The disclosures of the foregoing applications are incorporated herein by reference in their entireties.
Lyocell fibers are typically used in textiles or filter media. See, for example, U.S. Patent Application Publication No. 2003/0177909, now U.S. Pat. No. 6,872,311, and No. 2003/0168401, now U.S. Pat. No. 6,835,311, both to Koslow, as well as to U.S. Pat. No. 6,511,746 to Collier et al. On the other hand, high efficiency wipers for cleaning glass and other substrates are typically made from thermoplastic fibers.
U.S. Pat. No. 6,890,649 to Hobbs et al. (3M) discloses polyester microfibers for use in a wiper product. According to the '649 patent, the microfibers have an average effective diameter of less than 20 microns and, generally, from 0.01 microns to 10 microns. See column 2, lines 38 to 40. These microfibers are prepared by fibrillating a film surface and then harvesting the fibers.
U.S. Pat. No. 6,849,329 to Perez et al. discloses microfibers for use in cleaning wipes. These fibers are similar to those described in the '649 patent discussed above. U.S. Pat. No. 6,645,618 to Hobbs et al. also discloses microfibers in fibrous mats such as those used for removal of oil from water or those used as wipers.
U.S. Patent Application Publication No. 2005/0148264 to Varona et al., discloses a wiper with a bimodal pore size distribution. The wipe is made from melt blown fibers, as well as coarser fibers, and papermaking fibers. See page 2, paragraph 16.
U.S. Patent Application Publication No. 2004/0203306 to Grafe et al., discloses a flexible wipe including a non-woven layer and at least one adhered nanofiber layer. The nanofiber layer is illustrated in numerous photographs. It is noted on page 1, paragraph 9, that the microfibers have a fiber diameter of from about 0.05 microns to about 2 microns. In this patent application, the nanofiber webs were evaluated for cleaning automotive dashboards, automotive windows, and so forth. For example, see page 8, paragraphs 55 and 56.
U.S. Pat. No. 4,931,201 to Julemont discloses a non-woven wiper incorporating melt-blown fiber. U.S. Pat. No. 4,906,513 to Kebbell et al. also discloses a wiper having melt-blown fiber. Here, polypropylene microfibers are used, and the wipers are reported to provide streak-free wiping properties. This patent is of general interest, as is U.S. Pat. No. 4,436,780 to Hotchkiss et al., which discloses a wiper having a layer of melt-blown polypropylene fibers and, on either side, a spun bonded polypropylene filament layer. See also U.S. Pat. No. 4,426,417 to Meitner et al., which discloses a non-woven wiper having a matrix of non-woven fibers including microfiber and staple fiber. U.S. Pat. No. 4,307,143 to Meitner discloses a low cost wiper for industrial applications, which includes thermoplastic, melt-blown fibers.
U.S. Pat. No. 4,100,324 to Anderson et al. discloses a non-woven fabric useful as a wiper that incorporates wood pulp fibers.
U.S. Patent Application Publication No. 2006/0141881, now U.S. Pat. No. 7,691,760, to Bergsten et al., discloses a wipe with melt-blown fibers. This publication also describes a drag test, at pages 7 and 9. Note, for example, page 7, paragraph 59. According to the test results on page 9, microfiber increases the drag of the wipes on a surface.
U.S. Patent Application Publication No. 2003/0200991 to Keck et al., discloses a dual texture absorbent web. Note pages 12 and 13, which describe cleaning tests and a Gardner wet abrasion scrub test.
U.S. Pat. No. 6,573,204 to Philipp et al. discloses a cleaning cloth having a non-woven structure made from micro staple fibers of at least two different polymers, and secondary staple fibers bound into the micro staple fibers. The split fiber is reported to have a titer of 0.17 to 3.0 dtex prior to being split. See column 2, lines 7 through 9. Note also, U.S. Pat. No. 6,624,100 to Pike, which discloses splittable fiber for use in microfiber webs.
This application relates to wipers (of a single ply or any suitable number of plies) comprising at least one variable local basis weight absorbent sheet including a significant proportion of fibrillated cellulose microfiber having a plurality of arched or domed regions interconnected by a generally planar, densified fibrous network including at least some areas of consolidated fiber bordering the domed areas. The domed regions have a leading edge with a relatively high local basis weight and, at their lower portions, transition sections that include upwardly and inwardly inflected sidewall areas of consolidated fiber.
While there have been advances in the art as to high efficiency wipers, existing products tend to be relatively difficult and expensive to produce. Many do not have the absorbent capacity of premium paper towels and are not readily re-pulped or recycled. Moreover, the wipers of the invention are capable of removing micro-particles and, if not substantially all of the residue from a surface, then, at least almost all, reducing the need for biocides and cleaning solutions in typical cleaning or sanitizing operations.
The present invention is directed, in part, to absorbent sheets incorporating cellulose microfiber that are suitable for paper towels and wipers. The sheets exhibit high absorbency (SAT) values as well as low-residue, “wipe-dry” characteristics. The sheets can accordingly be used as high efficiency wipers, or as ordinary paper towels, eliminating the need for multiple products.
In one embodiment, the present invention is an absorbent sheet exhibiting a wipe-dry time of less than 20 seconds, preferably, 10 seconds or less, and an SAT capacity in the range of 9.5 to 11 g/g. In a further embodiment, the absorbent sheet exhibits an SAT rate in the range of 0.05 to 0.25 g/s0.5.
A preferred variable basis weight ply is prepared by a belt-creping process including compactively dewatering a nascent web containing from about 10% to about 60% of fibrillated cellulosic microfiber, applying the dewatered web to a transfer surface with an apparently random distribution of fibers, and belt-creping the web under pressure with nip parameters selected so as to rearrange the fiber orientation and, optionally, providing local basis weight variation. The plies of this invention will exhibit a repeating structure of raised arched portions that define hollow areas on their opposite side. The raised arched portions or domes have a relatively high local basis weight interconnected with a network of densified fiber. Transition areas bridging the connecting regions and the domes include upwardly and optionally inwardly inflected consolidated fiber. Generally speaking, the furnish is selected and the steps of belt creping, applying vacuum and drying are controlled such that a dried web is formed having a plurality of fiber-enriched hollow domed regions protruding from the upper surface of the sheet, the hollow domed regions having a sidewall of a relatively high local basis weight formed along at least a leading edge thereof, and connecting regions forming a network interconnecting the fiber-enriched hollow domed regions of the sheet, wherein consolidated groupings of fibers extend upwardly from the connecting regions into the sidewalls of the fiber-enriched hollow domed regions along at least the leading edge thereof. Fibrillated cellulosic microfiber present at the surface of such consolidated groupings forms venation over the surface of the consolidated grouping, while fibrillated cellulosic microfiber present within the consolidated groupings appears to enhance the bonding and consolidation therein, both apparently contributing to an increase in very small pores in the sheet structure. Preferably, such consolidated groupings of fibers are present at least at the leading and trailing edges of the domed areas. In many cases, the consolidated groupings of fibers form saddle shaped regions extending at least partially around the domed areas, wherein a venation of cellulosic microfibers extends over the surface of the consolidated regions. In other less consolidated regions of the ply, the fibrillated cellulosic microfibers are present as intermittently bonded fibers distributed through less consolidated regions of the ply, and intermingled with conventional papermaking fibers therein, and bonded thereto largely at crossover regions where the fibers contact.
