Method of making a sandwich-type, compression-molded, composite component having a cellulose-based core and improved surface appearance

Information

  • Patent Grant
  • 9707725
  • Patent Number
    9,707,725
  • Date Filed
    Friday, January 23, 2015
    9 years ago
  • Date Issued
    Tuesday, July 18, 2017
    7 years ago
Abstract
A method of making a sandwich-type, compression-molded, composite component having improved surface appearance is provided. Reinforced thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core of a blank or stack of sandwich materials are heated to a softening temperature of the thermoplastics. The heated blank or stack is allowed to cool in the mold cavity until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal core cavities. Air in the sealed cavities urges softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools to inhibit debossing and improve surface appearance of a first outer surface of the blank or stack.
Description
TECHNICAL FIELD

This invention relates, in general, to methods of making compression-molded, composite components and, in particular, to methods of making sandwich-type, compression-molded, composite components having a cellulose-based core and having improved or enhanced surface appearance.


OVERVIEW

Compression molding has long been used to manufacture plastic parts or components. While widely used to manufacture thermoset plastic parts, compression molding is also used to manufacture thermoplastic parts. The raw materials for compression molding are typically placed in an open, heated mold cavity. The mold is then closed and pressure is applied to force the materials to fill up the entire cavity. A hydraulic ram or punch is often utilized to produce sufficient force during the molding process. The heat and pressure are maintained until the plastic materials are cured.


Two types of plastic compounds frequently used in compression molding are Bulk Molding Compound (BMC) and Sheet Molding Compound (SMC).


In general, compression molding provides good surface finish and can be applied to composite thermoplastics with woven fabrics, randomly oriented fiber mat or chopped strand. One of the problems associated with compression molding is that compression molding is thought to be largely limited to flat or moderately curved parts with no undercuts.


Vacuum during compression molding of thermoset parts has been used to minimize surface defects of the type known as porosity. Porosity is caused by air that is trapped between the molding compound (i.e. raw materials) and the surface of the mold cavity. The mold chamber or cavity is sealed from the surrounding atmosphere and then the chamber is evacuated before pressure is applied to the raw materials.


Sandwich-type composite panels including cores have very important characteristics because of their light weight and high strength. Conventionally, such panels are constructed by sandwiching a core having a large number of cavities and having low strength characteristics between two outer layers or skins, each of which is much thinner than the core but has excellent mechanical characteristics. The core is often made of cells which may be hexagonal in plan shape and they may be honeycombed. Such cores typically have two mutually parallel and opposite faces that are perpendicular to the axes of the cells as shown in FIGS. 1 and 2.


The prior art discloses a method of making a panel of sandwich-type composite structure having a cellular core in a single processing step. In that method, the panel is made by subjecting a pre-heated stack 10 of layers of material (i.e. FIGS. 1 and 2) to cold-pressing in a mold. The stack is made up of: at least a first skin 14 made of a reinforced thermoplastics material, a cellular core 16 made of a thermoplastics material, and a second skin 18 also made of a reinforced thermoplastics material. The stack 10 may also include one or more external covering layers made of a facing material such as woven or nonwoven thermoplastic material as shown in FIG. 1. The stack 10 may be pre-heated outside the mold or heated inside the mold to a softening temperature.


Such a method is particularly advantageous because of the fact that it makes it possible, in a single operation, to generate cohesion and bonding between the various layers of the composite structure, as shown in FIGS. 2 and 3, and to shape the resulting panel (10 or 10′) while preserving all of the mechanical properties imparted by the cellular-core, sandwich structure.


One problem associated with the above-noted method of making a panel of sandwich-type composite structure is that during the cold-pressing in a compression mold 20 (i.e. FIG. 4) one or both of the skins 14 and 18 does not fully contact or achieve abutting engagement with its respective mold half or die 24 during the molding process. Consequently, the resulting compression-molded, composite component 10′ fails to achieve the desired component shape, as defined by the opposing surfaces of upper and lower dies 24 and 26. In FIG. 4, distance between arrows 15 represent a distance between the desired and actual shapes of the component 10′.


Also, the air sealed within the cellular core 16 bonded to and between the skins 14 and 18 causes circular portions of one or both of the skins 14 to move inwardly into and towards the cells of the core 16 along the axes of the cells as the air cools. This causes the outer surface 22 of one or both of the skins 14 and 18 to be debossed as shown in FIGS. 2 and 3 at 12. Such effect may be termed an “oil-can” effect and results in a pattern of undesirable depressions or imprints 12 on the outer surface 22 of one or both of the skins 14 and 18 as shown in FIGS. 2 and 3. Such undesirable depressions 12 can even be seen in facing material (not shown in FIGS. 2 and 3 but shown in FIG. 1) bonded to the outer surfaces of the skins 14 and 18 such as covering layers thereby resulting in a poor surface finish.


