Claims
- 1. Method of making a printing apparatus configured for drawing fluid from a fluid reservoir and then ejecting droplets of fluid onto a receiver to form an image, comprising the steps of:(a) providing an orifice manifold having a plurality of spaced orifices through which droplets of fluid are ejected; (b) providing a plurality of adjoining independent piezoelectric pumps, each having an inlet port and an outlet port, said piezoelectric pumps comprising a pump body having an interior fluid compartment, and means for controlling fluid passing through said inlet and outlet ports; (c) arranging each one of said plurality of piezoelectric pumps so that an outlet port is in fluid communications with one of said spaced orifices of said manifold; (d) arranging a piezoelectric transducer in said pump body of each one of said plurality of piezoelectric pumps, each one of said piezoelectric transducers comprising a functionally gradient piezoelectric element having opposed first and second surfaces and a first electrode fixedly arranged on said first surface and a second electrode fixedly arranged on said second surface, said piezoelectric element being formed of piezoelectric material having a functionally gradient d-coefficient formed from sequential coating layers of piezoelectric material selected so that the functionally gradient piezoelectric element bends in response to an applied voltage to said first and second electrodes which produces an electric field in the functionally gradient piezoelectric element; (e) providing a plurality of power sources, each having first and second terminals and then connecting said first and second terminals to said first and second electrodes of one of said piezoelectric transducers for enabling fluid flow through a respective interior fluid compartment; (f) energizing any one of said piezoelectric transducers to pump fluid from said fluid reservoir then through said inlet port of said interior fluid compartment in at least one of said pumps and then through said orifice in fluid communications therewith of said orifice manifold thereby forming an ejected droplet of fluid; and (g) positioning the receiver in proximity to said orifice manifold to receive said ejected droplet of fluid so as to form an image thereon.
- 2. The method recited in claim 1 wherein said step of energizing includes the step of applying a positive voltage to said first terminal and a negative voltage to said second terminal for pumping fluid out of said interior fluid compartment of one of said piezoelectric pumps.
- 3. The method recited in claim 1 wherein said step of energizing further includes the step of applying a negative voltage to said first terminal and a positive voltage to said second terminal for pumping fluid into said interior fluid compartment of one of said piezoelectric pumps.
- 4. The method recited in claim 1 wherein the step of providing a piezoelectric transducer further includes the step of providing a piezoelectric material selected from the group consisting of PZT, PLZT, LiNbO3, KnbO3, BaTiO3 and a mixture thereof.
- 5. The method recited in claim 1 wherein the step of arranging said piezoelectric transducers further includes the step of providing said first surface of said functionally gradient piezoelectric element in parallel with said second surface of said functionally gradient piezoelectric element.
- 6. The method recited in claim 5 wherein the step of arranging further includes poling said piezoelectric element in a direction perpendicular to the first and second surfaces, wherein the functionally gradient d-coefficient varies perpendicularly to the first and second surfaces and the first and second electrodes are disposed over the first and second surfaces.
CROSS REFERENCE TO RELATED APPLICATIONS
This application is related to commonly owned U.S. Pat. No. 5,900,271 May 4, 1999, entitled CONTROLLED COMPOSITION AND CRYSTALLOGRAPHIC CHANGES IN FORMING FUNCTIONALLY GRADIENT PIEZOELECTRIC TRANSDUCERS, by Dilip K. Chatteijee, Syamal K. Ghosh, and Edward P. Furlani.
US Referenced Citations (14)
Foreign Referenced Citations (1)
Number |
Date |
Country |
55-142668 |
Nov 1980 |
JP |