The superior wipe-dry characteristics of the inventive products are surprising in view of the very low SAT rates observed.
The products of the invention also exhibit wet tensiles significantly above those of commercial towel products, but have similar SAT capacity, so that the wipe-dry characteristics endure as the product absorbs liquid.
While exhibiting very high strength, the products of the invention also exhibit an unexpectedly high level of softness, as is appreciated from
Further details and advantages will become apparent from the discussion provided hereafter.
The invention is described with reference to the drawings, wherein:
The invention is described in detail below with reference to several embodiments and numerous examples. Such a discussion is for purposes of illustration only. Modifications to particular examples within the spirit and scope of the present invention, set forth in the appended claims, will be readily apparent to one of skill in the art.
Terminology used herein is given its ordinary meaning, for example, mils refers to thousandths of an inch, mg refers to milligrams and m2 refers to square meters, percent means weight percent (dry basis), “ton” means short ton (2000 pounds), unless otherwise indicated “ream” means 3000 ft2, and so forth. A “ton” is 2000 pounds while a “tonne” is a metric ton of 100 kg or 2204.62 pounds. Unless otherwise specified, in an abbreviation “t” stands for ‘ton”. Unless otherwise specified, the version of a test method applied is that in effect as of Jan. 1, 2010, and test specimens are prepared under standard TAPPI conditions, that is, preconditioned for 24 hours, then conditioned in an atmosphere of 23°±1.0° C. (73.4°±1.8° F.) at 50% relative humidity for at least about 2 hours.
Test methods, materials, equipment, manufacturing techniques, and terminology are those enumerated in the applications referred to above as supplemented herein.
Throughout this specification and claims, when we refer to a nascent web having an apparently random distribution of fiber orientation (or use like terminology), we are referring to the distribution of fiber orientation that results when known forming techniques are used for depositing a furnish on the forming fabric. When examined microscopically, the fibers give the appearance of being randomly oriented, even though, depending on the jet to wire speed ratio, there may be a significant bias toward machine direction orientation making the machine direction tensile strength of the web exceed the cross machine direction tensile strength.
In many applications related to U.S. Patent Application Publication No. 2004/0238135, entitled “Fabric Crepe Process for Making Absorbent Sheet”, now U.S. Pat. No. 7,399,378, the importance of the distinction between creping using a woven fabric and a creping belt formed by perforating a solid belt was of minor importance, so the term “belt” could apply to either creping medium. In this application, however, as well as in U.S. Patent Application Publication No. 2010/0186913, entitled “Belt-Creped, Variable Local Basis Weight Absorbent Sheet Prepared With Perforated Polymeric Belt”, now U.S. Pat. No. 8,293,072, the distinction between the use of a creping fabric and a perforated polymeric belt is of considerable importance, as it has been found that the use of a perforated polymeric belt makes it possible to obtain consolidated regions, particularly, consolidated saddle shaped regions, in the web giving, it improved physical properties over the webs previously formed using the technique of creping from a transfer drum. For convenience, we refer to this method of forming a sheet as Fiber Reorienting Belt Creping or FRBC. Further, in this application, it is demonstrated that CMF containing wipers made using a perforated polymeric belt have substantial performance advantages over wipers made using a woven creping fabric, which we term Fiber Reorienting Fabric Creping or FRFC. Throughout this application, we have endeavored to make this distinction explicit, but, definitional language in applications incorporated by reference notwithstanding, in this application, belts and creping fabrics should not be considered to be synonymous.
Unless otherwise specified, “basis weight”, BWT, bwt, BW, and so forth, refers to the weight of a 3000 square-foot (278.7 m2) ream of product (basis weight is also expressed in g/m2 or gsm). Likewise, “ream” means a 3000 square-foot (278.7 m2) ream unless otherwise specified. Local basis weights and differences therebetween are calculated by measuring the local basis weight at two or more representative low basis weight areas within the low basis weight regions and comparing the average basis weight to the average basis weight at two or more representative areas within the relatively high local basis weight regions. For example, if the representative areas within the low basis weight regions have an average basis weight of 15 lbs/3000 ft2 (24.5 g/m2) ream and the average measured local basis weight for the representative areas within the relatively high local basis regions is 20 lbs/3000 ft2 ream (32.6 g/m2), the representative areas within the high local basis weight regions have a characteristic basis weight of ((20-15)/15)×100% or 33% higher than the representative areas within the low basis weight regions. Preferably, the local basis weight is measured using a beta particle attenuation technique as referenced herein. In some cases, X-ray techniques can be suitable, provided that the X-rays are sufficiently “soft”—that the energy of the photons is sufficiently low and the basis weight differences between the various regions of the sheet are sufficiently high that significant differences in attenuation are attained.
Calipers and/or bulk reported herein may be measured at 8 or 16 sheet calipers as specified. The sheets are stacked and the caliper measurement taken about the central portion of the stack. Preferably, the test samples are conditioned in an atmosphere of 23°±1.0° C. (73.4°±1.8° F.) at 50% relative humidity for at least about 2 hours and then measured with a Thwing-Albert Model 89-II-JR or Progage Electronic Thickness Tester with 2 in. (50.8-mm) diameter anvils, 539±10 grams dead weight load, and 0.231 in/sec (5.87 mm/sec) descent rate. For finished product testing, each sheet of product to be tested must have the same number of plies as the product as sold. For testing in general, eight sheets are selected and stacked together. For napkin testing, napkins are unfolded prior to stacking. For base sheet testing off of winders, each sheet to be tested must have the same number of plies as produced off of the winder. For base sheet testing off of the papermachine reel, single plies must be used. Sheets are stacked together aligned in the machine direction (MD). Bulk may also be expressed in units of volume/weight by dividing caliper by basis weight.
Consolidated fibrous structures are those that have been so highly densified that the fibers therein have been compressed to ribbon-like structures and the void volume is reduced to levels approaching or perhaps even less than those found in flat papers, such as are used for communications purposes. In preferred structures, the fibers are so densely packed and closely matted that the distance between adjacent fibers is typically less than the fiber width, often less than half or even less than a quarter of the fiber width. In the most preferred structures, the fibers are largely collinear and strongly biased in the MD. The presence of consolidated fiber or consolidated fibrous structures can be confirmed by examining thin sections that have been embedded in resin, then microtomed in accordance with known techniques. Alternatively, if SEM's of both faces of a region are so heavily matted as to resemble flat paper, then that region can be considered to be consolidated. Sections prepared by focused ion beam cross section polishers, such as those offered by JEOL®, 11 Dearborn Road, Peabody, Mass., 01960, are especially suitable for observing densification throughout the thickness of the sheet, to determine whether regions in the tissue products of the present invention have been so highly densified as to become consolidated.