The term “facing material” refers to a material used to conceal and/or protect structural and/or functional elements from an observer. Common examples of facing materials include upholstery, carpeting, and wall coverings (including stationary and/or movable wall coverings and cubicle wall coverings). Facing materials typically provide a degree of aesthetic appearance and/or feel, but they may also provide a degree of physical protection to the elements that they conceal. In some applications, it is desirable that the facing material provide properties such as, for example, aesthetic appeal (for example, visual appearance and/or feel) and abrasion resistance. Facing materials are widely used in motor vehicle construction.


In the automotive industry, it is common practice to refer to various surfaces as being A-, B-, or C-surfaces. As used herein, the term “A-surface” refers to an outwardly-facing surface for display in the interior of a motor vehicle. This surface is a very high visibility surface of the vehicle that is most important to the observer or that is most obvious to the direct line of vision. With respect to motor vehicle interiors, examples include dashboards, instrument panels, steering wheels, head rests, upper seat portions, headliners, load floors and pillar coverings.


The following U.S. patent documents are related to at least one embodiment of the present invention: U.S. Pat. Nos. 5,370,521; 5,502,930; 5,915,445; 6,050,630; 6,102,464; 6,435,577; 6,537,413; 6,655,299; 6,682,675; 6,682,676; 6,748,876; 6,790,026; 6,823,803; 6,843,525; 6,890,023; 6,981,863; 7,090,274; 7,419,713; 7,909,379; 7,919,031; 8,117,972; 2005/0189674, 2006/0255611; 2008/0185866; 2011/0315310; and 2012/0315429.


SUMMARY OF EXAMPLE EMBODIMENTS

An object of at least one embodiment of the present invention is to provide a method of making sandwich-type, compression-molded, composite components having a cellulose-based core and having enhanced or improved overall surface appearance or finish.


In carrying out the above object and other objects of at least one embodiment of the present invention, a method of making a sandwich-type, compression-molded, composite component having improved surface appearance is provided. The method includes heating a blank or stack of sandwich material including first and second reinforced, thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core positioned between the skins and between the sheets. The core has a large number of cavities. The skins, the sheets and the core are heated to a softening temperature of the thermoplastics. A compression mold is provided which includes component-forming, upper and lower dies with opposing molding surfaces cooperating to define a mold cavity having a shape substantially corresponding to a desired shape of the component. The blank or stack is placed on the lower die in an open position of the mold. The dies are moved toward each other until the mold is in a closed position. The heated blank or stack is allowed to cool in the mold cavity in the closed position until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal the core cavities. Air in the sealed cavities urges softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools to inhibit debossing and improve surface appearance of a first outer surface of the blank or stack during the step of allowing.


A vacuum may be applied at the first outer surface of the blank or stack in the mold cavity sufficient to prevent debossing and improve appearance of the first outer surface during the step of allowing.


The first outer surface may be an A-surface.


The method may further include sealing the mold cavity from the surrounding atmosphere during the step of applying.


The method may further include applying a vacuum at a second outer surface of the stack or blank in the mold cavity to prevent debossing and improve appearance of the second outer surface during the step of allowing.


The core may be a cellular core such a honeycomb core.


The thermoplastic of the skins may be polypropylene.


The component may have a thickness in the range of 5 to 25 mm.


At least one of the skins may be a woven skin.


The step of heating may be performed outside the mold.


Further in carrying out the above object and other objects of at least one embodiment of the present invention, a method of making a sandwich-type, compression-molded, composite component having improved surface appearance and for use in a vehicle is provided. The method includes heating a blank or stack of sandwich material including first and second reinforced thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core positioned between the skins and between the sheets and having a large number of cavities. The skins, the sheets and the core are heated to a softening temperature of the thermoplastics. A compression mold is provided which includes component-forming, upper and lower dies with opposing surfaces cooperating to define a mold cavity having a shape substantially corresponding to a desired shape of the component. The blank or stack is placed on the lower die in an open position of the mold. The dies are moved toward each other until the mold is in a closed position. The heated blank or stack is allowed to cool in the mold cavity in the closed position until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal the core cavities. Air in the sealed cavities urges softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools to inhibit debossing and improve surface appearance of a first outer surface of the stack or blank.


A vacuum may be applied at the first outer surface of the stack or blank in the mold cavity sufficient to prevent debossing and improve appearance of the first outer surface during the step of allowing.


The first outer surface may be an A-surface.


The method may further include sealing the mold cavity from the surrounding atmosphere during the step of applying.


The method may further include applying a vacuum at a second outer surface of the stack or blank in the mold cavity to prevent debossing and improve appearance of the second outer surface during the step of allowing.


