Method of making a tack-free gel

Abstract
A process of making a tack-free gel is disclosed comprising the steps of providing a mold defining a mold cavity, the mold cavity comprising a plastic material; pouring or injecting a molten gel having a high molding temperature into the mold cavity; and forming the tack-free gel as a thin layer of plastic of the mold cavity is melted over the gel. The forming step further comprises cooling the gel from the molten state to a solidified state. The melting temperature of the plastic material is lower than the molding temperature of the gel; and the higher the temperature differential, the greater the melting of the plastic material and the thicker the layer of the plastic material on the surface of the gel. The mold may be formed of low-density polyethylene (LDPE).
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention generally relates to gels having tacky surfaces and, more specifically, to surface treatments which will render the gel tack-free.


2. Discussion of Related Art


A “gel” is often defined as a semisolid condition of a precipitated or coagulated colloid. Within this definition, gels can differ widely. On one end of the spectrum gels are more fluid in nature but have some solid properties. An example of such a gel might be a gel toothpaste. At the opposite end of the spectrum, the gels are considered solids with some fluid properties.


It is toward this end of the spectrum that gels are commonly used to facilitate load distribution. Gels enhance this function by offering a high degree of compliance which basically increases the amount of area available to support a load. With an increased area of support, the load is accommodated at a considerably reduced pressure. Particularly where the human body is involved, a reduced pressure is desirable in order to maintain capillary blood flow in body tissue. It is with this in mind that gels are commonly used for bicycle seats, wrist pads, insole supports, as well as elbow and shoulder pads.


While the advantageous properties of gels have made them candidates for many applications, one disadvantage has seriously limited their use. Most gels are extremely tacky. This characteristic alone makes them difficult to manufacture and aggravating to use.


Attempts have been made to produce gels that are naturally non-tacky. But such attempts unfortunately have resulted in an intolerable sacrifice of the advantageous properties. Attempts have been made to enclose the gels in a non-tacky pouch. This has also tended to mask the advantageous properties and to significantly increase manufacturing costs. Powders and lubricants have been applied to the tacky surfaces with results limited in both duration and effect.


Gels have also been of particular interest in the formation of seals where the high compliance and extensive elongation of the gel are of considerable value. Such is the case with seals used in trocars and other surgical access devices, where a seal must be formed both in the presence of a surgical instrument and in the absence of a surgical instrument.


In general, a trocar is a surgical device intended to provide tubular access for surgical instruments across a body wall, such as the abdominal wall, and into a body cavity, such as the abdominal cavity. Often, the body cavity is pressurized with a gas, typically carbon dioxide, to enlarge the operative volume of the working environment. Under these conditions, the trocar must include appropriate seals to inhibit loss of the pressurizing gas through the trocar. Thus, a zero seal must be provided to seal the working channel of the trocar in the absence of the instrument, and an instrument seal must be provided to seal the working channel in the presence of the instrument.


Most recently, both zero seals and instrument seals have been provided by a pair of rollers disposed on opposing sides of the working channel. The rollers have been formed of a gel material providing a high degree of compliance, significant tear strength and exceptional elongation. As noted, however, the best gel materials tend to exhibit surfaces that are very tacky. The use of a tacky gel can make the processes of manufacturing and using the gel seals extremely difficult. The disadvantages are increasing in this application, where a tacky gel also produces significant drag forces during instrument insertion. Furthermore, the tacky surfaces tend to draw and retain particulate matter during the manufacturing and handling processes. For these reasons it has been even more desirable to render the highly tacky gel surfaces non-tacky in the case of medical devices such as trocars.


Many attempts have been made to facilitate handling the rollers during manufacture and to lower instrument drag forces during use. For example, use of lubricants such as silicone oil, KY jelly, and Astroglide, have been applied to the surface to reduce tackiness. Unfortunately, these lubricants tend to dry out over time leaving the gel in its natural tacky state. Non-tacky gels have also been investigated. The non-tacky gels, however, are not particularly heat tolerant, as low amounts of heat can rapidly cause the materials to take a set and distort particularly under compressive loads. This can occur over an extended period of time, for example, even at normal room temperatures.


SUMMARY OF THE INVENTION

In accordance with the present invention, a gel material having all of the advantageous properties previously discussed is further blessed with a non-tacky surface that can be provided at the earliest possible opportunity, during the molding step of the manufacturing process. From the time when the molten gel material first achieves its solid characteristics, it is provided with a non-tacky surface. In the case of a trocar seal, significant drag forces are avoided during the process of instrument insertion. Moreover, the advantages of high compliance, significant tear strength, and exceptional elongation are maintained without any of the disadvantages associated with a tacky device.


In a first aspect of the invention, a process of making a tack-free gel is disclosed comprising the steps of providing a mold defining a mold cavity, the mold cavity comprising a plastic material; pouring or injecting a molten gel having a high molding temperature into the mold cavity; and forming the tack-free gel as a thin layer of plastic of the mold cavity is melted over the gel. More specifically, the forming step further comprises cooling the gel from the molten state to a solidified state. The mold providing step may further comprise the step of injecting or spraying the mold cavity with the plastic material. It is appreciated that the melting temperature of the plastic material is lower than the molding temperature of the gel and, in this aspect, the difference in the melting temperature of the plastic material and the molding temperature of the gel is in a range of about 20° F. to about 100° F. It should be noted that the higher the temperature differential, the greater the melting of the plastic material and the thicker the layer of the plastic material on the surface of the gel.


The mold may be formed of low-density polyethylene (LDPE) and has a melting temperature of about 240° F. With the process of the invention, the heat of the molten gel at its molding temperature is transferred to the surface of the LDPE mold so as to melt a thin layer of the LDPE. The solidified gel may be a cylindrical shape having a first opposing end, a second opposing end and a cylindrical body. The mold may comprise a mold base having a plurality of mold holes forming a plurality of mold cavities, each of the mold holes comprising an axial pin to mold an axial hole through a center of the gel, an LDPE cylinder providing a predetermined inside diameter for the mold, and an LDPE disc mounted on the axial pin and disposed at the bottom of each mold cavity in the mold base. After each molding process, the LPDE cylinder may be replaced. The process of the invention may further comprise the step of dabbing at least one of the opposing ends in a low-friction powder such as polytetrafluoroethylene (PTFE) and a lubricant. In another aspect, the mold may further comprise a mold top disposed axially of the mold base and comprises a plurality of holes forming a plurality of cavities, each of the mold top holes is adapted to receive the LDPE cylinder, and a second LDPE disc disposed at the top of each mold cavity of the mold top.


In another aspect of the invention, the plastic material may be formed from at least one of PVC, ABS, acrylic, polycarbonate, clear polycarbonate, Delrin, acetal, polypropylene and high-density polyethylene (HDPE). The process of the invention may further comprise the step of tumbling or coating the gel in a lubricious material, applying a lubricious coating to the gel in a vacuum deposition process, dipping the gel in a lubricious material, or spraying the solidified gel with a lubricious material to further facilitate the non-tackiness surface of the gel. The lubricious material includes Parylene.


In yet another aspect of the invention, a process of making a tack-free gel by co-extrusion is disclosed comprising the steps of extruding an elongate sleeve formed of a plastic material around a molten gel having a high molding temperature, the elongate sleeve having an axis and a diameter; pressurizing the molten gel to control the diameter of the filled elongate sleeve; and cooling the filled elongate sleeve to form the tack-free gel. The plastic material of the elongate sleeve may be low-density polyethylene (LDPE). The process may further comprise the step of radially cutting the elongate sleeve into individual segments having predetermined lengths, and removing the gel by squeezing the sleeve and pulling the gel from the sleeve. With this aspect of the invention, the gel may have a cylindrical shape having a first opposing end, a second opposing end and a cylindrical body. The process may further comprise the step of dabbing at least one of the opposing ends in a low-friction powder, which may include at least one of polytetrafluoroethylene (PTFE) and a lubricant, tumbling or coating the gel in a lubricious material, applying a lubricious coating to the gel in a vacuum deposition process, dipping the gel in a lubricious material, or spraying the gel with a lubricious material. The lubricious material includes Parylene.


Another aspect of the invention is directed to a trocar being adapted to provide access for a surgical instrument through a body wall and into a body cavity, the trocar comprising a cannula having a proximal end and a distal end, a seal housing communicating with the cannula to define a working channel, a seal assembly disposed within the seal housing, at least one roller included in the seal assembly and having an axle supported by the seal housing, and the roller having a tack-free surface and properties for forming a zero seal in the absence of the instrument, and an instrument seal in the presence of the instrument. With this aspect, the roller is pivotal with the axle relative to the seal housing. The tack-free surface may be formed of LDPE, and the roller may further comprise a lubricious coating including at least one of polytetrafluoroethylene (PTFE) low-friction powder or a lubricant including Parylene.


