121244 | Godwin et al. | Jun 2006 | A1 |
20060137294 | Waits, Jr. et al. | Jun 2006 | A1 |
20060185866 | Jung et al. | Aug 2006 | A1 |
20060255611 | Smith et al. | Nov 2006 | A1 |
20060291974 | McGee et al. | Dec 2006 | A1 |
20070065264 | Sturt et al. | Mar 2007 | A1 |
20070069542 | Steiger et al. | Mar 2007 | A1 |
20070082172 | Derbyshire et al. | Apr 2007 | A1 |
20070218787 | Carter et al. | Sep 2007 | A1 |
20070256379 | Edwards | Nov 2007 | A1 |
20070258786 | Orszagh et al. | Nov 2007 | A1 |
20080169678 | Ishida et al. | Jul 2008 | A1 |
20080185866 | Tarrant et al. | Aug 2008 | A1 |
20080193256 | Neri | Aug 2008 | A1 |
20090108639 | Sturt et al. | Apr 2009 | A1 |
20100026031 | Jouraku | Feb 2010 | A1 |
20100038168 | Mandos et al. | Feb 2010 | A1 |
20100086728 | Theurl et al. | Apr 2010 | A1 |
20100170746 | Restuccia et al. | Jul 2010 | A1 |
20100206467 | Durand et al. | Aug 2010 | A1 |
20100255251 | Le Roy | Oct 2010 | A1 |
20110045720 | Conner, Jr. | Feb 2011 | A1 |
20110260359 | Durand et al. | Oct 2011 | A1 |
20110281076 | Anderson et al. | Nov 2011 | A1 |
20110315310 | Trevisan et al. | Dec 2011 | A1 |
20120091698 | Wolfe et al. | Apr 2012 | A1 |
20120247654 | Piccin et al. | Oct 2012 | A1 |
20120315429 | Stamp et al. | Dec 2012 | A1 |
20130031752 | Davies | Feb 2013 | A1 |
20130052412 | Fox et al. | Feb 2013 | A1 |
20130075955 | Piccin et al. | Mar 2013 | A1 |
20130137798 | Piccin | May 2013 | A1 |
20130233228 | Bartlett | Sep 2013 | A1 |
20130260112 | Lee et al. | Oct 2013 | A1 |
20130273191 | Dooley | Oct 2013 | A1 |
20130278002 | Preisler et al. | Oct 2013 | A1 |
20130278003 | Preisler et al. | Oct 2013 | A1 |
20130278007 | Preisler et al. | Oct 2013 | A1 |
20130278008 | Preisler et al. | Oct 2013 | A1 |
20130278009 | Preisler et al. | Oct 2013 | A1 |
20130278015 | Preisler et al. | Oct 2013 | A1 |
20130278018 | Preisler et al. | Oct 2013 | A1 |
20130278019 | Preisler et al. | Oct 2013 | A1 |
20130278020 | Preisler et al. | Oct 2013 | A1 |
20130280459 | Nakashima et al. | Oct 2013 | A1 |
20130280469 | Preisler et al. | Oct 2013 | A1 |
20130280472 | Preisler et al. | Oct 2013 | A1 |
20130280473 | Preisler et al. | Oct 2013 | A1 |
20130280475 | Champion | Oct 2013 | A1 |
20130312652 | Preisler et al. | Nov 2013 | A1 |
20130316123 | Preisler et al. | Nov 2013 | A1 |
20130333837 | Preisler et al. | Dec 2013 | A1 |
20130341971 | Masini et al. | Dec 2013 | A1 |
20140077518 | Preisler et al. | Mar 2014 | A1 |
20140077530 | Preisler et al. | Mar 2014 | A1 |
20140077531 | Preisler et al. | Mar 2014 | A1 |
20140145465 | Preisler et al. | May 2014 | A1 |
20140145470 | Preisler et al. | May 2014 | A1 |
20140147617 | Preisler et al. | May 2014 | A1 |
20140147622 | Preisler et al. | May 2014 | A1 |
20140154461 | Preisler et al. | Jun 2014 | A1 |
20140225296 | Preisler et al. | Aug 2014 | A1 |
20140335303 | Preisler et al. | Nov 2014 | A1 |
20140342119 | Kastell et al. | Nov 2014 | A1 |
20150027622 | Kastell | Jan 2015 | A1 |
20150130105 | Preisler et al. | May 2015 | A1 |
20150130220 | Preisler et al. | May 2015 | A1 |
20150130221 | Preisler et al. | May 2015 | A1 |
20150130222 | Preisler et al. | May 2015 | A1 |
20150132532 | Preisler et al. | May 2015 | A1 |
20160059446 | Lofgren | Mar 2016 | A1 |
20170266911 | Preisler | Sep 2017 | A1 |