Still further in carrying out the above object and other objects of at least one embodiment of the present invention, a method of making a sandwich-type, compression-molded, composite component having improved surface appearance for use in the interior of a vehicle is provided. The method includes heating a blank or stack of sandwich material including first and second reinforced thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core positioned between the skins and between the sheets and having a large number of cavities. The skins, the sheets and the core are heated to a softening temperature of the thermoplastics. A compression mold is provided which includes component-forming, upper and lower dies with opposing molding surfaces cooperating to define a mold cavity having a shape substantially corresponding to a desired shape of the component. The blank or stack is placed on the lower die in an open position of the mold. The dies are moved toward each other until the mold is in a closed position. The heated blank or stack is allowed to cool in the mold cavity in the closed position until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal the core cavities. Air in the sealed cavities urges softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools to inhibit debossing and improve surface appearance of a first outer surface of the stack or blank.


A vacuum may be applied at the first outer surface of the stack or blank in the mold cavity sufficient to prevent debossing and improve appearance of the first outer surface during the step of allowing.


The method may further include applying a vacuum at a second outer surface of the stack or blank in the mold cavity to prevent debossing and improve appearance of the second outer surface during the step of allowing.


Other technical advantages will be readily apparent to one skilled in the art from the following figures, descriptions and claims. Moreover, while specific advantages have been enumerated, various embodiments may include all, some or none of the enumerated advantages.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side sectional view showing various separate layers of a prior art stack or blank of thermoplastic-based layers of material;



FIG. 2 is a top perspective sectional view of the stack of FIG. 1 but without outer carpet layers after low-pressure, cold compression molding of the prior art;



FIG. 3 is a view, similar to the view of FIG. 2, of an edge portion of the molded component;



FIG. 4 is a view, partially broken away and in cross section, of the component of FIG. 3 during compression molding in accordance with the prior art;



FIG. 5 is a view, similar to the view of FIG. 4, but showing a vacuum-assisted compression mold useful in at least one method embodiment of the present invention to improve the surface appearance of the resulting component;



FIG. 6 is a side sectional view showing a stack of various separate sheets or layers of thermoplastic-based and cellulose-based material prior to being compression molded into a composite component having a sandwich structure;



FIG. 7 is a top perspective view, partially broken away and in cross section, of the composite component of FIG. 6 after molding;



FIG. 8 is a view similar to the view of FIG. 7 but providing a bottom perspective view;



FIG. 9 is a top plan view, partially broken away, of a reinforced thermoplastic skin having substantially parallel, visible fibers; and



FIG. 10 is a view similar to the view of FIG. 9 but with substantially randomly oriented visible fibers.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.



FIG. 5 shows a compression-molded, composite component, generally indicated at 30, which may be used in a vehicle load floor assembly, positioned or supported at the rear of an automotive vehicle. The composite component 30 has a sandwich structure. The composite component 30 includes a load-bearing, first outer skin or layer 14 having an A-surface 28, a second outer skin or layer 18 having a surface 32, and a core 16 positioned between and bonded to the outer layers 14 and 18. The core 16 has a large number of cavities and is preferably a thermoplastic core 16. The outer layers 14 and 18 are bonded to the core 16 by press molding in a mold 20′ typically after pre-heating the outer layers 14 and 18 and the core 16 outside the mold 20′. The outer layers 14 and 18 are preferably fiber-reinforced thermoplastic layers. The thermoplastic of the layers 14 and 18 and the core 16 may be a polyolefin such as polypropylene. The thermoplastic may alternatively be polyurethane. The fiber-reinforcement may be a glass mat, a natural fiber mat, or a woven or non-woven mat.


The core 16 may be a cellular core having a honeycomb structure. The core 16 may also be made of polypropylene honeycomb, aluminum honeycomb, balsa and polyurethane foam. The resulting composite component or panel 30 typically includes a lightweight, low density core such as the core 16 together with fiber-reinforced thermoplastic skins or layers such as the skins 14 and 18. The resulting component 30 is not debossed and has an improved, overall appearance unlike the components 10 and 10′ of FIGS. 2 and 3, respectively.


The composite component 30 may be compression or press molded using a variety of technologies which use a low temperature, compression-molding apparatus but preferably uses the molding apparatus of FIG. 5. The core 16 and the skins 14 and 18 are preferably generally of the type shown in U.S. Pat. Nos. 6,537,413; 6,050,630; and 2005/0189674.


Each resulting panel or component 30 may have a thickness in the range of 5 to 25 mm.


In one example method of making the component 30, a stack of material is pressed in the low pressure, cold-forming mold 20′ which has upper and lower forming dies 24′ and 26′, respectively. The mold 20′ is shown in its closed position in FIG. 5 but it is to be understood that the blank or stack of materials is placed on the lower die 26′ in the open position of the mold 20′ prior to cold pressing.


The stack is made up of the first layer or skin 14, the cellular core 16 and the second layer or skin 18. The stack is pressed at a pressure lying in the range of 10×105 Pa. to 30×105 Pa. The first and second skins 14 and 18, respectively, are preferably pre-heated to make them malleable and stretchable. Advantageously, in order to soften the first and second skins 14 and 18, respectively, heat is applied to a pre-assembly constituted by the stack made up of at least the first skin 14, of the cellular core 16, and the second skin 18 so that, while the component 30 is being formed in the mold 20′, the first and second skins 14 and 18 have a forming temperature lying approximately in the range of 160° C. to 200° C., and, in this example, about 180° C.