Creping belt, and like terminology, refers to a belt that bears a perforated pattern suitable for practicing the process of the present invention. In addition to perforations, the belt may have features, such as raised portions and/or recesses between perforations, if so desired. Preferably, the perforations are tapered, which appears to facilitate transfer of the web, especially, from the creping belt to a dryer, for example. Typically, the face of the sheet contacting the web during the fabric creping step will have a greater open area than the face away from the web. In some embodiments, the creping belt may include decorative features, such as geometric designs, floral designs, and so forth, formed by rearrangement, deletion, and/or a combination of perforations having varying sizes and shapes.
“Dome”, “domed”, “dome-like,” and so forth, as used in the description and claims, refers generally to hollow, arched protuberances in the sheet of the class seen in the various Figures, and is not limited to a specific type of dome structure as is illustrated in
To quantify the amount of lint removed from towel, tissue, and related products when used dry (“Extractable Lint”), a Sutherland Rub Tester with a 4.0-lb sled is used. This apparatus is available from: Danilee Company, 27223 Starry Mountain Street, San Antonio, Tex. 78260, 830-438-7737, 800-438-7738 (FAX). The 4.0-lb rub block for the Rub Tester has dimensions of 2″ by 4″, so that the pressure exerted during testing is 0.5 psi.
After the samples to be evaluated are preconditioned at 10 to 35% RH at 22° to 40° C. for 24 hours, then conditioned at 50.0%±2.0% RH and 23.0±1.0° C. for 2 hours, all of the subsequent procedures are performed within the confines of a room maintained at between 48 to 53% RH and a temperature of between 22° C. and 24° C.
Two stacks of four 2.25 in.×4.5 in. test strips with a 4.5 in. length in the machine direction are cut from the sample with the top (exterior of roll) side up.
Two 2.5 in.×6 in. strips of black felt are cut with the 6 in. length in the machine direction, and the top side labeled with sample ID numbers.
A baseline reading for the felt is determined by taking one L* lightness color reading on the labeled side of each black felt strip used for testing in the middle of what will be the rubbed area using a GretagMacbeth® Ci5 spectrophotometer using the following settings on the spectrophotometer: Large area view, Specular component excluded, UV Source C, 2 degree observer, and Illuminant C. (In this connection, the asterisk “*” is not a reference mark directing the reader to some other location in this document, but a portion of the commonly used symbol for CIE 1976 lightness “L*”. “L*” as used in this connection relates to CIE 1976, also known as CIELAB measurement of lightness, and should not be confused with Hunger lightness typically denominated “L”.) The GretagMacbeth® spectrophotometer Model Ci5 is available from: GretagMacbeth®, 617 Little Britain Road, New Windsor, N.Y. 12553, 914-565-7660, 914-565-0390 (FAX); www.gretagmacbeth.com. The “before testing” reading is later compared to the “after testing” reading in the same area of the black felt strip on the same side, so particular care is taken to be sure that a comparison is made only between the same felt strips.
To evaluate a specimen, the specimen is taped to the galvanized plate on the Sutherland Rub Tester with the top side up, so that rubbing will be in the machine direction with care being observed to ensure that each specimen is taped in the same rub area each time the test is performed. The first black felt specimen is taped, labeled side out, to the bottom of the 4.0-lb rub block of the Sutherland Rub Tester, the number of strokes on the rub tester is set to four, and the slow speed selected (#2 setting for 4 speed model or #1 setting for 2 speed model), the rub block is placed on the Sutherland Rub Tester carriage arm and the “Start” button pressed to start testing. After the four strokes are completed, the rub block is removed from the tester and the black felt is removed from the bottom of the rub block with the black felt being preserved for L* “after testing” color reading. The specimen is removed from the galvanized plate and discarded.
One L* color reading is taken on the labeled side of each black felt strip, reading the same spot used to obtain the “before testing” value, in the middle of the rubbed area. The “after testing” reading is paired up with the appropriate “before testing” reading to calculate difference between the readings—“ΔL*”.
For each sample, the average, standard deviation, minimum and maximum test results are recorded as measured to the nearest 0.01 L* unit for both the before testing and after testing values. The difference value of the after reading minus the before reading is indicative of the lint removal by the standardized dry rubbing procedure.
Two tests are used herein to evaluate wet linting of tissue samples: in one approach, fiber is rubbed against a wetted pigskin under controlled conditions, the resulting fiber is washed off of the pigskin and the number of fibers removed is measured using an OpTest® Fiber Quality Analyzer. In the second, tissue is rubbed against wetted black felt under controlled conditions and the area of the lint left behind is measured using a flat bed scanner as described below.
To evaluate a tissue sample for lint removal by wet abrasion, the sample is first subjected to simulated wet use against a sample of standard black felt with a Crockmeter Rub Tester, modified as described herein, then, the area in mm2 of the lint left on the felt is measured with an Epson Perfection 4490 flat bed scanner and Apogee, SpecScan Software, version 2.3.6.
The Crockmeter Rub is available from: SDL Atlas, LLC, 3934 Airway Drive, Rock Hill, S.C. 29732, (803) 329-2110. To be used to measure wet lint as described herein, the Crockmeter is modified to accept a 360 gram arm and a 1″×2″ foot that exerts a pressure on the specimen of 0.435 psi. The weight of the rub block is 355 g for the weighted arm supported on one end, and 36 g for the rub foot. These weights are exerted on a 1″×2″ area, for a pressure of 391 g/12.9 cm2=30.3 g/cm2. In contrast, the method of evaluating wet abrasion in U.S. Pat. No. 5,958,187 to Bhat et al., and U.S. Pat. No. 6,059,928 to Luu et al., used a 135 g sled placed on a 2×3″ sample for a pressure of 135 g/38.7 cm2=3.5 g/cm2.
Research Dimensions, at 1720 Oakridge Road, Neenah, Wis. 54956, 920-722-2289, will modify Crockmeter Rub Testers to conform hereto.
Suitable black felt is 3/16-inch thick, part number 113308F-24 available from Aetna Felt Corporation, 2401 W. Emaus Avenue, Allentown, Pa. 18103, 800-526-4451.