In a final aspect, a medical access device is disclosed comprising a tubular member having an elongate configuration, at least one wall defining with the tubular member a working channel sized and configured to receive an instrument, and a gel disposed in the working channel and being adapted to form a seal with any instrument disposed in the working channel, wherein the gel includes a non-tacky film to facilitate movement of any instrument through the working channel. It is appreciated that the film may be formed by a fluoropolymer including polytetrafluoroethylene (PTFE). The non-tacky film may be applied as a powder or as a tape over the gel. It is further appreciated that the gel and non-tacky film may have properties including an elongation up to about 1500 percent, and that the gel may be coated with a lubricant including Parylene.


These and other features of the invention will become more apparent with a description of the various embodiments and reference to the associated drawings.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included in and constitute a part of this specification, illustrate the embodiments of the invention and, together with the description, explain the features and principles of the invention. In the drawings:



FIG. 1
a is a side elevation view partially in cross-section of a trocar with a roller seal assembly;



FIG. 1
b is a side elevation view of the trocar illustrated in FIG. 1a;



FIG. 2
a is a perspective view of a plastic mold with multiple mold cavities;



FIG. 2
b is a perspective view of a gel roller with an outer layer of mold plastic;



FIG. 2
c is a perspective view of a metal mold and multiple cylinders and discs each associated with an individual mold cavity;



FIG. 2
d is a perspective view showing the mold cylinders disposed in the mold base;



FIG. 3 is a side elevation view illustrating a step of dabbing a tacky gel surface into powder;



FIG. 4 is a side elevation view similar to FIG. 1b and illustrating a single low friction disc mounted between a tacky roller surface and the seal housing;



FIG. 5 is a schematic view illustrating co-extrusion of an LDPE sleeve and a gel;



FIG. 6 is a perspective view of base and top molds used in an injection molding operation;



FIG. 7 illustrates a method for applying a coating by vacuum deposition;



FIG. 8 is a perspective view illustrating application of a coating in a dipping process;



FIG. 9 is a perspective view illustrating application of a coating by spraying;



FIG. 10 is a perspective view illustrating an application of a coating by tumbling;



FIG. 11 is a perspective view of a hand port wherein a gel seal is overlayed with a fluoropolymer film; and



FIG. 12 is a cross-section view taken along lines 12-12 of FIG. 11.





DESCRIPTION OF THE INVENTION

A trocar is illustrated in FIG. 1 and designated by the reference numeral 10. The trocar 10 is an access device commonly used in surgeries to provide a working channel 12 across a body wall and into a body cavity. The working channel 12 in this case is defined by a cannula 14 and a seal housing 16. Within the seal housing, a seal apparatus 18 is formed by a pair of opposing rollers 21 and 23. These rollers 21 and 23 are typically formed of a gel material 30 that provides the seal apparatus 18 with a high degree of compliance, significant tear strength and exceptional elongation. In this case, the gel rollers 21 and 23 are merely representative of any gel structure adapted for use in a medical device, such as the trocar 10.


The gel materials contemplated for the rollers 21 and 23 typically have a high melting temperature and exhibit a tacky surface as previously discussed. These two properties, normally considered disadvantages, become advantages in a method of manufacture of the invention. In this case, the gel at a high molding temperature and liquid state, is brought into contact with a plastic molding material having a melting temperature less than the molding temperature of the gel 30.


A roller mold 25 is illustrated in FIG. 2a with a plurality of mold cavities or holes 27. In this case, the mold 25 is formed entirely of a plastic material 26 which defines each of the cylindrical mold cavities 27. The gel 30 in its high temperature liquid state is poured into each of the mold holes 27 to form one of the rollers 21, 23. At the high molding temperature, the gel 30 initially melts a thin layer 32 of the mold plastic 26 which cools onto the gel surface as illustrated in FIG. 2b. In this process, it is believed that the tacky properties of the gel 30 attract and hold this thin layer 32 of plastic thereby resulting in a non-tacky surface on the gel 30.


With the process of the invention, it is desirable that the melting temperature of the plastic material 26 be only slightly lower than the molding temperature of the gel 30. In one aspect, the differential in temperature is in a range of about 20° F. to about 100° F. It is anticipated that the higher this temperature differential, the greater the melting of the plastic material, thereby resulting in a thicker layer of the plastic material on the surface of the gel.


In one example, a gel can be chosen with a gel molding temperature of about 450° F. A mold 25 formed of a non-metal, plastic material such as low-density polyethylene (LDPE) having a melting temperature of about 240° F. is particularly suited for this process. With the mold at room temperature, and the liquid gel heated to its molding temperature, the gel can be poured into the mold cavities. During and after this molding step, the heat of the liquid gel at its molding temperature is transferred to the surface of the plastic mold and in fact melts a thin layer of the LDPE. At this point, the mold 25 and gel 30 rapidly cool and the melted LDPE forms the thin layer 32 on the outer surface of the solidified gel 30. As the gel solidifies, its naturally tacky surface attracts and holds the thin LDPE layer 32 to the outer surface. This thin layer 32 of LDPE provides the resulting gel roller 21 with a non-tacky surface.


Using the mold formed entirely of the LDPE plastic will gradually increase the size of the mold cavities 27 as succeeding interior layers 32 of the LDPE are removed from the mold cavities 27. One way of addressing this problem is to provide a mold base 41 having a plurality of mold holes 43 as illustrated in FIG. 2c. In this case, the mold holes 43 are formed with an axial pin 45 which can be used to mold an axial hole through the center of the roller 21. Each of the mold holes 43 in the base 41 can then be lined with an LDPE cylinder 47 providing a predetermined inside diameter for the mold. In addition, an LDPE disc 50 can be mounted on the pin 45 and disposed in the bottom of each mold cavity 43 in the base 41. In this case, the cylinder 47 and disc 50 provide the preferred mold cavities 27 found of LDPE and ready to receive the gel 30.


With this mold base 41 appropriately filled with the LDPE cylinders 47 and discs 50, the molten gel 30 can be poured into the top of each cylinder 47 to mold each roller 21 with a cylindrical outer surface 52 and an axial pin 45. In the manner previously discussed, the high temperature of the molten gel will melt a layer off the inside of the LDPE cylinder 47 and disc 50 to provide a non-tacky surface on each roller 21. One advantage provided by the method illustrated in FIG. 3 is that the LDPE cylinders 47 can be discarded after each molding process and replaced with new LDPE cylinders 47 having the predetermined diameter.


It will be noted that in the absence of an LDPE disc on the top of the mold cavity, one end 56 of the roller 21 will maintain its tacky properties. Although the single tacky end 56 may not be particularly detrimental in use, there are several methods that can be implemented to make the tacky end 56 less tacky. For example, this end 56 can be dabbed in a low friction powder 57, such as PTFE, as shown in FIG. 3. Also, the tacky end 56 can be lubricated to make it less tacky. As a third alternative, the tacky end 56 of the roller 21 can be mounted in the trocar 10 adjacent to a low friction disc 58 as illustrated in FIG. 4.


An alternative method for constructing the rollers 21, 23 with a non-tacky surface might involve the use of co-extrusion techniques. In such a process, illustrated in FIG. 5, an elongate sleeve 61 of LDPE can be extruded around the molten gel 30. In this case, the gel 30 can be pressurized to control the diameter of the filled sleeve 61. After the filled sleeve 61 is permitted to cool, it can be radially cut into individual segments 62 having a predetermined length as illustrated in FIG. 5. The gel 30 can be removed by merely squeezing the sleeve 61 and pulling the gel 30 from the sleeve. Once removed, the gel roller 21 will have an outer cylindrical surface 63 with an LDPE coating 65, and a pair of opposing ends 67 and 70. In this process, both of the ends 67 and 70 of the roller 21 will be uncoated and will therefore have tacky surfaces. These two ends 67, 70 can be addressed in the manner previously discussed with reference to the roller end 56 in FIG. 3.


Another process which might be used to eliminate the tacky ends of the roller 21, might be an injection molding process such as that illustrated in FIG. 6. In this case both a mold base 72 and a mold top 74 are provided to receive an LDPE cylinder 74 and a pair of LDPE discs 76 and 78, one on each end of the cylinder 74. Rather than pouring the molten gel 30 into the open top of the cylinder as illustrated in FIG. 2, the molten gel 30 in this process would be injected into the LDPE mold cavity 43. The resulting gel roller 21 would have all of its surfaces, including both ends, coated with a thin layer of LPDE.


The foregoing processes have been discussed with respect to a single plastic, namely low density polyethylene. It is apparent that other types of plastics might be similarly used to provide the desired non-tacky surface for the gel compounds. Other plastics which might be of advantage in this process could include for example, PVC, ABS, acrylic, polycarbonate, clear polycarbonate, “Delrin” (a trademark of Dupont), acetyl, polypropylene, and high density polyethylene (HDPE). Of this group of plastics, the HDPE appears to reduce the tackiness of the gel surface to the greatest extent.