The heated blank or stack is allowed to cool in the mold cavity of FIG. 5 in the closed position of the mold 20′ until inner surfaces of the skins 14 and 18 are bonded to top and bottom surfaces of the core 16 to seal the cavities of the core 16. The air in the sealed cavities normally urges softened portions of the skins 14 and 18 inwardly into and towards the cavities of the core 16 as the air in the cavities cools. A vacuum is applied at the first outer surface 28 of the blank or stack by an upper vacuum source through holes or passageways 34 formed through the upper die 24′ of the mold 20′ sufficient to prevent debossing (as shown in FIGS. 2 and 3) during the cooling and improve appearance of the first outer surface 28. Vacuum is applied by the upper vacuum source under control of a controller.


In like fashion, a vacuum is applied at the second outer surface 32 of the stack or blank by a lower vacuum source through holes or passageways 34 formed through the lower die 26′ of the mold 20′ to prevent debossing during the cooling and improve appearance of the second outer surface 32. Vacuum is applied by the lower vacuum source under control of the controller.


The mold cavity of the mold 20′ is preferably sealed from the atmosphere surrounding the mold 20′ during the application of the vacuum at the upper and lower surfaces 28 and 32, respectively, by one or both of the skins 14 and 18 or by a separate, conventional seal (not shown) between the dies 24′ and 26′ of the mold 20′.


Referring now to the FIGS. 7 and 8, a second embodiment of a compression-molded, sandwich-type composite component, generally indicated at 110, is shown. FIG. 6 shows a stack of thermoplastic-based and cellulose-based sheets or layers of material prior to the stack being compression molded into the composite panel or component 110. It is to be understood that one or more of such panels or components constructed in accordance with at least one embodiment of the present invention may be used in a wide variety of environments including an automotive vehicle environment. For example, the panel or component 110 may be a load-bearing vehicle component as shown or an interior trim component.


The component 110 is typically manufactured via a thermo-compression process by providing the stack of material located or positioned within a low pressure, thermo-compression mold either generally of the type shown at 20 in FIG. 4 (without vacuum) or generally of the type shown at 20′ in FIG. 5 (with vacuum). As shown in FIG. 6, the stack includes first and second reinforced thermoplastic skins or outer layers 112 and 114, respectively, a cellulose-based core having a large number of cavities such as a paper or cardboard cellular core 116 disposed between and bonded to plys or films or sheets of hot-melt adhesive (i.e. thermoplastic adhesive) 118 and 120 which, in turn, are disposed between and bonded to the skins 112 and 114 by the press or compression molding. The sheets 118 and 120 may be bonded to their respective skins 112 and 114 prior to the press molding or are preferably bonded during the press molding. The thermoplastic of the sheets 118 and 120 is typically compatible with the thermoplastic of the skins 112 and 114 so that a strong bond is formed therebetween. One or more other resins may also be included within the adhesive of the sheets 118 and 120 to optimize the resulting adhesive system. The adhesive system is not a solvent-based adhesive system.


The skins 112 and 114 and their respective sheets or film layers 118 and 120 (with the core 116 in between the layers 118 and 120) are heated typically outside of the mold (i.e. in an oven) to a softening temperature wherein the hot-melt adhesive becomes sticky or tacky. The mold is preferably a low-pressure, compression mold which performs a thermo-compression process on the stack of materials.


The step of applying the pressure compacts and reduces the thickness of the cellular core 116 and top and bottom surface portions of the cellular core 116 penetrate and extend into the film layers 118 and 120 without penetrating into and possibly encountering any fibers located at the outer surfaces of the skins 112 and 114 thereby weakening the resulting bond. Often times the fibers in the skins 112 and 114 are located on or at the surfaces of the skins as shown by skins 112′ and 112″ in FIGS. 9 and 10, respectively, wherein the fibers are substantially parallel and randomly oriented, respectively.


The cellulose-based, cellular core 116 may be a honeycomb core. In this example, the cellular core has an open-celled structure of the type made up of a tubular honeycomb, and it is made mainly of cellulose and preferably of paper or cardboard. The sticky or tacky hot-melt adhesive extends a small amount into the open cells during the thermo-compression process. It is also possible to use a cellular structure having closed cells, a material, such as a wooden part, to which the top and bottom film layers 118 and 120, respectively, are bonded. The skins 112 and 114 are bonded to the top and bottom surfaces of the core 116 by the sheets 118 and 120 to seal the cavities of the core 116. Air in the sealed cavities urges softened portions of the sheets 118 and 120 and portions of the core 116 inwardly towards the cavities of the core 116 as the air cools to inhibit debossing and improve surface appearance of a first outer surface of the stack. A mold such as the mold 20′ of FIG. 5 (with vacuum) may be used to prevent debossing and improve surface appearance at the first outer surface.