To test a sample, the outer three layers of tissue are removed from the roll. Three sheets of tissue are cut at the perforations and placed in a stack using a paper cutter ensuring that the tissue sheets are placed in the same orientation relative to the direction and the side of the roll. From the stack, samples that are 2 inches by 2.5 inches are cut with the long dimension being the machine direction. Enough samples are cut for 4 replicates. The short (2″) side of the tissue is marked with a small dot to indicate the surface of the tissue that was outwardly facing when on the roll. The foot is mounted to the arm of the Crockmeter with the short dimension parallel to the stroke of the Crockmeter and the stroke distance set at 4″±⅛ inch, and the stroke speed is set to ten strokes per minute. The black felt is cut into 3 inch by 6 inch pieces with the inside surface being marked along the short edge. In this test, the tissue sample to be tested will be rubbed against the inside of the felt starting at the mark. A 12 inch by 12 inch sheet of Black Acrylic, a 2 inch by 3 inch glass microscope slide marked as shown in
In other cases, rather than using black felt, a pigskin comparable to human skin is substituted therefor, the fiber removed will be washed off and the solution subjected to testing in an Optest® Fiber Quality Analyzer to determine the number of fibers removed having a length in excess of 40 μm. The Optest® Fiber Quality Analyzer has become a standard in the paper industry for determining fiber length distributions and fiber counts (above a certain minimal length, which keeps decreasing periodically, as Optest® continually upgrades their technique). The Optest® Fiber Quality Analyzer is available from:
Fpm refers to feet per minute, while fps refers to feet per second.
MD means machine direction and CD means cross-machine direction.
“Predominantly” means more than 50% of the specified component, by weight unless otherwise indicated.
Roll compression is measured by compressing roll 285 under a 1500 g flat platen 281 of a test apparatus 283 similar to that shown in
The test procedure is generally as follows:
(a) Raise the platen 281 and position the roll 285 to be tested on its side, centered under the platen 281, with the tail seal 287 to the front of the gauge and the core 289 parallel to the back of the gauge 291.
(b) Slowly lower the platen 281 until it rests on the roll 285.
(c) Read the compressed roll diameter height from the gauge pointer 293 to the nearest 0.01 inch (0.254 mm).
(d) Raise the platen 281 and remove the roll 285.
(e) Repeat for each roll to be tested.
To calculate roll compression in percent, the following formula is used:
Dry tensile strengths (MD and CD), stretch, ratios thereof, modulus, break modulus, stress and strain are measured with a standard Instron® test device or other suitable elongation tensile tester, which may be configured in various ways, typically, using 3 inch (76.2 mm) or 1 inch (25.4 mm) wide strips of tissue or towel, conditioned in an atmosphere of 23°±1° C. (73.4°±1° F.) at 50% relative humidity for 2 hours. The tensile test is run at a crosshead speed of 2 in/min (50.8 mm/min). Break modulus is expressed in grams/3 inches/% strain or its SI equivalent of g/mm/% strain. % strain is dimensionless and need not be specified. Unless otherwise indicated, values are break values. GM refers to the square root of the product of the MD and CD values for a particular product. Tensile energy absorption (TEA), which is defined as the area under the load/elongation (stress/strain) curve, is also measured during the procedure for measuring tensile strength. Tensile energy absorption is related to the perceived strength of the product in use. Products having a higher TEA may be perceived by users as being stronger than similar products that have lower TEA values, even if the actual tensile strength of the two products are the same. In fact, having a higher tensile energy absorption may allow a product to be perceived as being stronger than one with a lower TEA, even if the tensile strength of the high-TEA product is less than that of the product having the lower tensile energy absorption. When the term “normalized” is used in connection with a tensile strength, it simply refers to the appropriate tensile strength from which the effect of basis weight has been removed by dividing that tensile strength by the basis weight. In many cases, similar information is provided by the term “breaking length”.
Tensile ratios are simply ratios of the values determined by way of the foregoing methods. Unless otherwise specified, a tensile property is a dry sheet property.
“Upper”, “upwardly” and like terminology is used purely for convenience and does not require that the sheet be placed in a specified orientation, but rather, refers to position or direction toward the caps of the dome structures, that is, the belt side of the web, which is generally opposite to the Yankee side, unless the context clearly indicates otherwise.
“Venation” means a structure presenting a generally smooth surface having raised, generally continuous ridges defined thereacross, similar to the venation observable on the lower surface of many common leaves.
The void volume and/or void volume ratio, as referred to hereafter, are determined by saturating a sheet with a nonpolar POROFIL™ liquid, available from Coulter Electronics Ltd., (Beckman Coulter, Inc., 250 S. Kraemer Boulevard, P.O. Box 8000, Brea, Calif. 92822-8000 USA, Part No. 9902458), and measuring the amount of liquid absorbed. The volume of liquid absorbed is equivalent to the void volume within the sheet structure. The % weight increase (PWI) is expressed as grams of liquid absorbed per gram of fiber in the sheet structure times one hundred, as noted hereafter. More specifically, for each single-ply sheet sample to be tested, select 8 sheets and cut out a 1 inch by 1 inch (25.4 mm by 25.4 mm) square (1 inch (25.4 mm) in the machine direction and 1 inch (25.4 mm) in the cross machine direction). For multi-ply product samples, each ply is measured as a separate entity. Multiple samples should be separated into individual single plies and 8 sheets from each ply position used for testing. Weigh and record the dry weight of each test specimen to the nearest 0.0001 gram. Place the specimen in a dish containing POROFIL™ liquid having a specific gravity of about 1.93 grams per cubic centimeter. After 10 seconds, grasp the specimen at the very edge (1 to 2 millimeters in) of one corner with tweezers and remove from the liquid. Hold the specimen with that corner uppermost and allow excess liquid to drip for 30 seconds. Lightly dab (less than ½ second contact) the lower corner of the specimen on #4 filter paper (Whatman Ltd., Maidstone, England) in order to remove any excess of the last partial drop. Immediately weigh the specimen, within 10 seconds, recording the weight to the nearest 0.0001 gram. The PWI for each specimen, expressed as grams of POROFIL™ liquid per gram of fiber, is calculated as follows:
PWI=[(W2−W1)/W1]×100,
wherein
“W1” is the dry weight of the specimen, in grams; and
“W2” is the wet weight of the specimen, in grams.
The PWI for all eight individual specimens is determined as described above and the average of the eight specimens is the PWI for the sample.
The void volume ratio is calculated by dividing the PWI by 1.9 (density of fluid) to express the ratio as a percentage, whereas the void volume (gms/gm) is simply the weight increase ratio, that is, PWI divided by 100.
Water absorbency rate is related to the time it takes for a sample to absorb a 0.1 gram droplet of water disposed on its surface by way of an automated syringe. The test specimens are preferably conditioned at 23° C.±1° C. (73.4° F.±1.8° F.) at 50% relative humidity. For each sample, four 3×3 inch test specimens are prepared. Each specimen is placed in a sample holder such that a high intensity lamp is directed toward the specimen. 0.1 ml of water is deposited on the specimen surface and a stop watch is started. When the water is absorbed, as indicated by lack of further reflection for light from the drop, the stopwatch is stopped and the time is recorded to the nearest 0.1 seconds. The procedure is repeated for each specimen and the results averaged for the sample. SAT rate is determined by graphing the weight of water absorbed by the sample (in grams) against the square root of time (in seconds). The SAT rate is the best fit slope between 10 and 60 percent of the end point (grams of water absorbed), and is expressed in g/s0.5.