Other types of coatings can be applied to either a tacky or non-tacky surface of the roller 21. One highly lubricious coating is that manufactured and sold by Para Tech Coating, Inc. under the trademark “Parylene”. It has been found that this material can be applied to the surface of the roller 21 by processes including vacuum deposition in a chamber 81 (FIG. 7), dipping on a tray 83 (FIG. 8) and spraying on a shelf 85 (FIG. 9). A highly lubricious coating, such as Parylene may also be applied in a tumbler 87 as illustrated in FIG. 10. In this case, the rollers 21, 23 being tumbled must already have a non-tacky surface in order to remain separate during the tumbling process.


Another apparatus and method for addressing the natural tacky properties of a gel seal is discussed with reference to FIG. 11. In this view, a medical device in the form of a hand port is adapted to overlay a body wall, such as an abdominal wall 92, and to provide sealed access to a body cavity, such as an abdominal cavity 93, for a surgical instrument, such as a surgeon's hand 94.


In this embodiment, the hand port 90 includes a rigid or semi-rigid base structure 96 in the form of a ring 98. A gel material 101, of the types previously discussed, can be molded into the ring 98 with portions 103 of the gel 101 defining a slit 105. This slit 105, which is of particular interest in one aspect of the invention, forms part of a working channel 107 that extends through the abdominal wall 92 and into the abdominal cavity 93.


In this embodiment, the ring 98 is similar to the cannula 14 and seal housing 16 discussed with reference to FIG. 1a, in that it is disposed around the working channel 107 and is adapted to form a seal 110 with the abdominal wall 92.


A second seal 112 is formed between the gel material 101 and the ring 98 so there is no communication between the abdominal cavity 93 and regions exterior of the abdominal wall 92 as long as the slit 105 remains closed. In this manner, the hand port 90 functions as a zero seal in the absence of the surgeon's hand 94, or any other medical instrument.


The highly advantageous properties of the gel material 101 are particularly beneficial in the hand port 90, where they provide a high degree of compliance together with elongation or stretch as great as 1500 percent. Thus, the gel material 101 is ideally suited to form a zero seal in the absence of the surgeon's hand 94, or an instrument seal in the presence of the surgeon's hand 94. It can be seen that the gel material 101 is similar to that previously discussed with respect to the rollers 21 and 23 in FIG. 1a. In that regard, the gel material 101 is disposed in the base structure and forms the second seal 112 with the base structure. The gel material 101 will typically have the tacky properties in its natural state, as previously discussed.


In order to address these tacky properties in the hand port 90, and also with respect to the trocar 10 of FIG. 1a, a film 14 can be applied to the surface of the gel material 101. This is particularly advantageous with respect to the portions 103 where the film 114 lines the working channel 107 through the hand port 90. When the film 114 is applied to any surface of the gel material 101, it functions to mask the tacky properties of the gel material 101 greatly facilitating handling of the hand port 90 during manufacture. But in the particular location where the film 114 is applied to the portions 103 defining the slit 105, the gel not only masks the tacky properties, but also facilitates movement of the medical instrument such as the surgeon's hand 94 into and through the working channel 107. In certain preferred embodiments, the film 114 is formed by a fluoropolymer, such as polytetrafluoroethylene (PTFE). In one method of manufacture, the film 114 is applied as a PTFE powder. In other processes, the film 114 can be applied as a PTFE tape.


One advantage associated with the PTFE film 114 is the adhesive properties which this material exhibits with respect to the gel material 101. Although not fully understood, it is believed that the mineral oil present in a typical gel 101 is highly attracted to the PTFE where it facilitates adhesion between the gel material 101 and the film 114.


Another advantage associated with the PTFE film 114 is associated with its stretchability or elasticity. While the film 114 is desirable to mask the tacky properties of the gel 105, it is important that the elongation properties of the gel be maintained. It has been found that the elongation of the gel material 101, up to 1500 percent, is generally matched by the elongation or stretchability of the PTFE film 114. Thus, the gel 101 and PTFE film 114 can be stretched about 1000 percent, and perhaps as much as 1500 percent, from an original state to a stretched state without breaking the film 114, and returned from the stretched state to the original state.


Although the PTFE film 114 masks the tacky properties of the gel, it is not necessarily lubricious. If this lubricious property is desired in addition to the non-tacky properties, the film 114 can be coated with a lubricant 116, such as the Parylene and other lubricants previously discussed.


It will be understood that many other modifications can be made to the various disclosed embodiments without departing from the spirit and scope of the invention. For these reasons, the above description should not be construed as limiting the invention, but should be interpreted as merely exemplary of embodiments.

Claims
  • 1. A method of making a tack-free gel, comprising the steps of: providing a mold defining a mold cavity, the mold cavity comprising a plastic material;pouring or injecting a molten gel being at a molding temperature into the mold cavity; andmelting a layer of the plastic material of the mold cavity onto the molten gel by permitting the molten gel to contact the mold cavity;wherein the mold comprises a mold base comprising: a plurality of mold holes forming a plurality of mold cavities, each of the mold holes comprising: an axial pin to mold an axial hole through the gel;a low-density polyethylene (LDPE) cylinder in each mold cavity providing a predetermined inside diameter for the mold; andan LDPE disc mounted on the axial pin and disposed at the bottom of each mold cavity in the mold base.
  • 2. The method of claim 1 wherein the plastic material has a melting temperature that is lower than the molding temperature of the molten gel and the melting temperature of the plastic material differs from the molding temperature of the molten gel by about 20° F. to about 100° F.
  • 3. The method of claim 1 further comprising increasing thickness of the melted layer of plastic material by selecting a plastic material that has a melting temperature lower than the molding temperature of the molten gel and increasing the temperature differential between the melting temperature of the plastic material and the molding temperature of the molten gel.
  • 4. The method of claim 1 further comprising heating gel to liquefy the gel to form a molten gel.
  • 5. The method of claim 4 wherein the molding temperature is about 450° F.
  • 6. The method of claim 1 further comprising replacing each LPDE cylinder after each molding process.
  • 7. The method of claim 1 wherein the mold further comprises a mold top disposed axially of the mold base and comprising: a plurality of mold holes forming a plurality of cavities, each of the mold top holes is adapted to receive each LDPE cylinder; anda second LDPE disc disposed at the top of each mold cavity of the mold top.
  • 8. The method of claim 1 further comprises cooling the molten gel to form a solidified gel.
  • 9. The method of claim 8 further comprising dabbing the solidified gel in a low-friction powder.
  • 10. The method of claim 8 forming an opening in the solidified gel.
  • 11. The method of claim 10 applying a low-friction material to the opening in the solidified gel and wherein the solidified gel and the low-friction material have an elongation up to about 1500 percent.
  • 12. The method of claim 8 applying a low-friction material to the solidified gel.
  • 13. The method of claim 12 wherein the low-friction material is formed by a fluoropolymer including polytetrafluoroethylene (PTFE) and the plastic material is formed from at least one of PVC, ABS, acrylic, polycarbonate, clear polycarbonate, Delrin, acetal, polypropylene and high-density polyethylene (HDPE).
  • 14. The method of claim 12 wherein the low-friction material is in the form of tape and further comprising applying a lubricious material to the solidified gel after applying the low-friction material.
  • 15. The method of claim 8 further comprising tumbling the solidified gel in a lubricious material.
  • 16. The method of claim 8 further comprising applying a lubricious material to the solidified gel by vacuum deposition.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/913,565, filed on Aug. 5, 2004, now abandoned which claims the benefit of U.S. Provisional Application No. 60/492,949, filed on Aug. 6, 2003, now abandoned and is a continuation-in-part of U.S. application Ser. No. 10/776,387, filed on Feb. 10, 2004, now U.S. Pat. No. 7,727,255, which is a continuation of International Application No. PCT/US02/15696, filed on May 14, 2002, which claims the benefit of U.S. Provisional Application No. 60/312,683, filed on Aug. 14, 2001, now abandoned all of which are fully incorporated herein by reference.