Each of the skins 112 and 114 may be fiber reinforced. The thermoplastic of the sheets or film layers 118 and 120, and the skins 112 and 114 may be polypropylene. Alternatively, the thermoplastic may be polycarbonate, polyimide, acrylonitrile-butadiene-styrene as well as polyethylene, polyethylene terphthalate, polybutylene terphthalate, thermoplastic polyurethanes, polyacetal, polyphenyl sulphide, cyclo-olefin copolymers, thermotropic polyesters and blends thereof. At least one of the skins 112 or 114 may be woven skin, such as polypropylene skin. Each of the skins 112 and 114 may be reinforced with fibers, e.g., glass fibers, carbon fibers, aramid and/or natural fibers. At least one of the skins 112 and 114 can advantageously be made up of woven glass fiber fabric and of a thermoplastics material.


The resulting panel 110 may have a thickness in the range of 5 to 25 mm.


In one example method of making the panel 110, a stack of material may be pressed in a low pressure, cold-forming mold (not shown). The stack is made up of the first skin 112, the first film layer 118, the paper cellular core 116, the second film layer 120 and the second skin 114, and is pressed at a pressure lying in the range of 10×105 Pa. to 30×105 Pa. The first and second skins 112 and 114, and the first and second film layers 118 and 120 are preferably pre-heated to make them malleable and stretchable. Advantageously, in order to soften the first and second skins 112 and 114, and their respective film layers 118 and 120, respectively, heat is applied to a pre-assembly made up of at least the first skin 112, the first film layer 118, the paper cellular core 116, the second skin 114 and the second film layer 120 so that, while the panel 110 is being formed in the mold, the first and second skins 112 and 114 and the film layers 118 and 120 have a forming temperature lying approximately in the range of 160° C. to 200° C., and, in this example, about 180° C.


While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims
  • 1. A method of making a sandwich-type, compression-molded, composite component having improved surface appearance, the method comprising: heating a blank or stack of sandwich material including first and second reinforced thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core positioned between the skins and between the sheets and having a plurality of cavities, the skins, the sheets and the core being heated to a softening temperature of the thermoplastics;providing a compression mold including component-forming, upper and lower dies with opposing molding surfaces cooperating to define a mold cavity having a shape substantially corresponding to a desired shape of the component;placing the blank or stack on the lower die in an open position of the mold;moving the dies toward each other until the mold is in a closed position; andallowing the heated blank or stack to cool in the mold cavity in the closed position until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal the core cavities, air in the sealed cavities urging softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools; andapplying a vacuum at the first outer surface of the blank or stack in the mold cavity sufficient to prevent debossing and improve appearance of the first outer surface during the step of allowing.
  • 2. The method as claimed in claim 1, wherein the first outer surface is an A-surface.
  • 3. The method as claimed in claim 1, further comprising sealing the mold cavity from the surrounding atmosphere during the step of applying.
  • 4. The method as claimed in claim 1, further comprising applying a vacuum at a second outer surface of the stack or blank in the mold cavity to prevent debossing and improve appearance of the second outer surface during the step of allowing.
  • 5. The method as claimed in claim 1, wherein the core is a cellular core.
  • 6. The method as claimed in claim 5, wherein the cellular core is a honeycomb core.
  • 7. The method as claimed in claim 1, wherein each of the skins is fiber reinforced.
  • 8. The method as claimed in claim 1, wherein the thermoplastic of the skins is polypropylene.
  • 9. The method as claimed in claim 1, wherein the component has a thickness in the range of 5 to 25 mm.
  • 10. The method as claimed in claim 1, wherein at least one of the skins is a woven skin.
  • 11. The method as claimed in claim 1, wherein the step of heating is performed outside the mold.
  • 12. A method of making a sandwich-type, compression-molded, composite component having improved surface appearance and for use in a vehicle, the method comprising: heating a blank or stack of sandwich material including first and second reinforced thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core positioned between the skins and between the sheets and having a plurality of cavities, the skins, the sheets and the core being heated to a softening temperature of the thermoplastics;providing a compression mold including component-forming, upper and lower dies with opposing molding surfaces cooperating to define a mold cavity having a shape substantially corresponding to a desired shape of the component;placing the blank or stack on the lower die in an open position of the mold;moving the dies toward each other until the mold is in a closed position; andallowing the heated blank or stack to cool in the mold cavity in the closed position until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal the core cavities, air in the sealed cavities urging softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools; andapplying a vacuum at the first outer surface of the stack or blank in the mold cavity sufficient to prevent debossing and improve appearance of the first outer surface during the step of allowing.
  • 13. The method as claimed in claim 12, wherein the first outer surface is an A-surface.
  • 14. The method as claimed in claim 12, further comprising sealing the mold cavity from the surrounding atmosphere during the step of applying.
  • 15. The method as claimed in claim 12, further comprising applying a vacuum at a second outer surface of the stack or blank in the mold cavity to prevent debossing and improve appearance of the second outer surface during the step of allowing.
  • 16. A method of making a sandwich-type, compression-molded, composite component having improved surface appearance for use in the interior of a vehicle, the method comprising: heating a blank or stack of sandwich material including first and second reinforced thermoplastic skins, first and second sheets of thermoplastic adhesive and a cellulose-based core positioned between the skins and between the sheets and having a plurality of cavities, the skins, the sheets and the core being heated to a softening temperature of the thermoplastics;providing a compression mold including component-forming, upper and lower dies with opposing molding surfaces cooperating to define a mold cavity having a shape substantially corresponding to a desired shape of the component;placing the blank or stack on the lower die in an open position of the mold;moving the dies toward each other until the mold is in a closed position; andallowing the heated blank or stack to cool in the mold cavity in the closed position until inner surfaces of the skins are bonded to top and bottom surfaces of the core by the sheets to seal the core cavities, air in the sealed cavities urging softened portions of the sheets and portions of the core inwardly towards the cavities of the core as the air in the cavities cools; andapplying a vacuum at the first outer surface of the stack or blank in the mold cavity sufficient to prevent debossing and improve appearance of the first outer surface during the step of allowing.
  • 17. The method as claimed in claim 16, further comprising applying a vacuum at a second outer surface of the stack or blank in the mold cavity to prevent debossing and improve appearance of the second outer surface during the step of allowing.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No. 13/762,956 filed Feb. 8, 2013.