The wet tensile of a wiper of the present invention is measured generally following TAPPI Method T 576 pm-07 using a three-inch (76.2 mm) wide strip of tissue that is folded into a loop, clamped in a special fixture termed a Finch Cup, then immersed in water. A suitable Finch cup, 3 inch (76.2 mm), with base to fit a 3 inch (76.2 mm) grip, is available from:
For fresh basesheet and finished product (aged 30 days or less for towel product, aged 24 hours or less for tissue product) containing wet strength additive, the test specimens are placed in a forced air oven heated to 105° C. (221° F.) for five minutes. No oven aging is needed for other samples. The Finch cup is mounted onto a tensile tester equipped with a 2.0 pound (8.9 Newton) load cell with the flange of the Finch cup clamped by the tester's lower jaw and the ends of tissue loop clamped into the upper jaw of the tensile tester. The sample is immersed in water that has been adjusted to a pH of 7.0±0.1 and the tensile is tested after a 5 second immersion time using a crosshead speed of 2 inches/minute (50.8 mm/minute). The results are expressed in g/3 in. or (g/mm), dividing the readout by two to account for the loop as appropriate.
Wipe dry times are evaluated using a turntable wipe dry instrument with a spray fluid dispensing instrument, each being as described below. For purposes of this application, two standard test surfaces are used: stainless steel and black glass. To evaluate a sample, the paper is first pre-conditioned and conditioned as described below, the test surface cleaned with Windex® original glass cleaner from S.C. Johnson and Son, Racine, Wis., and then wiped dry with a lint-free wipe.
The test sample is folded so that the fold extends in the cross machine direction and centered on the black foam side of the sample head, so that the machine direction runs perpendicular to the shaft (i.e., the machine direction is parallel to the directions of motion) and taped in position at its corners so that the sample's leading edge is the folded edge and the towel sample is flush with the right hand edge of the sample head. The sample head is placed on the test surface and the slack in the sample removed. Windex® original glass cleaner is sprayed on the test surface in an amount of 0.75±0.1 grams in the center of the area not occupied by the test head. The table is rotated for 3 revolutions at 30 to 32 rpm with the head in engagement with the test surface at a load of 1065 g spread over bearing surface dimensions of 23 cm×9.5 cm. After the turntable has made three revolutions, the area on the test surface to which the Windex® original glass cleaner was applied is observed and the elapsed time recorded until all of the Windex® original glass cleaner has evaporated. This time is recorded in seconds as the Wipe Dry Time.
To quantify the amount of lint removed from towel, tissue, and related products (Extractable Lint), a Sutherland Rub Tester with 4.0-lb rub block is used. This is discussed above.
After the samples to be evaluated are preconditioned at 10 to 35% RH at 22° to 40° C. for 24 hours, then conditioned at 50.0%±2.0% RH and 23.0±1.0° C. for 2 hours, all of the subsequent procedures are performed within the confines of a room maintained at between 48 to 53% RH and a temperature of between 22° C. and 24° C.
Two stacks of four 2.25 in.×4.5 in. test strips with 4.5 in. length in the machine direction are cut from the sample with the top (exterior of roll) side up.
Two 2.5 in.×6 in. strips of black felt are cut with the 6 in. length in the machine direction, and the top side labeled with sample ID numbers.
A baseline reading for the felt is determined by taking one L* color reading on the labeled side of each black felt strip used for testing in the middle of what will be the rubbed area using a GretagMacbeth Spectrophotometer Model Ci5 as discussed above. The “before testing” reading is later compared to the “after testing” reading in the same area of the black felt strip on the same side, so particular care is taken to be sure that comparison are made only between the same felt strips.
One L* color reading is taken on the labeled side of each black felt strip, reading the same spot used to obtain the “before testing” value, in the middle of the rubbed area. The “after testing” reading is paired up with the appropriate “before testing” reading to calculate the difference between the two readings—“ΔL*”.
For each sample, the average, standard deviation, minimum and maximum test results are recorded as measured to the nearest 0.01 L* unit for both the before testing and after testing values. The difference value of the after reading minus the before reading is indicative of the lint removal by the standardized rubbing procedure.
Liquid porosimetry is a procedure for determining the pore volume distribution (PVD) within a porous solid matrix. Each pore is sized according to its effective radius, and the contribution of each size to the total free volume is the principal objective of the analysis. The data reveals useful information about the structure of a porous network, including absorption and retention characteristics of a material.
The procedure generally requires quantitative monitoring of the movement of liquid either into or out of a porous structure. The effective radius R of a pore is operationally defined by the Laplace equation:
where γ is liquid surface tension, θ is advancing or receding contact angle of the liquid, and ΔP is pressure difference across the liquid/air meniscus. For liquid to enter or to drain from a pore, an external pressure must be applied that is just enough to overcome the Laplace ΔP. Cos θ is negative when liquid must be forced in, cos θ is positive when it must be forced out. If the external pressure on a matrix having a range of pore sizes is changed, either continuously or in steps, filling or emptying will start with the largest pore and proceed in turn down to the smallest size that corresponds to the maximum applied pressure difference. Porosimetry involves recording the increment of liquid that enters or leaves with each pressure change and can be carried out in the extrusion mode, that is, liquid is forced out of the porous network rather than into it. The receding contact angle is the appropriate term in the Laplace relationship, and any stable liquid that has a known cos θr>0 can be used. If necessary, initial saturation with liquid can be accomplished by preevacuation of the dry material. The basic arrangement used for extrusion porosimetry measurements is illustrated in
Eight finished product samples were analyzed for pore volume distribution testing. Measurements were performed on the TRI/Autoporosimeter®. The instrument and the PVD methodology are described in the paper “Liquid Porosimetry: New Methodology and Applications” by Dr. B. Miller and Dr. I. Tyomkin, published in the Journal of Colloid and Interface Science, 162, 163-170, (1994), the disclosure of which is incorporated herein by reference.
The test liquid was 0.1% TX-100 solution in water, surface tension 30 mN/m. TX-100 is a surfactant. For reference, water at room temperature has a surface tension of 72 dyne/cm. Sample size was 30 cm2. The test started in an advancing mode and finished in a a receding mode. The advancing mode requires good contact with fine porous membrane in the test chamber. Therefore, samples were covered with a multi-pin plate as shown in
Data from 1 micron to 500 microns represent the advancing part of the curve, and data from 500 microns to 1 micron represent the receding part of the curve. At the end of the test at 1 micron, there was some liquid left in the sample. This liquid is a sum of liquid in swollen fibers, liquid in pores below 1 micron, and liquid trapped in the larger pores. The amount of liquid in a sample at the end of experiment was usually below 0.5 mm3/mg.
