Information
-
Patent Grant
-
6821467
-
Patent Number
6,821,467
-
Date Filed
Friday, August 31, 200123 years ago
-
Date Issued
Tuesday, November 23, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Grossman Tucker Perreault & Pfleger, PLLC
-
CPC
-
US Classifications
Field of Search
US
- 264 154
- 264 155
- 264 156
- 264 163
- 264 241
- 264 250
- 264 251
- 264 259
- 264 261
- 264 263
- 264 267
- 264 268
- 264 273
- 264 274
- 264 275
- 200 341
- 200 345
- 200 275
- 200 511
- 200 512
- 200 513
-
International Classifications
- B29C4514
- B29C6556
- B29C6570
-
Abstract
A thin film keypad includes a retainer sheet and a plurality of keycaps molded onto keycap attachment regions on the retainer sheet such that the keys are mechanically secured to the retainer sheet. The retainer sheet is made of a thin film material, such as polycarbonate or polyester, and each keycap attachment region includes at least a hole and/or at least one retainer anchor portion. The keycaps are molded from a plastic material, such as polycarbonate or polyester, ABS or a polycarbonate/ABS blend. The thin film material is placed in a molding tool and the plastic material is injected into a keycap mold cavity such that the plastic material flows through the holes and/or around the retainer anchor portions, thereby anchoring the keycaps to the retainer sheet.
Description
TECHNICAL FIELD
The present invention relates to keypads and molding techniques and more particularly, relates to a thin film keypad and method of making the thin film keypad.
BACKGROUND INFORMATION
Electronic devices, such as wireless telephones, have drastically reduced in size. These devices include keypads that must also be reduced in size. In particular, the manufacturers of these electronic devices have demanded that the keypads be extremely thin. Attempts at reducing the size and thickness of these keypads have met with various difficulties.
According to one method of constructing thin keypads, the keys are adhered to a plastic film. However, the keys often would not adhere adequately, especially if the keys and film are made of different materials (e.g., keys made of ABS and film made of polycarbonate or polyester).
Another method of making keypads is the insert mold design (IMD) technique. According to this technique, a cavity is formed in the film and the key is molded into the cavity. As a result, however, the film is on the outside of the keypad and graphics are printed on the film. One disadvantage of keypads made using the IMD technique is the limited extent to which the film can be stretched while retaining graphic quality. The dimensions of the keys (i.e., the height) made using the IMD technique are also limited.
Accordingly, there is a need for a thin film keypad where the keys will remain secured to a top surface of the thin film, even when materials are used that do not adhere together well.
SUMMARY
In accordance with the needs addressed above, the present invention provides a thin film keypad and method of making same. According to one aspect of the present invention, the thin film keypad comprises a retainer sheet made of a thin film material and having a top and bottom surface. The retainer sheet includes at least one hole extending through the thin film material and at least one retainer anchor portion formed from a portion of the thin film material extending upwardly from the top surface. At least one keycap is molded onto a top surface of the retainer sheet and around the retainer anchor portion. The keycap includes a keycap anchor portion molded through the hole in the thin film material such that the keycap anchor portion and the retainer anchor portion mechanically secure the keycap to the retainer sheet.
According to another aspect of the present invention, the thin film keypad comprises a retainer sheet made of a thin film material and having a top and bottom surface. The retainer sheet includes a plurality of keycap attachment regions. Keycaps are molded onto a top surface of the retainer sheet at respective keycap attachment regions. The keycaps are molded around portions of the thin film material such that the keycaps are mechanically secured to the retainer sheet.
According to one embodiment, the thin film material is preferably a plastic material, such as polycarbonate or polyester, having a thickness in a range of about 0.005 in. (0.127 mm) to 0.010 in. (0.254 mm). The keycap is preferably made of a plastic material, such as polycarbonate, polycarbonate/ABS blend, or ABS.
One embodiment of the retainer sheet includes holes extending through the thin film material at the keycap attachment regions. The portions of the thin film material around which the keycaps are molded include edges of the thin film material around the holes. The portions of the thin film material around which the keycaps are molded also include flaps cut out from the thin film material and extending upwardly from the top surface.
According to further aspect of the present invention, a method of making a thin film keypad comprises forming at least one keycap attachment region on a thin film material with each keycap attachment region including at least one molding material passage region. The thin film material is placed into a molding tool having at least one keycap mold cavity such that each molding material passage region is located within each keycap mold cavity, respectively. A molding material is injected through the molding material passage region in the thin film material and into the keycap mold cavity such that at least one keycap is molded onto a top surface of the thin film material. The molding material flows around a portion of the thin film material such that the keycap is mechanically secured to the thin film material. The outline of the retainer sheet can then be cut from the thin film material such that the keys are molded onto the retainer sheet.