US Referenced Citations (167)
Number Name Date Kind
3568254 Stolki Mar 1971 A
3651563 Volkmann Mar 1972 A
3750525 Waters et al. Aug 1973 A
3955266 Honami et al. May 1976 A
4175995 Walter Nov 1979 A
4204822 Hewitt May 1980 A
4550854 Schellenberg Nov 1985 A
4717612 Shackelford Jan 1988 A
4836380 Walter et al. Jun 1989 A
4941785 Witten Jul 1990 A
5022943 Zaima Jun 1991 A
5026445 Mainolfi et al. Jun 1991 A
5074726 Betchel et al. Dec 1991 A
5143778 Shuert Sep 1992 A
5198175 Kato et al. Mar 1993 A
5217563 Niebling et al. Jun 1993 A
5253962 Close, Jr. Oct 1993 A
5298694 Thompson et al. Mar 1994 A
5316604 Fell May 1994 A
5370521 McDougall Dec 1994 A
5417179 Niemier et al. May 1995 A
5423933 Horian Jun 1995 A
5474008 Vespoli et al. Dec 1995 A
5502930 Burkette et al. Apr 1996 A
5534097 Fasano et al. Jul 1996 A
5683782 Duchene Nov 1997 A
5700050 Gonas Dec 1997 A
5744210 Hofmann et al. Apr 1998 A
5750160 Weber et al. May 1998 A
5911360 Schellenberg Jun 1999 A
5915445 Rauenbusch Jun 1999 A
5928735 Padmanabhan et al. Jul 1999 A
5979962 Valentin et al. Nov 1999 A
6050630 Hochet Apr 2000 A
6066217 Dibble et al. May 2000 A
6102464 Schneider et al. Aug 2000 A
6102630 Flolo Aug 2000 A
6280551 Hilligoss Aug 2001 B1
6435577 Renault Aug 2002 B1
6537413 Hochet et al. Mar 2003 B1
6546694 Clifford Apr 2003 B2
6615762 Scott Sep 2003 B1
6631785 Khambete et al. Oct 2003 B2
6655299 Preisler et al. Dec 2003 B2
6659223 Allison et al. Dec 2003 B2
6682675 Vandangeot et al. Jan 2004 B1
6682676 Renault et al. Jan 2004 B1
6748876 Preisler et al. Jun 2004 B2
6752443 Thompson et al. Jun 2004 B1
6790026 Vandangeot et al. Sep 2004 B2
6793747 North et al. Sep 2004 B2
6823803 Preisler Nov 2004 B2
6825803 Wixforth et al. Nov 2004 B2
6843525 Preisler Jan 2005 B2
6890023 Preisler et al. May 2005 B2
6905155 Presley et al. Jun 2005 B1
6926348 Krueger et al. Aug 2005 B2
6945594 Bejin et al. Sep 2005 B1
6981863 Renault et al. Jan 2006 B2
7014259 Heholt Mar 2006 B2
7059646 DeLong et al. Jun 2006 B1
7059815 Ando et al. Jun 2006 B2
7090274 Khan et al. Aug 2006 B1
7093879 Putt et al. Aug 2006 B2
7121128 Kato et al. Oct 2006 B2
7121601 Mulvihill et al. Oct 2006 B2
7188881 Sturt et al. Mar 2007 B1
7204056 Sieverding Apr 2007 B2
7207616 Sturt Apr 2007 B2
7222915 Philippot et al. May 2007 B2
7264685 Katz et al. Sep 2007 B2
7320739 Thompson, Jr. et al. Jan 2008 B2
7393036 Bastian et al. Jul 2008 B2
7402537 Lenda et al. Jul 2008 B1
7419713 Wilkens et al. Sep 2008 B2
7530322 Angelini May 2009 B2
7628440 Bernhardsson et al. Dec 2009 B2
7713011 Orszagh et al. May 2010 B2
7837009 Gross et al. Nov 2010 B2
7854211 Rixford Dec 2010 B2
7909379 Winget et al. Mar 2011 B2
7918313 Gross et al. Apr 2011 B2
7919031 Winget et al. Apr 2011 B2
7942475 Murray May 2011 B2
7963243 Quigley Jun 2011 B2
8052237 Althammer et al. Nov 2011 B2
8062762 Stalter Nov 2011 B2
8069809 Wagenknecht et al. Dec 2011 B2
8117972 Winget et al. Feb 2012 B2
8133419 Burks et al. Mar 2012 B2
8262968 Smith et al. Sep 2012 B2
8298675 Alessandro et al. Oct 2012 B2
8316788 Willis Nov 2012 B2
8475884 Kia Jul 2013 B2
8622456 Preisler et al. Jan 2014 B2
8651549 Raffel et al. Feb 2014 B2
8690233 Preisler et al. Apr 2014 B2
8764089 Preisler et al. Jul 2014 B2