US Referenced Citations (876)
Number Name Date Kind
299532 E.L. Jun 1884 A
558364 Doolittle Apr 1896 A
1157202 Bates et al. Oct 1915 A
1215512 Fetzer Feb 1917 A
1598284 Kinney Aug 1926 A
1690995 Pratt Nov 1928 A
1180466 Deutsch Jun 1931 A
1810466 Deutsch Jun 1931 A
2219564 Reyniers Oct 1940 A
2305289 Coburg Dec 1942 A
2478586 Krapp Aug 1949 A
2669991 Curutchet Feb 1954 A
2695608 Gibbon Nov 1954 A
2812758 Blumenschein Nov 1957 A
2835253 Borgeson May 1958 A
2853075 Hoffman et al. Sep 1958 A
2858095 Harris et al. Oct 1958 A
3039468 Price Jun 1962 A
3057350 Cowley Oct 1962 A
3111943 Orndorff Nov 1963 A
3195934 Parrish Jul 1965 A
3244169 Baxter Apr 1966 A
3253594 Matthews et al. May 1966 A
3313299 Spademan Apr 1967 A
3329390 Hulsey Jul 1967 A
3332417 Blanford et al. Jul 1967 A
3347226 Harrower Oct 1967 A
3347227 Harrower Oct 1967 A
3397692 Creager, Jr. et al. Aug 1968 A
3402710 Paleschuck Sep 1968 A
3416520 Creager, Jr. Dec 1968 A
3434691 Hamilton Mar 1969 A
3447533 Spicer Jun 1969 A
3522800 Lesser Aug 1970 A
3523534 Nolan Aug 1970 A
3570475 Weinstein Mar 1971 A
3656485 Robertson Apr 1972 A
3685786 Woodson Aug 1972 A
3717151 Collett Feb 1973 A
3717883 Mosher Feb 1973 A
3729006 Wilder et al. Apr 1973 A
3782370 McDonald Jan 1974 A
3797478 Walsh et al. Mar 1974 A
3799166 Marsan Mar 1974 A
3807393 McDonald Apr 1974 A
3828764 Jones Aug 1974 A
3831583 Edmunds et al. Aug 1974 A
3835854 Jewett Sep 1974 A
3841332 Treacle Oct 1974 A
3850172 Cazalis Nov 1974 A
3853126 Schulte Dec 1974 A
3853127 Spademan Dec 1974 A
3856021 McIntosh Dec 1974 A
3860274 Ledstrom et al. Jan 1975 A
3861416 Wichterle Jan 1975 A
3907389 Cox et al. Sep 1975 A
3915171 Shermeta Oct 1975 A
3965890 Gauthier Jun 1976 A
3970089 Saice Jul 1976 A
3996623 Kaster Dec 1976 A
4000739 Stevens Jan 1977 A
4016884 Kwan-Gett Apr 1977 A
4024872 Muldoon May 1977 A
4030500 Ronnquist Jun 1977 A
4043328 Cawood, Jr. et al. Aug 1977 A
4069913 Harrigan Jan 1978 A
4082005 Erdley Apr 1978 A
4083370 Taylor Apr 1978 A
4096853 Weigand Jun 1978 A
4112932 Chiulli Sep 1978 A
4130113 Graham Dec 1978 A
4177814 Knepshield et al. Dec 1979 A
4183357 Bentley et al. Jan 1980 A
4187849 Stim Feb 1980 A
4188945 Wenander Feb 1980 A
4217664 Faso Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4228792 Rhys-Davies Oct 1980 A
4230128 Aramayo Oct 1980 A
4233982 Bauer et al. Nov 1980 A
4239036 Krieger Dec 1980 A
4240411 Hosono Dec 1980 A
4253201 Ross et al. Mar 1981 A
4254973 Benjamin Mar 1981 A
4261357 Kontos Apr 1981 A
4306562 Osborne Dec 1981 A
4321915 Leighton Mar 1982 A
4331138 Jessen May 1982 A
4338934 Spademan Jul 1982 A
4338937 Lerman Jul 1982 A
4367728 Mutke Jan 1983 A
4369284 Chen Jan 1983 A
4379458 Bauer et al. Apr 1983 A
4399816 Spangler Aug 1983 A
4402683 Kopman Sep 1983 A
4411659 Jensen et al. Oct 1983 A
4421296 Stephens Dec 1983 A
4424833 Spector et al. Jan 1984 A
4428364 Bartolo Jan 1984 A
4430081 Timmermans Feb 1984 A
4434791 Darnell Mar 1984 A
4436519 O'Neill Mar 1984 A
4454873 Laufenberg et al. Jun 1984 A
4473067 Schiff Sep 1984 A
4475548 Muto Oct 1984 A
4485490 Akers et al. Dec 1984 A
4488877 Klein Dec 1984 A
4535773 Yoon Aug 1985 A
4543088 Bootman et al. Sep 1985 A
4550713 Hyman Nov 1985 A
4553537 Rosenberg Nov 1985 A
4555242 Saudagar Nov 1985 A
4556996 Wallace Dec 1985 A
4566480 Parham Jan 1986 A
4601710 Moll Jul 1986 A
4610665 Matsumoto et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4634424 O'Boyle Jan 1987 A
4634432 Kocak Jan 1987 A
4643928 Kimura et al. Feb 1987 A
4644951 Bays Feb 1987 A
4649904 Krauter et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4654030 Moll et al. Mar 1987 A
4655752 Honkanen et al. Apr 1987 A
4673393 Suzuki et al. Jun 1987 A
4673394 Fenton Jun 1987 A
4691942 Ford Sep 1987 A
4714749 Hughes et al. Dec 1987 A
4738666 Fuqua Apr 1988 A
4755170 Golden Jul 1988 A
4760933 Christner et al. Aug 1988 A
4776843 Martinez et al. Oct 1988 A
4777943 Chvapil Oct 1988 A
4784646 Feingold Nov 1988 A
4796629 Grayzel Jan 1989 A
4798594 Hillstead Jan 1989 A
4802694 Vargo Feb 1989 A
4808168 Warring Feb 1989 A
4809679 Shimonaka et al. Mar 1989 A
4828554 Griffin May 1989 A
4842931 Zook Jun 1989 A
4848575 Nakamura et al. Jul 1989 A
4856502 Ersfeld et al. Aug 1989 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4889107 Kaufman Dec 1989 A
4895565 Hillstead Jan 1990 A
4897081 Poirier Jan 1990 A
4903710 Jessamine et al. Feb 1990 A
4911974 Shimizu et al. Mar 1990 A
4915132 Hodge et al. Apr 1990 A
4917668 Haindl Apr 1990 A
4926882 Lawrence May 1990 A
4929235 Merry et al. May 1990 A
4944732 Russo Jul 1990 A
4950222 Scott et al. Aug 1990 A
4950223 Silvanov Aug 1990 A
4984564 Yuen Jan 1991 A
4991593 LeVahn Feb 1991 A
4998538 Charowsky et al. Mar 1991 A
5000745 Guest et al. Mar 1991 A
5002557 Hasson Mar 1991 A
5009224 Cole Apr 1991 A
5015228 Columbus et al. May 1991 A
5019101 Purkait et al. May 1991 A
5026366 Leckrone Jun 1991 A
5037379 Clayman et al. Aug 1991 A
5041095 Littrell Aug 1991 A
5045070 Grodecki et al. Sep 1991 A
D320658 Quigley et al. Oct 1991 S
5071411 Hillstead Dec 1991 A
5073169 Raiken Dec 1991 A
5074334 Onodera Dec 1991 A
5074878 Bark et al. Dec 1991 A
5082005 Kaldany Jan 1992 A
5086763 Hathman Feb 1992 A
5092846 Nishijima et al. Mar 1992 A
5104389 Deem Apr 1992 A
5116353 Green May 1992 A
5125396 Ray Jun 1992 A
5125897 Quinn et al. Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129885 Green et al. Jul 1992 A
5141498 Christian Aug 1992 A
5149327 Oshiyama Sep 1992 A
5156617 Reid Oct 1992 A
5158553 Berry et al. Oct 1992 A
5159921 Hoover Nov 1992 A
5161773 Tower Nov 1992 A
5167636 Clement Dec 1992 A
5167637 Okada et al. Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178162 Bose Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5188595 Jacobi Feb 1993 A
5188607 Wu Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5197955 Stephens et al. Mar 1993 A
5201714 Gentelia et al. Apr 1993 A
5207656 Kranys May 1993 A
5209737 Ritchart et al. May 1993 A
5211370 Powers May 1993 A
5211633 Stouder, Jr. May 1993 A
5213114 Bailey, Jr. May 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5234455 Mulhollan Aug 1993 A
5241968 Slater Sep 1993 A
5241990 Cook Sep 1993 A
5242409 Buelna Sep 1993 A
5242412 Blake, III Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5242459 Buelna Sep 1993 A
5248304 Vigdorchik et al. Sep 1993 A
5256149 Banik et al. Oct 1993 A
5256150 Quiachon et al. Oct 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5261883 Hood et al. Nov 1993 A
5261895 Kablik Nov 1993 A
5262468 Chen Nov 1993 A
5263922 Sova et al. Nov 1993 A
5269763 Boehmer et al. Dec 1993 A
5269772 Wilk Dec 1993 A
5271380 Riek et al. Dec 1993 A
5273449 Mattis et al. Dec 1993 A
5273545 Hunt et al. Dec 1993 A
D343236 Quigley et al. Jan 1994 S
5279575 Sugarbaker Jan 1994 A
5290310 Makower et al. Mar 1994 A
D346022 Quigley et al. Apr 1994 S
5299582 Potts Apr 1994 A
5300034 Behnke Apr 1994 A
5300035 Clement Apr 1994 A
5300036 Mueller et al. Apr 1994 A
5308336 Hart et al. May 1994 A
5309896 Moll et al. May 1994 A
5312391 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5316541 Fischer May 1994 A
5318585 Guy et al. Jun 1994 A
5320611 Bonutti et al. Jun 1994 A
5330437 Durman Jul 1994 A
5330486 Wilk Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334143 Carroll Aug 1994 A
5336192 Palestrant Aug 1994 A
5336708 Chen Aug 1994 A
5338313 Mollenauer et al. Aug 1994 A
5342315 Rowe et al. Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5346498 Greelis et al. Sep 1994 A
5350362 Stouder, Jr. Sep 1994 A
5350364 Stephens et al. Sep 1994 A
5353786 Wilk Oct 1994 A
5354280 Haber et al. Oct 1994 A
5356394 Farley et al. Oct 1994 A
5360417 Gravener Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5364372 Danks et al. Nov 1994 A
5366446 Tal et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5368545 Schaller et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5380288 Hart et al. Jan 1995 A