In one preferred method, forming each keycap attachment region includes forming at least one hole through the thin film material. The retainer sheet is placed in the molding tool with the hole positioned between the keycap mold cavity and an anchor mold cavity such that the molding material flows through each hole and around an edge of the thin film material. Forming the keycap attachment region also preferably includes cutting at least one flap from the thin film material to form the material passage region. The molding tool preferably includes a gate for injecting the molding material. Inserting the retainer sheet into the molding tool preferably includes inserting the gate through the material passage region such that the gate moves the flap into the keycap mold cavity. The molding material flows around each flap.
According to a further aspect of the present invention, a method of making a thin film keypad comprises forming a plurality of keycap attachment regions on a thin film material such that each keycap attachment region includes at least one hole and at least one material passage region. The thin film material is placed into a molding tool including a female side having keycap mold cavities and a male side having anchor mold cavities. The retainer sheet is positioned such that the holes are located between respective keycap mold cavities and anchor mold cavities and such that the material passage regions are located within respective keycap mold cavities. A molding material is injected through the material passage regions in the thin film material and into the keycap mold cavities. The molding material flows through the holes and into the anchor mold cavities such that keycaps are molded onto a top surface of the thin film material and are mechanically secured to the thin film material.
According to one method, forming the material passage regions includes cutting flaps from the thin film material. According to another method, forming the material passage regions includes forming formed hole portions from the thin film material.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features and advantages of the present invention will be better understood by reading the following detailed description, taken together with the drawings wherein:
FIG. 1
is a plan view of a thin film keypad, according to one embodiment of the present invention;
FIG. 2
is a side cross-sectional view of a thin film keypad, according to one embodiment of the present invention;
FIG. 3
is a plan view of a thin film material used to form a retainer sheet, according to one method of the present invention;
FIG. 4
is a plan view of the thin film material having keycap attachment regions formed thereon, according to one method of the present invention;
FIG. 5
is an enlarged plan view of a flap formed in the retainer sheet, according to one method of the present invention;
FIG. 6
is a side cross-sectional view of the flap formed in the retainer sheet;
FIG. 7
is a cross-sectional view of a molding tool having a retainer sheet placed therein, according to one method of the present invention;
FIG. 8
is a cross-sectional view of a key molded onto the retainer sheet, according to one embodiment of the present invention;
FIG. 9
is an enlarged cross-sectional view of a formed hole portion, according to an alternative embodiment of the present invention; and
FIG. 10
is a cross-sectional view of a key molded onto the retainer sheet, according to another embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A thin film keypad
10
,
FIG. 1
, according to one embodiment of the present invention, includes a retainer sheet
20
and keycaps
26
secured to the retainer sheet
20
. The exemplary thin film keypad
10
is designed for use in a wireless telephone, as well as other applications. Keypads made according to the present invention, however, can have other shapes, designs and layouts for use in other types of devices. Although the thin film keypad
10
is shown with a certain number of keycaps
26
, any number of keycaps
26
can be secured to the retainer sheet
20
.
As shown in greater detail in
FIG. 2
, the retainer sheet
20
has top and bottom surfaces
22
,
24
. The keycaps
26
are preferably molded onto the top surface
22
of the retainer sheet
20
such that the material of the keycaps
26
is molded around a portion of the retainer sheet
20
, as will be described in greater detail below. The preferred embodiment of each keycap
26
includes at least one keycap anchor portion
30
extending through and engaging the bottom surface
24
of the retainer sheet
20
. The keycap anchor portion
30
also acts as an actuator in the wireless telephone or other device in which the keypad
10
is used. The preferred embodiment of the retainer sheet
20
includes at least one retainer anchor portion
32
extending into the material of each keycap
26
.
The exemplary embodiment shows two retainer anchor portions
32
extending into each of the keycaps
26
and one keycap anchor portion
32
extending from each of the keycaps to securely anchor the keycaps
26
. However, any number of retainer anchor portions
32
can extend into the keycap
26
and any number of keycap anchor portions
30
can extend from the keycap
26
. The center keycap
26
a
shown
FIG. 1
, for example, includes two keycap anchor/actuator portions
30
without any retainer anchor portions
32
. According to a further alternative, the keycap
26
can be secured using only retainer anchor portions
32
without any keycap anchor/actuator portions
30
.
The retainer sheet
20
is made of a thin film material and preferably a plastic, such as a polycarbonate or polyester material. The keycaps
26
are also preferably made of a plastic material, such as polycarbonate, ABS, or a polycarbonate/ABS blend. Other types of materials are also contemplated for the retainer sheet
20
and keycaps
26
.