8795465 Preisler et al. Aug 2014 B2
8795807 Preisler et al. Aug 2014 B2
8808827 Preisler et al. Aug 2014 B2
8808828 Preisler et al. Aug 2014 B2
8808829 Preisler et al. Aug 2014 B2
8808830 Preisler et al. Aug 2014 B2
8808831 Preisler et al. Aug 2014 B2
8808833 Preisler et al. Aug 2014 B2
8808834 Preisler et al. Aug 2014 B2
8808835 Preisler et al. Aug 2014 B2
8834985 Preisler et al. Sep 2014 B2
8852711 Preisler et al. Oct 2014 B2
8859074 Preisler et al. Oct 2014 B2
8883285 Preisler et al. Nov 2014 B2
9302315 Verbeek et al. Apr 2016 B2
9364975 Preisler et al. Jun 2016 B2
20040078929 Schoemann Apr 2004 A1
20050189674 Hochet et al. Sep 2005 A1
20060008609 Snyder et al. Jan 2006 A1
20060185866 Jeong et al. May 2006 A1
20060121244 Godwin et al. Jun 2006 A1
20060255611 Smith et al. Nov 2006 A1
20070065264 Sturt et al. Mar 2007 A1
20070069542 Steiger et al. Mar 2007 A1
20070256379 Edwards Nov 2007 A1
20070258786 Orszagh et al. Nov 2007 A1
20080169678 Ishida et al. Jul 2008 A1
20080193256 Neri Aug 2008 A1
20080185866 Jeong et al. Nov 2008 A1
20090108639 Sturt et al. Apr 2009 A1
20100026031 Jouraku Feb 2010 A1
20100086728 Theurl et al. Apr 2010 A1
20100170746 Restuccia et al. Jul 2010 A1
20100206467 Durand et al. Aug 2010 A1
20110260359 Durand et al. Oct 2011 A1
20110315310 Trevisan et al. Dec 2011 A1
20120247654 Piccin et al. Oct 2012 A1
20120315429 Stamp et al. Dec 2012 A1
20130031752 Davies Feb 2013 A1
20130075955 Piccin et al. Mar 2013 A1
20130137798 Piccin May 2013 A1
20130278002 Preisler et al. Oct 2013 A1
20130278003 Preisler et al. Oct 2013 A1
20130278007 Preisler et al. Oct 2013 A1
20130278008 Preisler et al. Oct 2013 A1
20130278009 Preisler et al. Oct 2013 A1
20130278015 Preisler et al. Oct 2013 A1
20130278018 Preisler et al. Oct 2013 A1
20130278019 Preisler et al. Oct 2013 A1
20130278020 Preisler et al. Oct 2013 A1
20130280459 Nakashima et al. Oct 2013 A1
20130280469 Preisler et al. Oct 2013 A1
20130280472 Preisler et al. Oct 2013 A1
20130312652 Preisler et al. Nov 2013 A1
20130316123 Preisler et al. Nov 2013 A1
20130333837 Preisler et al. Dec 2013 A1
20130341971 Masini et al. Dec 2013 A1
20140077518 Preisler et al. Mar 2014 A1
20140077530 Preisler et al. Mar 2014 A1
20140077531 Preisler et al. Mar 2014 A1
20140154461 Preisler et al. Jun 2014 A1
20140225296 Preisler et al. Aug 2014 A1
20140335303 Preisler et al. Nov 2014 A1
20150130105 Preisler et al. May 2015 A1
20150130220 Preisler et al. May 2015 A1
20150130221 Preisler et al. May 2015 A1
20150130222 Preisler et al. May 2015 A1
20150132532 Preisler et al. May 2015 A1
20160059446 Lofgren Mar 2016 A1
Non-Patent Literature Citations (43)
Entry
Office Action; U.S. Appl. No. 13/762,956; notification date Apr. 17, 2015.
Office Action; U.S. Appl. No. 14/603,413; notification date Apr. 23, 2015.
Notice of Allowance and Fee(S) Due; related U.S. Appl. No. 14/087,563; date of mailing Mar. 3, 2016.
Corrected Notice of Allowability; related U.S. Appl. No. 14/603,401; dated Jun. 23, 2016.
Dffice Action; related U.S. Appl. No. 14/603,418; dated Jun. 16, 2016.
Notice of Allowance and Fee(S) Due; related U.S. Appl. No. 14/444,164; dated Jul. 15, 2016.