5383861 Hempel et al. Jan 1995 A
5385552 Haber et al. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5385560 Wulf Jan 1995 A
5389080 Yoon Feb 1995 A
5389081 Castro Feb 1995 A
5391153 Haber et al. Feb 1995 A
5391156 Hildwein et al. Feb 1995 A
5395342 Yoon Mar 1995 A
5395367 Wilk Mar 1995 A
5397314 Farley et al. Mar 1995 A
5401455 Hatfield et al. Mar 1995 A
5403264 Wohlers et al. Apr 1995 A
5403290 Noble Apr 1995 A
5403336 Kieturakis et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5411483 Loomas May 1995 A
5413571 Katsaros et al. May 1995 A
5423796 Shikhman et al. Jun 1995 A
5423848 Washizuka et al. Jun 1995 A
5429609 Yoon Jul 1995 A
5431676 Dubrul et al. Jul 1995 A
5437683 Neumann et al. Aug 1995 A
5439455 Kieturakis et al. Aug 1995 A
5441486 Yoon Aug 1995 A
5443452 Hart et al. Aug 1995 A
5456284 Ryan et al. Oct 1995 A
5460170 Hammerslag Oct 1995 A
5460616 Weinstein et al. Oct 1995 A
5468248 Chin et al. Nov 1995 A
D364924 Medema Dec 1995 S
5476475 Gadberry Dec 1995 A
5478318 Yoon Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5486426 McGee et al. Jan 1996 A
5489274 Chu et al. Feb 1996 A
5490843 Hildwein et al. Feb 1996 A
5492304 Smith et al. Feb 1996 A
5496280 Vandenbroek et al. Mar 1996 A
5503112 Luhman et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5508334 Chen Apr 1996 A
5511564 Wilk Apr 1996 A
5512053 Pearson et al. Apr 1996 A
5514109 Mollenauer et al. May 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5518278 Sampson May 1996 A
5520632 Leveen May 1996 A
5522791 Leyva Jun 1996 A
5522824 Ashby Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5524644 Crook Jun 1996 A
5526536 Cartmill Jun 1996 A
5531758 Uschold et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5542931 Gravener Aug 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5549563 Kronner Aug 1996 A
5549637 Crainich Aug 1996 A
5554124 Alvarado Sep 1996 A
5562632 Davila et al. Oct 1996 A
5562677 Hildwein et al. Oct 1996 A
5562688 Riza Oct 1996 A
5569205 Hart et al. Oct 1996 A
5569291 Privitera et al. Oct 1996 A
5571115 Nicholas Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577993 Zhu et al. Nov 1996 A
5578016 Zinger Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5580344 Hasson Dec 1996 A
5584847 Duluco et al. Dec 1996 A
5584850 Hart et al. Dec 1996 A
5591192 Privitera et al. Jan 1997 A
5599348 Gentelia et al. Feb 1997 A
5601579 Semertzides Feb 1997 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith et al. Feb 1997 A
5607443 Kieturakis et al. Mar 1997 A
5613954 Nelson et al. Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5632284 Graether May 1997 A
5632979 Goldberg et al. May 1997 A
5634911 Hermann et al. Jun 1997 A
5634936 Linden et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5636645 Ou Jun 1997 A
5640977 Leahy et al. Jun 1997 A
5643301 Mollenauer Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5657963 Hinchliffe et al. Aug 1997 A
5658272 Hasson Aug 1997 A
5658306 Kieturakis et al. Aug 1997 A
5662615 Blake, III Sep 1997 A
5672168 de la Torre et al. Sep 1997 A
5681341 Lunsford et al. Oct 1997 A
5683378 Christy Nov 1997 A
5685854 Green et al. Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697913 Sierocuk et al. Dec 1997 A
5697914 Brimhall Dec 1997 A
5707703 Rothrum et al. Jan 1998 A
5709664 Vandenbroek et al. Jan 1998 A
5709671 Stephens et al. Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5720730 Blake, III Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725820 Reynolds et al. Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730728 Hoskin et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander et al. Apr 1998 A
5738628 Sierocuk et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741298 MacLeod Apr 1998 A
5743883 Visconti Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5749882 Hart et al. May 1998 A
5752938 Flatland et al. May 1998 A
5755660 Tyagi May 1998 A
5760117 Chen Jun 1998 A
5769783 Fowler Jun 1998 A
5772678 Thomason et al. Jun 1998 A
5776112 Stephens et al. Jul 1998 A
5782812 Hart et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5788676 Yoon Aug 1998 A
5792119 Marx Aug 1998 A
5795290 Bridges Aug 1998 A
5803919 Hart et al. Sep 1998 A
5803921 Bonadio Sep 1998 A
5803923 Singh-Derewa et al. Sep 1998 A
5807338 Smith et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810712 Dunn Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5814026 Yoon Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817062 Flom et al. Oct 1998 A
5819375 Kastner Oct 1998 A
5820555 Watkins, III et al. Oct 1998 A
5820600 Carlson et al. Oct 1998 A
5827238 Kelley Oct 1998 A
5830191 Hildwein et al. Nov 1998 A
5832925 Rothrum Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5841298 Huang Nov 1998 A
5842971 Yoon Dec 1998 A
5843040 Exline Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853395 Crook et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5865728 Moll et al. Feb 1999 A
5865729 Meehan et al. Feb 1999 A
5865807 Blake, III Feb 1999 A
5865812 Correia Feb 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5879368 Hoskin et al. Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5882348 Winterton et al. Mar 1999 A
5884639 Chen Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5913847 Yoon Jun 1999 A
5916198 Dillow Jun 1999 A
5916232 Hart Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5925041 Long et al. Jul 1999 A
5931832 Jensen Aug 1999 A
5941852 Dunlap et al. Aug 1999 A
5947922 MacLeod Sep 1999 A
5951467 Picha et al. Sep 1999 A
5951588 Moenning Sep 1999 A
5957888 Hinchliffe Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5962572 Chen Oct 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5980493 Smith et al. Nov 1999 A
5989232 Yoon Nov 1999 A
5989233 Yoon Nov 1999 A
5989266 Foster Nov 1999 A
5993471 Riza et al. Nov 1999 A
5993485 Beckers Nov 1999 A
5994450 Pearce Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6004303 Peterson Dec 1999 A
6010494 Schafer et al. Jan 2000 A
6017355 Hessel et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6025067 Fay Feb 2000 A
6030403 Long et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6035559 Freed et al. Mar 2000 A
6036711 Mozdzierz Mar 2000 A
6042573 Lucey Mar 2000 A
6045535 Ben Nun Apr 2000 A
6048309 Flom et al. Apr 2000 A
6050871 Chen Apr 2000 A
6053934 Andrews et al. Apr 2000 A
6059816 Moenning May 2000 A
6066117 Fox et al. May 2000 A
6068639 Fogarty et al. May 2000 A
D426634 Genshock Jun 2000 S
D426635 Haberland et al. Jun 2000 S
6077219 Viebach et al. Jun 2000 A
6077288 Shimomura Jun 2000 A
6086603 Termin et al. Jul 2000 A
6090043 Austin et al. Jul 2000 A
6090094 Clifford Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6123689 To Sep 2000 A
6135660 Stevens et al. Oct 2000 A
6142935 Flom et al. Nov 2000 A
6142936 Beane et al. Nov 2000 A
6149642 Gerhart et al. Nov 2000 A
6150608 Wambeke et al. Nov 2000 A
6159182 Davis Dec 2000 A
6162172 Cosgrove et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6162206 Bindokas Dec 2000 A
6163949 Neuenschwander Dec 2000 A
6164279 Tweedle Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6183486 Snow et al. Feb 2001 B1
6197002 Peterson Mar 2001 B1
6206861 Mayer Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6217556 Ellingson et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6224612 Bates et al. May 2001 B1
6228063 Aboul-Hosn May 2001 B1
6228068 Yoon May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6254533 Fadem et al. Jul 2001 B1
6254534 Butler et al. Jul 2001 B1
6258065 Dennis et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6267751 Mangosong Jul 2001 B1
6276661 Laird Aug 2001 B1
6287280 Lampropoulos et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6322541 West Nov 2001 B2
6325384 Berry, Sr. et al. Dec 2001 B1
6344160 Holtzberg Feb 2002 B1
6346074 Roth Feb 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6383162 Sugarbaker May 2002 B1