20170266912 | Preisler | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
2010080967 | Jul 2010 | WO |
Entry |
---|
Office Action; related U.S. Appl. No. 14/087,563; dated Jul. 20, 2015. |
Office Action; related U.S. Appl. No. 13/762,879; dated Jul. 31, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/087,579; dated Aug. 3, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,403; dated Jan. 29, 2016. |
Office Action; related U.S. Appl. No. 13/479,974; dated Mar. 20, 2014. |
Office Action; related U.S. Appl. No. 13/686,362; dated Mar. 25, 2014. |
Office Action; related U.S. Appl. No. 13/523,253; dated Mar. 25, 2014. |
Office Action; related U.S. Appl. No. 13/688,972; dated Mar. 28, 2014. |
Office Action; related U.S. Appl. No. 13/687,232; dated Mar. 28, 2014. |
Office Action; related U.S. Appl. No. 13/689,809; dated Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/687,213; dated Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/690,265; dated Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/762,904; dated Apr. 8, 2014. |
Office Action; related U.S. Appl. No. 13/762,800; dated Apr. 8, 2014. |
Office Action; related U.S. Appl. No. 13/762,861; dated Apr. 9, 2014. |
Office Action; related U.S. Appl. No. 13/690,566; dated Apr. 9, 2014. |
Office Action; related U.S. Appl. No. 13/762,832; dated Apr. 11, 2014. |
Office Action; related U.S. Appl. No. 13/762,921; dated Apr. 14, 2014. |
Notice of Allowance; related U.S. Appl. No. 13/686,388; dated Apr. 15, 2014. |
Office Action; related U.S. Appl. No. 13/453,201 (now U.S. Pat. No. 8,690,233); dated Nov. 20, 2013. |
Office Action; related U.S. Appl. No. 13/523,209 (now U.S. Pat. No. 8,622,456) dated Apr. 29, 2013. |
Office Action; related U.S. Appl. No. 13/479,974; dated Oct. 15, 2014. |
Office Action; related U.S. Appl. No. 13/762,879; dated Feb. 13, 2015. |
Office Action; related U.S. Appl. No. 13/479,974; dated Feb. 13, 2015. |
Notice of Allowance; related U.S. Appl. No. 13/603,552; dated Feb. 18, 2015. |
Notice of Allowance; related U.S. Appl. No. 14/087,591; dated Mar. 12, 2015. |
Office Action; related U.S. Appl. No. 14/603,413; dated Apr. 23, 2015. |
Corrected Notice of Allowability; related U.S. Appl. No. 14/603,401; dated Jun. 23, 2016. |
Office Action; related U.S. Appl. No. 14/603,418; dated Jun. 16, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/444,164; dated Jul. 15, 2016. |
Office Action; related U.S. Appl. No. 14/603,397; dated Jul. 21, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,404; dated Dec. 2, 2016. |
Final Office Action; related U.S. Appl. No. 14/603,430; dated Dec. 7, 2016. |
Non-Final Office Action; related U.S. Appl. No. 15/337,013; dated Dec. 27, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,418; dated Dec. 28, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/087,563; dated Mar. 3, 2016. |
Office Action; related U.S. Appl. No. 14/603,430; dated Sep. 14, 2016. |
Office Action; related U.S. Appl. No. 14/603,404; dated Aug. 25, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,397; dated Oct. 17, 2016. |
Office Action; related U.S. Appl. No. 14/603,407; dated Oct. 4, 2016. |
Number | Date | Country | |
---|---|---|---|
20150321400 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13762956 | Feb 2013 | US |
Child | 14803450 | US |