Dffice Action; related U.S. Appl. No. 14/603,397; dated Jul. 21, 2016.
Notice of Allowance and Fee(S) Due; related U.S. Appl. No. 14/087,591; date mailed Mar. 12, 2015.
Non-Final Office Action, related U.S. Appl. No. 13/762,879; dated Feb. 13, 2015.
Non-Final Office Action, related U.S. Appl. No. 13/479,974; dated Feb. 13, 2015.
Notice of Allowance and Fee(S) Due; related U.S. Appl. No. 13/603,552; dated Feb. 18, 2015.
Office Action; Related U.S. Appl. No. 13/479,974; Date of mailing Oct. 15, 2014.
Office Action; related U.S. Appl. No. 13/479,974; date of mailing Mar. 20, 2014.
Office Action; related U.S. Appl. No. 13/686,362; date of mailing Mar. 25, 2014.
Office Action; related U.S. Appl. No. 13/523,253; date of mailing Mar. 25, 2014.
Office Action; related U.S. Appl. No. 13/688,972; date of mailing Mar. 28, 2014.
Office Action; related U.S. Appl. No. 13/687,232; date of mailing Mar. 28, 2014.
Office Action; related U.S. Appl. No. 13/689,809; date of mailing Mar. 31, 2014.
Office Action; related U.S. Appl. No. 13/687,213; date of mailing Mar. 31, 2014.
Office Action; related U.S. Appl. No. 13/690,265; date of mailing Mar. 31, 2014.
Office Action; related U.S. Appl. No. 13/762,904; date of mailing Apr. 8, 2014.
Office Action; related U.S. Appl. No. 13/762,800; date of mailing Apr. 8, 2014.
Office Action; related U.S. Appl. No. 13/762,861; date of mailing Apr. 9, 2014.
Office Action; related U.S. Appl. No. 13/690,566; date of mailing Apr. 9, 2014.
Office Action; related U.S. Appl. No. 13/762,832; date of mailing Apr. 11, 2014.
Office Action; related U.S. Appl. No. 13/762,921; date of mailing Apr. 14, 2014.
Notice of Allowance; related U.S. Appl. No. 13/686,388; date of mailing Apr. 15, 2014.
Related U.S. Appl. No. 13/690,566, filed Nov. 30, 2012.
Related U.S. Appl. No. 13/762,921, filed Feb. 8, 2013.
Related U.S. Appl. No. 13/762,956, filed Feb. 8, 2013.
Office Action; related U.S. Appl. No. 13/453,201 (now USPN 8,690,233); date of mailing Nov. 20, 2013.
Office Action; related U.S. Appl. No. 13/523,209 (now USPN 8,622,456) date of mailing Apr. 29, 2013.
Office Action; related U.S. Appl. No. 14/087,563; notification date Jul. 20, 2015.
Office Action; related U.S. Appl. No. 13/762,879; notification date Jul. 31, 2015.
Notice of Allowance and Fee(S) Due; related U.S. Appl. No. 14/087,579; date mailed Aug. 3, 2015.
Notice of Allowance and Fee(S) Due; related U.S. Appl. No. 14/603,397; date mailed Oct. 17, 2016.
Office Action; related U.S. Appl. No. 14/603,407; notification date Oct. 4, 2016.
Office Action; related U.S. Appl. No. 14/603,430; notification date Sep. 14, 2016.
Office Action; related U.S. Appl. No. 14/603,404; notification date Aug. 25, 2016.
Decision on Appeal mailed Apr. 24, 2017 for U.S. Appl. No. 13/762,956, filed Feb. 8, 2013, 7 pgs.
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,404; date mailed Dec. 2, 2016.
Non-Final Office Action; related U.S. Appl. No. 15/337,013; notification date Dec. 27, 2016.
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,418; date mailed Dec. 28, 2016.
Related Publications (1)
Number Date Country
20150130105 A1 May 2015 US
Continuation in Parts (1)
Number Date Country
Parent 13762956 Feb 2013 US
Child 14603430 US