6391043 Moll et al. May 2002 B1
6413244 Bestetti et al. Jul 2002 B1
6413458 Pearce Jul 2002 B1
6420475 Chen Jul 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6482181 Racenet et al. Nov 2002 B1
6485435 Bakal Nov 2002 B1
6485467 Crook et al. Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6527787 Fogarty et al. Mar 2003 B1
6533734 Corley, III et al. Mar 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6552109 Chen Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6569120 Green May 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6579281 Palmer et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589211 MacLeod Jul 2003 B1
6607504 Haarala et al. Aug 2003 B2
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6627275 Chen Sep 2003 B1
6663598 Carrillo et al. Dec 2003 B1
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternström Jan 2004 B1
6702787 Racenet et al. Mar 2004 B2
6705989 Cuschieri et al. Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6714298 Ryer Mar 2004 B2
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6793621 Butler et al. Sep 2004 B2
6794440 Chen Sep 2004 B2
6796940 Bonadio et al. Sep 2004 B2
6797765 Pearce Sep 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6814700 Mueller et al. Nov 2004 B1
6817974 Cooper et al. Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6860463 Hartley Mar 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6866861 Luhman Mar 2005 B1
6867253 Chen Mar 2005 B1
6869393 Butler Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6902541 McNally et al. Jun 2005 B2
6902569 Parmer et al. Jun 2005 B2
6908430 Caldwell et al. Jun 2005 B2
6909220 Chen Jun 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6936037 Bubb et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6979324 Bybordi et al. Dec 2005 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056304 Bacher et al. Jun 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7067583 Chen Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7093599 Chen Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7105009 Johnson Sep 2006 B2
7105607 Chen Sep 2006 B2
7108009 Ishida Sep 2006 B2
7112185 Hart et al. Sep 2006 B2
7118528 Piskun Oct 2006 B1
7134929 Chen Nov 2006 B2
7153261 Wenchell Dec 2006 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7193002 Chen Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7222380 Chen May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7226484 Chen Jun 2007 B2
7235062 Brustad Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7244244 Racenet et al. Jul 2007 B2
7276075 Callas et al. Oct 2007 B1
7290367 Chen Nov 2007 B2
7294103 Bertolero et al. Nov 2007 B2
7297106 Yamada et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7338473 Campbell et al. Mar 2008 B2
7344546 Wulfman et al. Mar 2008 B2
7344547 Piskun Mar 2008 B2
7344568 Chen Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390317 Taylor et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7445597 Butler et al. Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7578832 Johnson et al. Aug 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7661164 Chen Feb 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717847 Smith May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7727225 Broaddus et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7749415 Brustad et al. Jul 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7841765 Keller Nov 2010 B2
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7878974 Brustad et al. Feb 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7930782 Chen Apr 2011 B2
20010037053 Bonadio et al. Nov 2001 A1
20010047188 Bonadio et al. Nov 2001 A1
20020002324 McManus Jan 2002 A1
20020010389 Butler et al. Jan 2002 A1
20020013542 Bonadio et al. Jan 2002 A1
20020016607 Bonadio et al. Feb 2002 A1
20020026230 Moll et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020072762 Bonadio et al. Jun 2002 A1
20020111536 Cuschieri et al. Aug 2002 A1
20030004253 Chen Jan 2003 A1
20030028179 Piskun Feb 2003 A1
20030040711 Racenet et al. Feb 2003 A1
20030078478 Bonadio et al. Apr 2003 A1
20030139756 Brustad Jul 2003 A1
20030164571 Crump et al. Sep 2003 A1
20030167040 Bacher et al. Sep 2003 A1
20030187376 Rambo Oct 2003 A1
20030192553 Rambo Oct 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040015185 Ewers et al. Jan 2004 A1
20040024363 Goldberg Feb 2004 A1
20040049099 Ewers et al. Mar 2004 A1
20040049100 Butler Mar 2004 A1
20040054353 Taylor Mar 2004 A1
20040063833 Chen Apr 2004 A1
20040068232 Hart et al. Apr 2004 A1
20040070187 Chen Apr 2004 A1
20040072942 Chen Apr 2004 A1
20040073090 Butler Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040092796 Butler et al. May 2004 A1
20040093018 Johnson May 2004 A1
20040097793 Butler et al. May 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040111061 Curran Jun 2004 A1
20040127772 Ewers et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040143158 Hart et al. Jul 2004 A1
20040154624 Bonadio et al. Aug 2004 A1
20040167559 Taylor et al. Aug 2004 A1
20040173218 Yamada et al. Sep 2004 A1
20040215063 Bonadio et al. Oct 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243144 Bonadio et al. Dec 2004 A1
20040249248 Bonadio et al. Dec 2004 A1
20040254426 Wenchell Dec 2004 A1
20040260244 Piechowicz et al. Dec 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050033246 Ahlberg et al. Feb 2005 A1
20050059865 Kahle et al. Mar 2005 A1
20050065475 Hart et al. Mar 2005 A1
20050065543 Kahle et al. Mar 2005 A1
20050080319 Dinkler, II et al. Apr 2005 A1
20050090713 Gonzales et al. Apr 2005 A1
20050090716 Bonadio et al. Apr 2005 A1
20050090717 Bonadio et al. Apr 2005 A1
20050096695 Olich May 2005 A1
20050107816 Pingleton et al. May 2005 A1
20050131349 Albrecht et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050155611 Vaugh et al. Jul 2005 A1
20050159647 Hart et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050197537 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209510 Bonadio et al. Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050240082 Bonadio et al. Oct 2005 A1
20050241647 Nguyen Nov 2005 A1
20050251124 Zvuloni et al. Nov 2005 A1
20050261720 Caldwell et al. Nov 2005 A1
20050267419 Smith Dec 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20050283050 Gundlapalli et al. Dec 2005 A1
20050288558 Ewers et al. Dec 2005 A1
20050288634 O'Heeron et al. Dec 2005 A1
20060020164 Butler et al. Jan 2006 A1
20060020241 Piskun et al. Jan 2006 A1
20060030755 Ewers et al. Feb 2006 A1
20060041270 Lenker Feb 2006 A1
20060047284 Gresham Mar 2006 A1
20060047293 Haberland et al. Mar 2006 A1
20060052669 Hart Mar 2006 A1
20060084842 Hart et al. Apr 2006 A1
20060106402 McLucas May 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh, II et al. Nov 2006 A1
20060258899 Gill et al. Nov 2006 A1
20060264706 Piskun Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070004968 Bonadio et al. Jan 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070088202 Albrecht et al. Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070156023 Frasier et al. Jul 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070255219 Vaugh et al. Nov 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097163 Butler et al. Apr 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080281161 Albrecht et al. Nov 2008 A1
20080281162 Albrecht et al. Nov 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090069837 Bonadio et al. Mar 2009 A1
20090093683 Richard et al. Apr 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090131754 Ewers et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090149714 Bonadio Jun 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090292176 Bonadio et al. Nov 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20100063362 Bonadio et al. Mar 2010 A1