Water Holding Capacity is determined pursuant to withdrawn ASTM Standard Method D-4250-92, Standard Method for Water-Holding Capacity of Bibulous Fibrous Products. It is considered to be generally very comparable to SAT.
In accordance with the invention, regenerated cellulose fiber is prepared from a cellulosic dope comprising cellulose dissolved in a solvent comprising tertiary amine N-oxides or ionic liquids. The solvent composition for dissolving cellulose and preparing underivatized cellulose dopes suitably includes tertiary amine oxides, such as N-methylmorpholine-N-oxide (NMMO), and similar compounds enumerated in U.S. Pat. No. 4,246,221 to McCorsley, the disclosure of which is incorporated herein by reference. Cellulose dopes may contain non-solvents for cellulose such as water, alkanols or other solvents, as will be appreciated from the discussion that follows.
Suitable cellulosic dopes are enumerated in Table 1, below.
See, also, U.S. Pat. No. 3,508,941 to Johnson, the disclosure of which is incorporated herein by reference.
Details with respect to preparation of cellulosic dopes including cellulose dissolved in suitable ionic liquids and cellulose regeneration therefrom are found in U.S. Patent Application Publication No. 2003/0157351, now U.S. Pat. No. 6,824,599, of Swatloski et al., entitled “Dissolution and Processing of Cellulose Using Ionic Liquids”, the disclosure of which is incorporated herein by reference. Here again, suitable levels of non-solvents for cellulose may be included. This patent generally describes a process of dissolving cellulose in an ionic liquid without derivatization and regenerating the cellulose in a range of structural forms. It is reported that the cellulose solubility and the solution properties can be controlled by the selection of ionic liquid constituents with small cations and halide or pseudohalide anions favoring solution. Preferred ionic liquids for dissolving cellulose include those with cyclic cations, such as the following cations: imidazolium; pyridinum; pyridazinium; pyrimidinium; pyrazinium; pyrazolium; oxazolium; 1,2,3-triazolium; 1,2,4-triazolium; thiazolium; piperidinium; pyrrolidinium; quinolinium; and isoquinolinium.
Processing techniques for ionic liquids/cellulose dopes are also discussed in U.S. Pat. No. 6,808,557 to Holbrey et al., entitled “Cellulose Matrix Encapsulation and Method”, the disclosure of which is incorporated herein by reference. Note also, U.S. Patent Application Publication No. 2005/0288484, now U.S. Pat. No. 7,888,412, of Holbrey et al., entitled “Polymer Dissolution and Blend Formation in Ionic Liquids”, as well as U.S. Patent Application Publication No. 2004/0038031, now U.S. Pat. No. 6,808,557, of Holbrey et al., entitled “Cellulose Matrix Encapsulation and Method”, the disclosures of which are incorporated herein by reference. With respect to ionic fluids, in general, the following documents provide further detail: U.S. Patent Application Publication No. 2006/0241287, now U.S. Pat. No. 7,763,715, of Hecht et al., entitled “Extracting Biopolymers From a Biomass Using Ionic Liquids”; U.S. Patent Application Publication No. 2006/0240727 of Price et al., entitled “Ionic Liquid Based Products and Method of Using The Same”; U.S. Patent Application Publication No. 2006/0240728 of Price et al., entitled “Ionic Liquid Based Products and Method of Using the Same”; U.S. Patent Application Publication No. 2006/0090271 of Price et al., entitled “Processes For Modifying Textiles Using Ionic Liquids”; and U.S. Patent Application Publication No. 2006/0207722 of Amano et al., entitled “Pressure Sensitive Adhesive Compositions, Pressure Sensitive Adhesive Sheets and Surface Protecting Films,” now U.S. Pat. No. 8,318,859, the disclosures of which are incorporated herein by reference. Some ionic liquids and quasi-ionic liquids that may be suitable are disclosed by Imperato et al., Chemical Communications 2005, pages 1170 to 1172, the disclosure of which is incorporated herein by reference.
“Ionic liquid”, refers to a molten composition including an ionic compound that is preferably a stable liquid at temperatures of less than 100° C. at ambient pressure. Typically, such liquids have a very low vapor pressure at 100° C., less than 75 mBar or so, and preferably, less than 50 mBar or less than 25 mBar at 100° C. Most suitable liquids will have a vapor pressure of less than 10 mBar at 100° C., and often, the vapor pressure is so low that it is negligible, and is not easily measurable, since it is less than 1 mBar at 100° C.
Suitable commercially available ionic liquids are Basionic™ ionic liquid products available from BASF (Florham Park, N.J.) and are listed in Table 2 below.
Cellulose dopes, including ionic liquids having dissolved therein about 5% by weight underivatized cellulose, are commercially available from Aldrich. These compositions utilize alkyl-methylimidazolium acetate as the solvent. It has been found that choline-based ionic liquids are not particularly suitable for dissolving cellulose.
After the cellulosic dope is prepared, it is spun into fiber, fibrillated and incorporated into absorbent sheet, as described later.
A synthetic cellulose, such as lyocell, is split into micro- and nano-fibers, and added to conventional wood pulp. The fiber may be fibrillated in an unloaded disk refiner, for example, or any other suitable technique including using a PFI beater mill. Preferably, relatively short fiber is used, and the consistency kept low during fibrillation. The beneficial features of fibrillated lyocell include biodegradability, hydrogen bonding, dispersibility, repulpability, and smaller microfibers than obtainable with meltspun fibers, for example.
Fibrillated lyocell or its equivalent has advantages over splittable meltspun fibers. Synthetic microdenier fibers come in a variety of forms. For example, a 3 denier nylon/PET fiber in a so-called pie wedge configuration can be split into 16 or 32 segments, typically, in a hydroentangling process. Each segment of a 16-segment fiber would have a coarseness of about 2 mg/100 m versus eucalyptus pulp at about 7 mg/100 m. Unfortunately, a number of deficiencies has been identified with this approach for conventional wet laid applications. Dispersibility is less than optimal. Melt spun fibers must be split before sheet formation, and an efficient method is lacking. Most available polymers for these fibers are not biodegradable. The coarseness is lower than that of wood pulp, but still high enough that they must be used in substantial amounts and form a costly part of the furnish. Finally, the lack of hydrogen bonding requires other methods of retaining the fibers in the sheet.
Fibrillated lyocell has fibrils that can be as small as 0.1 to 0.25 microns (μm) in diameter, translating to a coarseness of 0.0013 to 0.0079 mg/100 m. Assuming these fibrils are available as individual strands—separate from the parent fiber—the furnish fiber population can be dramatically increased at various addition rates. Even fibrils not separated from the parent fiber may provide benefit. Dispersibility, repulpability, hydrogen bonding, and biodegradability remain product attributes since the fibrils are cellulose.