Referred to
FIGS. 3-7
, one method of making the thin film keypad
10
is described below. The retainer sheet
20
is formed from a thin film material
36
(FIG.
3
). The thin film material
36
is preferably a plastic material, such as polycarbonate or polyester, having a thickness in the range of about 0.005 in. (0.127 mm) to 0.010 in. (0.254 mm). and most preferably about 0.005 in. One example of the thin film material is a high stability polycarbonate known as type T2F, which is available from GE Plastics. Other thermally stabilized films are also appropriate for this process. The thin film material
36
preferably includes registration holes
38
punched through the thin film material
36
for tool pinning registration.
The thin film material
36
is die cut to form keycap attachment regions
40
(FIG.
4
). Each keycap attachment region
40
includes at least one hole
42
cut through the thin film material
36
. Each keycap attachment region
40
also includes at least one molding material passage region
43
(e.g., a gate location) through which the molding material is injected, as described in greater detail below. In one embodiment, a flap
44
(
FIGS. 5 and 6
) is cut out from the thin film material
36
to create the material passage region
43
. The flap
44
preferably has sides tapering inward toward the hinge such that the end of the flap is wider. This tapered design allows the flap
44
to anchor more securely in the keycap
26
and prevents the flap
44
from sliding out of the keycap
26
. One example of the flap
44
is about 0.035 in. (0.889 mm) long.
Although the exemplary embodiment shows one hole
42
and two flaps
44
formed in each keycap attachment region
40
, any number of holes
42
and/or flaps
44
can be formed depending upon the desired number of keycap anchor portions
30
and/or retainer anchor portions
32
. Also, the holes
42
and/or flaps
44
can be formed with various positions and orientations. In another embodiment, for example on the keycap attachment region
40
for the center keycap
26
a
, the material passage region
43
a
(e.g., the gate location) can be formed without a flap. Alternatively, the keycap attachment region
40
can be formed with flaps
44
but no holes
42
.
In another embodiment, a formed hole portion
46
(
FIG. 9
) is formed through the thin film material
36
to create the material passage region
43
. The formed hole portion
46
is generally cone shaped and extends above the thin film material
36
. In one example, the formed hole portion
46
has an inner diameter of about 0.025 in. (0.635 mm) and extends above the thin film material
36
about 0.015 in. (0.381 mm).
The thin film material
36
is then placed into a molding tool
50
(FIG.
7
). The preferred embodiment of the molding tool
50
includes a female side
52
having keycap mold cavities
54
and a male side
56
having anchor mold cavities
58
. Although only one set of cavities
54
,
58
is shown, the molding tool
50
preferably includes cavities
54
,
58
for each of the keycaps
26
to be molded onto the retainer sheet
20
. The keycap mold cavities
54
and the anchor/actuator mold cavities
58
can have different shapes and sizes depending on the shapes of the keycaps
26
and tactile features to be actuated. The molding tool
50
also includes injection passageways
60
and gates
62
that extend into the respective keycap mold cavities
54
. Other embodiments of the molding tool
50
are also contemplated.
The thin film material
36
is placed in the molding tool
50
such that each hole
42
is positioned between a respective keycap mold cavity
54
and anchor/actuator mold cavity
58
. Each gate
62
preferably pushes at least one of the flaps
44
b
open to form the material passage region
43
that receives the gate
62
(i.e., with the flap
44
b
acting as a gate door). The flap
44
b
preferably forms an angle a with respect to the retainer sheet
20
in the range of about 30° to 120°, and most preferably about 45°.
The molding material (e.g., plastic) is then injected through each injection passageway
60
and gate
62
and flows into each keycap mold cavity
54
. The molding material fills the keycap mold cavity
54
, passes through the hole
42
in the thin film material
36
, and fills the anchor/actuator mold cavity
58
surrounding the edges
45
of the thin film material
36
around the hole
42
. The molding material also flows around the flaps
44
to create the retainer anchor portions
32
.
In another embodiment shown in
FIG. 10
, the flap
44
a
has the same orientation as the flap
44
b
(i.e., flap
44
a
facing flap
44
b
). In this embodiment, the molding material flows under the flap
44
a
to prevent the flap
44
a
from folding downward during the molding process.
When the molding material hardens, the female side
52
and male side
56
of the molding tool
50
are removed. In this embodiment, the gate tear away
66
is preferably within the body of the keycap
26
and excess material is removed from the location of the gate tear away
66
. Flashing is also removed from the keycaps
26
. The keycap anchor/actuator portion
30
extends below the retainer sheet
20
and is secured against the bottom surface
24
of the retainer sheet
20
. In this embodiment, the flaps
44
are molded within the keycap
26
to form the retainer anchor portions
32
.