20100063364 Bonadio et al. Mar 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113882 Widenhouse et al. May 2010 A1
20100217087 Bonadio et al. Aug 2010 A1
20100228091 Widenhouse et al. Sep 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100249525 Shelton, IV et al. Sep 2010 A1
20100249694 Choi et al. Sep 2010 A1
20100261972 Widenhouse et al. Oct 2010 A1
20100261975 Huey et al. Oct 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034935 Kleyman Feb 2011 A1
20110034946 Kleyman Feb 2011 A1
20110034947 Kleyman Feb 2011 A1
20110071462 Ewers et al. Mar 2011 A1
20110071463 Ewers et al. Mar 2011 A1
Foreign Referenced Citations (129)
Number Date Country
26 05 148 Aug 1977 DE
33 36 279 Jan 1986 DE
37 39 532 Dec 1988 DE
37 37 121 May 1989 DE
296 00 939 Jun 1996 DE
19828009 Dec 1999 DE
0113520 Jul 1984 EP
0142262 May 1985 EP
0 517 248 Dec 1992 EP
0537768 Apr 1993 EP
0 674 879 Oct 1995 EP
0 807 416 Nov 1997 EP
0 849 517 Jun 1998 EP
0950376 Oct 1999 EP
1118657 Jul 2001 EP
1 125 552 Aug 2001 EP
1312318 May 2003 EP
1 407 715 Apr 2004 EP
2044889 Apr 2009 EP
2 340 792 Jul 2011 EP
1456623 Sep 1966 FR
1151993 May 1969 GB
1355611 Jun 1974 GB
1372491 Oct 1974 GB
1379772 Jan 1975 GB
1400808 Jul 1975 GB
1407023 Sep 1975 GB
1482857 Aug 1977 GB
1496696 Dec 1977 GB
2071502 Sep 1981 GB
2255019 Oct 1992 GB
2275420 Aug 1994 GB
2298906 Sep 1996 GB
930649 Sep 1993 IE
930650 Sep 1993 IE
S940150 Feb 1994 IE
S940613 Aug 1994 IE
S940960 Dec 1994 IE
S950055 Jan 1995 IE
S950266 Apr 1995 IE
S75368 Aug 1997 IE
S960196 Aug 1997 IE
S970810 Nov 1997 IE
991010 Jul 2000 IE
990218 Nov 2000 IE
990219 Nov 2000 IE
990220 Nov 2000 IE
990660 Feb 2001 IE
990795 Mar 2001 IE
10-108868 Apr 1998 JP
11-290327 Oct 1999 JP
2001-61850 Mar 2001 JP
2002-28163 Jan 2002 JP
02003 235879 Aug 2003 JP
2004-195037 Jul 2004 JP
2008007204 Jan 2008 JP
1342485 Jan 1997 SU
WO 8606272 Nov 1986 WO
WO 8606316 Nov 1986 WO
WO 9211880 Jul 1992 WO
WO 9221292 Dec 1992 WO
WO 9305740 Apr 1993 WO
WO 9314801 Aug 1993 WO
WO 9404067 Mar 1994 WO
WO 9422357 Oct 1994 WO
WO 9505207 Feb 1995 WO
WO 9507056 Mar 1995 WO
WO 9522289 Aug 1995 WO
WO 9524864 Sep 1995 WO
WO 9527445 Oct 1995 WO
WO 9527468 Oct 1995 WO
WO 9636283 Nov 1996 WO
WO 9711642 Apr 1997 WO
WO 9732514 Sep 1997 WO
WO 9732515 Sep 1997 WO
WO 9742889 Nov 1997 WO
WO 9819853 May 1998 WO
WO 9835614 Aug 1998 WO
WO 9848724 Nov 1998 WO
WO 9903416 Jan 1999 WO
WO 9915068 Apr 1999 WO
WO 9916368 Apr 1999 WO
WO 9922804 May 1999 WO
WO 9925268 May 1999 WO
WO 9929250 Jun 1999 WO
WO 0032116 Jun 2000 WO
WO 0032119 Jun 2000 WO
WO 0032120 Jun 2000 WO
WO 0035356 Jun 2000 WO
WO 00321176 Jun 2000 WO
WO 0054675 Sep 2000 WO
WO 0054676 Sep 2000 WO
WO 0054677 Sep 2000 WO
WO 0108563 Feb 2001 WO
WO 0108581 Feb 2001 WO
WO 0126558 Apr 2001 WO
WO 0126559 Apr 2001 WO
WO 01045568 Jun 2001 WO
WO 0145568 Jun 2001 WO
WO 0149363 Jul 2001 WO
WO 0191652 Dec 2001 WO
WO 0207611 Jan 2002 WO
WO 0217800 Mar 2002 WO
WO 0234108 May 2002 WO
WO 03011153 Feb 2003 WO
WO 03011551 Feb 2003 WO
WO 03026512 Apr 2003 WO
WO 03032819 Apr 2003 WO
WO 03034908 May 2003 WO
WO 03061480 Jul 2003 WO
WO 03077726 Sep 2003 WO
WO 03103548 Dec 2003 WO
WO 2004026153 Apr 2004 WO
WO 2004030547 Apr 2004 WO
WO 2004075730 Sep 2004 WO
WO 2004075741 Sep 2004 WO
WO 2004075930 Sep 2004 WO
WO 2005009257 Feb 2005 WO
WO 2005034766 Apr 2005 WO
WO 2005089661 Sep 2005 WO
WO 2006040748 Apr 2006 WO
WO 2006059318 Jun 2006 WO
WO 2006100658 Sep 2006 WO
WO 2007044849 Apr 2007 WO
WO 2008015566 Feb 2008 WO
WO 2008093313 Aug 2008 WO
WO 2008121294 Oct 2008 WO
WO 2010082722 Jul 2010 WO
WO 2010104259 Sep 2010 WO
Non-Patent Literature Citations (113)
Entry
European Patent Office, European Search Report for European Patent No. 12151288, dated Feb. 10, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755336, dated Jun. 15, 2012.
European Patent Office, European Search Report for European Patent Application No. 11188517.4 dated Jan. 18, 2012.
European Patent Office, European Search Report for European Patent No. 11172709.5, dated Aug. 16, 2011.
European Patent Office, European Search Report for European Patent No. 11172706.1, dated Aug. 16, 2011.
US 5,334,646, Aug. 1994, Chen (withdrawn).
U.S. Appl. No. 10/381,220, filed Mar. 20, 2003; Title: Surgical Access Apparatus and Method, now USPN 7,473,221 issued Jan. 6, 2009.
U.S. Appl. No. 10/436,522, filed May 13, 2003; Title: Laparoscopic Illumination Apparatus and Method, now USPN 6,939,296 issued Sep. 6, 2005.
U.S. Appl. No. 10/399,209, filed Aug. 22, 2003; Title: Wound Retraction Apparatus and Method, now USPN 6,958,037 issued Oct. 25, 2005.
U.S. Appl. No. 11/218,412, filed Sep. 1, 2005; Title: Wound Retraction Apparatus and Method, now USPN 7,238,154 issued Jul. 3, 2007.
U.S. Appl. No. 10/399,057, filed Apr. 11, 2003; Title: Sealed Surgical Access Device, now USPN 7,052,454 issued May 30, 2006.
U.S. Appl. No. 10/666,579, filed Sep. 17, 2003; Title: Surgical Instrument Access Device, now USPN 7,163,510 issued Jan. 16, 2007.
U.S. Appl. No. 10/052,297, filed Jan. 18, 2002; Title: Hand Access Port Device, now USPN 6,908,430 issued Jun. 21, 2005.
U.S. Appl. No. 08/015,765, filed Feb. 10, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now USPN 5,407,433 issued Apr. 18, 1995.
U.S. Appl. No. 08/040,373, filed Mar. 30, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now USPN 5,411,483 issued May 2, 1995.
U.S. Appl. No. 10/902,756, filed Jul. 29, 2004; Title: Hand Access Port Device, now abandoned.
U.S. Appl. No. 10/802,125, filed Mar. 15, 2004; Title: Surgical Guide Valve, now abandoned.
U.S. Appl. No. 10/516,198, filed Nov. 30, 2004; Title: Wound Retractor, now USPN 7,650,887 issued Jan. 26, 2010.
U.S. Appl. No. 10/927,551, filed Aug. 25, 2004; Title: Surgical Access System, now abandoned.
U.S. Appl. No. 11/244,647, filed Oct. 5, 2005; Title: Surgical Access Apparatus and Method, now USPN 7,481,765 issued Jan. 27, 2009.
U.S. Appl. No. 11/548,746, filed Oct. 12, 2006; Title: Method of Making a Hand Access Laparoscopic Device, now USPN 7,749,415 issued Jul. 6, 2010.
U.S. Appl. No. 11/548,765, filed Oct. 12, 2006; Title: Split Hoop Wound Retractor, now USPN 7,815,567 issued Oct. 26, 2010.
U.S. Appl. No. 11/548,767, filed Oct. 12, 2006; Title: Circular Surgical Retractor now USPN 7,704,207 issued Apr. 27, 2010.
U.S. Appl. No. 11/548,781, filed Oct. 12, 2006; Title: Wound Retractor With Gel Cap, now USPN 7,727,146 issued Jun. 1, 2010.
U.S. Appl. No. 11/548,955, filed Oct. 12, 2006; Title: Hand Access Laparoscopic Device, now USPN 7,736,306 issued Jun. 15, 2010.
U.S. Appl. No. 11/755,305, filed May 30, 2007; Title: Wound Retraction Apparatus and Method, now USPN 7,377,898 issued May 27, 2008.
U.S. Appl. No. 11/548,758, filed Oct. 12, 2007; Title: Split Hoop Wound Retractor With Gel Pad, now USPN 7,909,760 issued Mar. 22, 2011.
U.S. Appl. No. 12/693,242, filed Jan. 1, 2010; Title: Wound Retractor, now USPN 7,913,697 issued Mar. 29, 2011.
U.S. Appl. No. 12/768,328, filed Apr. 27, 2010; Title: Circular Surgical Retractor, now USPN 7,892,172 issued Feb. 22, 2011.
U.S. Appl. No. 12/791,666, filed Jun. 1, 2010; Title: Wound Retractor With Gel Cap, now USPN 7,883,461 issued Feb. 8, 2011.
U.S. Appl. No. 12/815,986, filed Jun. 15, 2010; Title: Hand Access Laparoscopic Device, now USPN 7,878,974 issued Feb. 1, 2011.
U.S. Appl. No. 10/695,295, filed Oct. 28, 2003; Title: Surgical Gel Seal.
U.S. Appl. No. 11/132,741, filed May 18, 2005; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters.
U.S. Appl. No. 11/245,709, filed Oct. 7, 2005; Title: Surgical Access System.
U.S. Appl. No. 11/330,661, filed Jan. 12, 2006; Title: Sealed Surgical Access Device.
U.S. Appl. No. 11/564,409, filed Nov. 29, 2006; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/108,400, filed Apr. 23, 2008; Title: Wound Retraction Apparatus and Method.
U.S. Appl. No. 12/119,371, filed May 12, 2008; Title: Surgical Retractor With Gel Pad.