Fibrils from lyocell fiber have important distinctions from wood pulp fibrils. The most important distinction is the length of the lyocell fibrils. Wood pulp fibrils are only perhaps microns long, and, therefore, act in the immediate area of a fiber-fiber bond. Wood pulp fibrillation from refining leads to stronger, denser sheets. Lyocell fibrils, however, are potentially as long as the parent fibers. These fibrils can act as independent fibers and improve the bulk, while maintaining or improving strength. Southern pine and mixed southern hardwood (MSHW) are two examples of fibers that are disadvantaged relative to premium pulps with respect to softness. The term “premium pulps” used herein refers to northern softwoods and eucalyptus kraft pulps commonly used in the tissue industry for producing the softest bath, facial, and towel grades. Southern pine is coarser than northern softwood kraft, and mixed southern hardwood is both coarser and higher in fines than market eucalyptus. The lower coarseness and lower fines content of premium market pulp leads to a higher fiber population, expressed as fibers per gram (N or Ni>0.2) in Table 3. The coarseness and length values in Table 3 were obtained with an OpTest Fiber Quality Analyzer. Definitions are as follows:
Northern bleached softwood kraft (NBSK) and eucalyptus have more fibers per gram than do southern pine and hardwood. Lower coarseness leads to higher fiber populations and smoother sheets.
Eucalyptus
For comparison, the “parent” or “stock” fibers of unfibrillated lyocell have a coarseness 16.6 mg/100 m before fibrillation and a diameter of about 11 to 12 μm.
The fibrils of fibrillated lyocell have a coarseness on the order of 0.001 to 0.008 mg/100 m. Thus, the fiber population can be dramatically increased at relatively low addition rates.
The dimensions of the fibers passing the 200 mesh screen are on the order of 0.2 micron by 100 micron long. Using these dimensions, one calculates a fiber population of 200 billion fibers per gram. For perspective, southern pine might be three million fibers per gram and eucalyptus might be twenty million fibers per gram (Table 3). It appears that these fibers are the fibrils that are broken away from the original unrefined fibers. Different fiber shapes with lyocell intended to readily fibrillate could result in 0.2 micron diameter fibers that are perhaps 1000 microns or more long, instead of 100. As noted above, fibrillated fibers of regenerated cellulose may be made by producing “stock” fibers having a diameter of 10 to 12 microns, or so, followed by fibrillating the parent fibers. Alternatively, fibrillated lyocell microfibers have recently become available from Engineered Fibers Technology (Shelton, Conn.) having suitable properties.
Particularly preferred materials contain more than 40% fiber that is finer than 14 mesh and exhibit a very low coarseness (low freeness). For ready reference, mesh sizes appear in Table 4, below.
Details as to fractionation using the Bauer-McNett Classifier appear in Gooding et al., “Fractionation in a Bauer-McNett Classifier”, Journal of Pulp and Paper Science, Vol. 27, No. 12, December 2001, the disclosure of which is incorporated herein by reference. A particularly preferred microfiber is shown in Table 4A.
A series of belt-creped base-sheets was prepared with the materials and layering described in Table 5, with the CMF having the approximate fiber length distribution shown in
100% NBSK was delivered from a first machine chest. 100% CMF was supplied from a second machine chest. The softwood fiber was refined an average of 2.2 HPD/ton based on total flow, requiring less refined horsepower as softwood fiber content decreased. The average freeness of the softwood fiber across the trial was 541 ml CSF.
Amres® HP 100, from Georgia-Pacific Resins, Inc., was split proportionally to the suction of each machine chest pump. Amtex Gelycel® carboxymethylcellulose (CMC) was split proportionally to the static mixer or stuff box. Titratable charge averaged 0.02 ml/10 ml for cells with no CMC and 12 lb/ton Amres®. Titratable charge averaged −0.17 ml/10 ml for cells with 12 lb/ton CMC and 40 lb/ton Amres®.
Trial speed averages appear in Table 6:
A perforated polymer creping belt was used as described in U.S. Patent Application Publication No. 2010/0186913, entitled “Belt-Creped, Variable Local Basis Weight Absorbent Sheet Prepared With Perforated Polymeric Belt”, now U.S. Pat. No. 8,293,072, the disclosure of which is incorporated herein by reference. The sheet contact surface of the perforated polymeric belt is illustrated in
The basesheets produced had the properties set forth in Table 7. Basesheets were converted to two-ply sheet using Fantale emboss pattern,
Softness panel, wet lint, and wipe dry tests were completed in addition to conventional strength and absorbency tests described above. Porosity of the sheets is discussed in some detail below. The results of these tests are set forth in Table 8.
Details as to base-sheet properties and converted two-ply wiper properties appear in Tables 7 and 8. From Table 8, it can be appreciated that the addition of even 20% CMF significantly improves the wipe dry characteristics of the sheets. See lines 15 and 17 in comparison to lines 1 and 2, while improvement in wipe dry starts leveling out with the addition of 40% CMF. Compare line 16 with lines 3, 4 and 7. As is shown in line 14, however, the best overall results for wipe dry and softness were obtained with 60% CMF.
Referring to
Wipe Dry=22.1−0.662·CMF+0.00495·CMF2+0.00493·Wet Tensile
R2=0.99 Equation (1)
Softness=7.90+0.0348 CMF−0.00223 Wet Tensile
R2=0.99 Equation (2)
CMF makes the sheet more difficult to dewater compactively, as the tendency of the sheet to extrude itself out of the pressing nip increases as the CMF content is increased. Oftentimes, this is referred to as sheet crushing. When attempting to dewater a nascent web containing increasing amounts of CMF, the Visconip pressure had to be progressively reduced to prevent sheet crushing at the nip as the level of CMF in the sheet was increased (See
Basesheets having the properties set forth in Table 9 were made using fabric creping technology in which the nascent webs were creped from a creping cylinder using a woven creping fabric. These basesheets were converted to finished product towels by embossing one ply with the emboss pattern shown in
When tested for physical properties, the results set forth in Table 11 were obtained. Subsequently, other rolls of basesheet were converted using the emboss design shown in
By comparing
While the invention has been described in detail, modifications within the spirit and scope of the invention will be readily apparent to those of skill in the art. In view of the foregoing discussion, relevant knowledge in the art and references including the copending applications discussed above in connection with the Background and Detailed Description, the disclosures of which are all incorporated herein by reference, further description is deemed unnecessary. In addition, it should be understood that aspects of the invention and portions of various embodiments may be combined or interchanged either in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention.