In an alternative embodiment, the formed hole portion
46
(see
FIG. 9
) can be molded within the keycap
26
. In this embodiment, the molding material flows into the cone of the formed hole portion
46
to form an anchor portion or rivet.
The thin film keypad
10
can then be decorated with numerous finishing techniques, such as metal plating, painting, screen or pad printing and laser etching. Other decorating options are also contemplated. Because the decoration is provided directly on the keycaps
26
after the molding, and the thin film is not stretched, the keypads made according to the present invention retain graphic quality.
After the molding operation, the outline of the retainer sheet
20
is cut from the thin film material
36
, for example, using a die cut operation. Also, one or more additional holes
68
can be cut in the retainer sheet
20
. Although the preferred method cuts the outline of the retainer sheet
20
as the final die cut operation, the outline can also be cut prior to the molding operation. The thin film keypad
10
made according to the method described above can then be assembled into an electronic device.
In one example, the keycap
26
has a length of about 7 mm long and a width of about 2.5 mm wide. The method of the present invention allows the keycaps
26
to be molded with a relatively unlimited height (as compared to the IMD process). In one example, the height of the keycaps
26
can be in the range of about 1.5 mm to 10 mm. The exemplary keycap anchor/actuator portion
30
has a diameter of about 0.061 in. (1.5 mm), although the designer may adjust this dimension to meet actuation requirements of design and substrates to be actuated. Other dimensions of the keycaps
26
are also within the scope of the present invention.
Accordingly, the thin film keypad of the present invention is able to meet the small size requirements of current electronic devices while providing keycaps that are securely mounted.
Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
Claims
- 1. A method of making a thin film keypad comprising:forming at least one keycap attachment region on a thin film material, each said keycap attachment region including at least one molding material passage region, wherein forming said keycap attachment region includes cutting at least one flap from said thin film material to form said material passage region; placing said thin film material into a molding tool having at least one keycap mold cavity such that each said molding material passage region is located within each said keycap mold cavity, respectively, wherein said molding tool includes a gate for injecting said molding material, and wherein said gate is inserted through said material passage region such that said gate moves said flap into said keycap mold cavity; and injecting a molding material through said molding material passage region in said thin film material and into said keycap mold cavity such that at least one keycap is molded onto a top surface of said thin film material, and wherein said molding material flows around portions of said thin film material and hardens on opposite sides of said portions of said thin film material to form at least two anchor portions such that said keycap is mechanically secured to said thin film material, and wherein one of said anchor portions is formed by said molding material flowing around said flap and hardening on opposite sides of said flap.
- 2. The method of claim 1 further including cutting an outline of a retainer sheet from said thin film material such that said keycap is molded onto said retainer sheet.
- 3. The method of claim 1 wherein said molding material is selected from the group consisting of polycarbonate, polycarbonate/ABS blend, and ABS.
- 4. The method of claim 1 wherein said thin film material is selected from the group consisting of a polycarbonate material and a polyester material.
- 5. The method of claim 2 wherein forming each said keycap attachment region includes forming at least one hole through said thin film material, and wherein said retainer sheet is placed in said molding tool with said hole positioned between said keycap mold cavity sad an anchor mold cavity such that said molding material flows through each said hole and around an edge of said thin film material to form one of said anchor portions.
- 6. A method of making a thin film keypad comprising:forming a plurality of keycap attachment regions on a thin film material, each of said keycap attachment regions including at least one hole and at least one material passage region, wherein said material passage regions are formed by cutting flaps from said thin film material; placing said thin film material into a molding tool including a female side having keycap mold cavities and a male side having anchor mold cavities, wherein said male side of said molding tool includes gates for injecting said molding material, wherein said retainer sheet is positioned such that said holes are located between respective said keycap mold cavities and said anchor mold cavities and such that said material passage regions are located within respective said keycap mold cavities, and wherein said gates are inserted through respective said material passage regions such that said gates move respective said flaps into respective said keycap mold cavities; and injecting a molding material through said material passage regions in said thin film material and into said keycap mold cavities, wherein said molding material flows through said holes around said flaps and into said anchor mold cavities such that keycaps are molded onto a top surface of said thin film material and are mechanically secured to said thin film material.
- 7. The method of claim 6 wherein said thin film material is selected from the group consisting of a polycarbonate material and a polyester material, and wherein said molding material includes ABS.
- 8. The method of claim 6 wherein forming said material passage regions includes forming formed hole portions from said thin film material, wherein said male side of said molding tool includes gates for injecting said molding material, and wherein inserting said thin film material into said molding tool includes inserting said gates through respective said material passage regions such that said molding material flows around said formed hole portions.
- 9. The method of claim 6 further including cutting an outline of a retainer sheet from said thin film material such that said keycaps are molded onto said retainer sheet.
US Referenced Citations (22)