U.S. Appl. No. 12/119,414, filed May 12, 2008; Title: Surgical Retractor.
U.S. Appl. No. 12/358,080, filed Jan. 22, 2009; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/360,634, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/360,710, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/578,422, filed Oct. 13, 2009; Title: Single Port Access System.
U.S. Appl. No. 12/905,932, filed Oct. 15, 2010; Title: Split Hoop Wound Retractor.
U.S. Appl. No. 12/960,449, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/960,458, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 13/006,727, filed Jan. 14, 2011.
U.S. Appl. No. 13/008,728, filed Jan. 18, 2011.
U.S. Appl. No. 13/023,334, filed Feb. 8, 2011.
U.S. Appl. No. 13/031,892, filed Feb. 22, 2011.
U.S. Appl. No. 13/050,042, filed Mar. 17, 2011.
U.S. Appl. No. 10/446,365, filed May 28, 2003; Title: Screw-Type Seal With Inflatable Membrane.
U.S. Appl. No. 12/004,439, filed Dec. 20, 2007; Title: Skin Seal.
U.S. Appl. No. 12/004,441, filed Dec. 20, 2007; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 12/607,667, filed Oct. 28, 2009; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 10/965,217, filed Oct. 15, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 10/981,730, filed Nov. 5, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 11/246,909, filed Oct. 11, 2005; Title: Instrument Access Device.
U.S. Appl. No. 11/291,089, filed Dec. 1, 2005; Title: A Surgical Sealing Device.
U.S. Appl. No. 11/486,383, filed Jul. 14, 2006; Title: Wound Retractor.
U.S. Appl. No. 11/785,752, filed Apr. 19, 2007; Title: Instrument Access Device.
U.S. Appl. No. 12/244,024, filed Oct. 2, 2008; Title: Seal Anchor for Use in Surgical Procedures.
U.S. Appl. No. 12/578,832, filed Oct. 14, 2009; Title: Flexible Access Device for Use in Surgical Procedure.
U.S. Appl. No. 12/706,043, filed Feb. 16, 2010; Title: Flexible Port Seal.
U.S. Appl. No. 12/719,341, filed Mar. 8, 2010; Title: Foam Port and Introducer Assembly.
U.S. Appl. No. 10/895,546, filed Jul. 21, 2004; Title: Laparoscopic Instrument and Cannula Assembly and Related Surgical Method.
U.S. Appl. No. 10/913,565, filed Aug. 5, 2004; Title: Surgical Device With Tack-Free Gel and Method of Manufacture.
European Patent Office, European Search Report for European Application No. EP 10 18 4681, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4608, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4648, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4731, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4661, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4677, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 9325, dated Dec. 14, 2010, entitled “Split Hoop Wound Retractor”.
European Patent Office, European Search Report for European Application No. EP 10 18 9327, dated Dec. 14, 2010, entitled “Split Hoop Wound Retractor”.
European Patent Office, European Search Report for European Application No. EP 10 18 9328, dated Dec. 15, 2010, entitled “Split Hoop Wound Retractor”.
European Patent Office, European Search Report for European Application No. EP 04 00 2888, dated Sep. 10, 2004, entitled “Hand Access Port Device”.
European Patent Office, European Search Report for European Application No. EP 04 00 2889, dated Sep. 13, 2004, entitled “Hand Access Port Device”.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040154, mailed Jan. 30, 2007.
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040073, mailed Jan. 26, 2007.
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039905, mailed Jan. 17, 2007.
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039883, mailed Jan. 31, 2007.
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039800, mailed Apr. 16, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039799, mailed Mar. 27, 2007.
European Search Report for corresponding EP 08253236 date of mailing is Feb. 10, 2009 (6 pages).
Horigame, et al., Silicone Rumen Cannula with a Soft Cylindrical Part and a Hard Flange, Journal of Dairy Science, Nov. 1989, vol. 72, No. 11, pp. 3230-3232.
Horigame, et al., Technical Note: Development of Duodoenal Cannula for Sheep, Journal of Animal Science, Apr. 1992, vol. 70, Issue 4, pp. 1216-1219.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US04/05484.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US01/29682.
McSweeney, Cannulation of the Rumen in Cattle and Buffaloes, Australian Veterniary Journal, Aug. 1989, vol. 66, No. 8, pp. 266-268.
Neil Sheehan, Supplemental Expert Report of Neil Sheehan, Re: U.S. Patent No. 5,741,298, United States District Court for the Central District of California, Civil Action No. SACV 03-1322 JVS, Aug. 9, 2005.
Office Action in co-pending U.S. Appl. No. 12/360,634, dated Jan. 24, 2011 in 12 pages.
Office Action in co-pending U.S. Appl. No. 12/360,710, dated Jan. 24, 2011 in 12 pages.
Technical Note: Development of Duodenal Cannula for Sheep, Faculty of Agriculture and School of Medicine Tohokju University, Sendai 981, Japan.
The International Bureau of WIPO, International Preliminary Report on Patentability, dated Aug. 29, 2006, for International Application No. PCT/US2004/028250.
The International Bureau of WIPO, International Preliminary Report on Patentability, dated Apr. 16, 2008, for International Application No. PCT/US2006/039799.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039800 dated Apr. 16, 2008.
Yamazaki, et al., Diurnal Changes in the Composition of Abomasal Digesta in Fasted and Fed Sheep, The Tohoki Journal of Agricultural Research, Mar. 1987, vol. 37, No. 3-4, pp. 49-58.
Kagaya, “Laparascopic cholecystecomy via two ports, using the Twin-Port” system, J. Hepatobiliary Pancreat Surg (2001) 8:76-80.
International Search Report and Written Opinion in PCT/IE2005/000113 mailed on Feb. 22, 2006.
International Search Report and Written Opinion in PCT/IE2007/000050 mailed on Aug. 13, 2007.
Declaration of John R. Brustad dated Dec. 10, 2009, submitted in U.S. Appl. No. 11/548,955, including Appendices A-D regarding product sales brochures and production drawings from 2001 and 2005.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/63445, mailed Sep. 29, 2008.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/063463 mailed Sep. 10, 2008.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2008/063463, dated Nov. 17, 2009, entitled “Surgical Retractor”.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US08/63445, issued Nov. 17, 2009, entitled “Surgical Retractor with Gel Pad”.
International Searching Authority-US, International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US04/25511, mailed Nov. 7, 2007.
International Bureau of WIPO, International Report on Patentability for International Application No. PCT/US04/25511, mailed Dec. 6, 2007.
European Patent Office—Supplementary European Search Report for European Patent Application No. 02729247.3 and International Application No. PCT/US02/15696 mailed Jun. 10, 2008.
European Patent Office—Supplementary European Search Report for European Patent Application No. 04780360.6 and International Application No. PCT/US04/25511 dated Jun. 27, 2008.
V&P Scientific, Inc., Parylene Properties & Characteristics, from Internet Website http://www.vp-scientific.com/parylene—properties.htm, printed Aug. 14, 2007.
V&P Scientific, Inc., Understanding Parylene, from Internet Website http://www.vp.scientific.com/images/parylene—properties/Understanding%20Parylene.jpg, printed Aug. 14, 2007.
Related Publications (1)
Number Date Country
20110316190 A1 Dec 2011 US
Provisional Applications (2)
Number Date Country
60492949 Aug 2003 US
60312683 Aug 2001 US
Continuations (2)
Number Date Country
Parent 10913565 Aug 2004 US
Child 13215432 US
Parent PCT/US02/15696 May 2002 US
Child 10776387 US
Continuation in Parts (1)
Number Date Country
Parent 10776387 Feb 2004 US
Child 10913565 US