This application is a continuation application of U.S. patent application Ser. No. 13/942,855, filed on Jul. 16, 2013, and published as U.S. Patent Application Publication No. 2013/0299106, now U.S. Pat. No. 8,864,945, which is a continuation application of U.S. patent application Ser. No. 13/137,216, filed on Jul. 28, 2011, now U.S. Pat. No. 8,540,846, which is a continuation in part of U.S. patent application Ser. No. 12/694,650, filed Jan. 27, 2010, U.S. Patent Application Publication No. 2010/0186913, entitled “Belt-Creped, Variable Local Basis Weight Absorbent Sheet Prepared With Perforated Polymeric Belt”, published Jul. 29, 2010, now U.S. Pat. No. 8,293,072, which was based upon U.S. Provisional Patent Application No. 61/206,146, filed Jan. 28, 2009, the right of priority of the foregoing being hereby claimed. All of the foregoing applications are incorporated herein by reference. This application relates to the subject matter of U.S. Patent Application Publication No. 2009/0020139, published Jan. 22, 2009, based on U.S. patent application Ser. No. 12/284,148, filed Sep. 17, 2008, now U.S. Pat. No. 8,187,422, entitled “High Efficiency Disposable Cellulosic Wiper”. This application also relates to the subject matter of U.S. Patent Application Publication No. 2009/0020248, published Jan. 22, 2009, based on U.S. patent application Ser. No. 12/284,147, also filed Sep. 17, 2008, now U.S. Pat. No. 8,187,421, entitled “Absorbent Sheet Incorporating Regenerated Cellulose Microfiber”. Both U.S. patent application Ser. Nos. 12/284,148 and 12/284,147 were based, in part, on U.S. patent application Ser. No. 11/725,253, filed Mar. 19, 2007, entitled “Absorbent Sheet Having Regenerated Cellulose Microfiber Network”, now U.S. Pat. No. 7,718,036. This application also relates, in part, to the subject matter of the following U.S. Provisional Patent Applications: (1) Provisional Application No. 60/784,228, filed Mar. 21, 2006; (2) Provisional Application No. 60/850,467, filed Oct. 10, 2006; (3) Provisional Application No. 60/850,681, filed Oct. 10, 2006; and (4) Provisional Application No. 60/881,310, filed on Jan. 19, 2007; (5) Provisional Application No. 60/994,344, filed Sep. 19, 2007; and (6) Provisional Application No. 60/994,483, filed Sep. 19, 2007.
Number | Name | Date | Kind |
---|---|---|---|
1983529 | Brandenberger | Dec 1934 | A |
2025000 | Losee | Dec 1935 | A |
2428046 | Sisson et al. | Sep 1947 | A |
2440761 | Sisson et al. | May 1948 | A |
2459927 | Dreyfus et al. | Jan 1949 | A |
2517764 | Carson | Aug 1950 | A |
2744292 | Schlosser et al. | May 1956 | A |
2785995 | Kress | Mar 1957 | A |
3009822 | Drelich et al. | Nov 1961 | A |
3173830 | Wise et al. | Mar 1965 | A |
3175339 | McDowell | Mar 1965 | A |
3209402 | Riley et al. | Oct 1965 | A |
3337671 | Drisch et al. | Aug 1967 | A |
3382140 | Henderson et al. | May 1968 | A |
3432936 | Cole et al. | Mar 1969 | A |
3475270 | Cruz | Oct 1969 | A |
3508941 | Johnson | Apr 1970 | A |
3692622 | Dunning | Sep 1972 | A |
3785918 | Kawai et al. | Jan 1974 | A |
3926716 | Bates | Dec 1975 | A |
3974025 | Ayers | Aug 1976 | A |
3994771 | Morgan, Jr. et al. | Nov 1976 | A |
4036679 | Back et al. | Jul 1977 | A |
4064213 | Lazorisak et al. | Dec 1977 | A |
4100324 | Anderson et al. | Jul 1978 | A |
4102737 | Morton | Jul 1978 | A |
4125659 | Klowak et al. | Nov 1978 | A |
4145532 | Franks et al. | Mar 1979 | A |
4161195 | Khan | Jul 1979 | A |
4182381 | Gisbourne | Jan 1980 | A |
4184519 | McDonald et al. | Jan 1980 | A |
4196282 | Franks et al. | Apr 1980 | A |
4225382 | Kearney et al. | Sep 1980 | A |
4239065 | Trokhan | Dec 1980 | A |
4246221 | McCorsley, III | Jan 1981 | A |
4307143 | Meitner | Dec 1981 | A |
4314589 | Buchanan et al. | Feb 1982 | A |
4356059 | Hostetler | Oct 1982 | A |
4359069 | Hahn | Nov 1982 | A |
4374702 | Turbak et al. | Feb 1983 | A |
4376455 | Hahn | Mar 1983 | A |
4379735 | MacBean | Apr 1983 | A |
4420372 | Hostetler | Dec 1983 | A |
4426228 | Brandner et al. | Jan 1984 | A |
4426417 | Meitner et al. | Jan 1984 | A |
4436780 | Hotchkiss et al. | Mar 1984 | A |
4440597 | Wells et al. | Apr 1984 | A |
4441962 | Osborn, III | Apr 1984 | A |
4448638 | Klowak | May 1984 | A |
4453573 | Thompson | Jun 1984 | A |
4468428 | Early et al. | Aug 1984 | A |
4481076 | Herrick | Nov 1984 | A |
4481077 | Herrick | Nov 1984 | A |
4482429 | Klowak | Nov 1984 | A |
4483743 | Turbak et al. | Nov 1984 | A |
4490925 | Smith | Jan 1985 | A |
4507173 | Klowak et al. | Mar 1985 | A |
4528239 | Trokhan | Jul 1985 | A |
4528316 | Soerens | Jul 1985 | A |
4529480 | Trokhan | Jul 1985 | A |
4533437 | Curran et al. | Aug 1985 | A |
4543156 | Cheshire et al. | Sep 1985 | A |
4546052 | Nicoll | Oct 1985 | A |
4551199 | Weldon | Nov 1985 | A |
4552709 | Koger, II et al. | Nov 1985 | A |
4556450 | Chuang et al. | Dec 1985 | A |
4592395 | Borel | Jun 1986 | A |
4605585 | Johansson | Aug 1986 | A |
4610743 | Salmeen et al. | Sep 1986 | A |
4611639 | Bugge | Sep 1986 | A |
4614679 | Farrington, Jr. et al. | Sep 1986 | A |
4637859 | Trokhan | Jan 1987 | A |
4640741 | Tsuneo | Feb 1987 | A |
4689119 | Weldon | Aug 1987 | A |
4709732 | Kinnunen | Dec 1987 | A |
4735849 | Murakami et al. | Apr 1988 | A |
4759391 | Waldvogel et al. | Jul 1988 | A |
4759976 | Dutt | Jul 1988 | A |
4795530 | Soerens et al. | Jan 1989 | A |
4802942 | Takemura et al. | Feb 1989 | A |
4834838 | Klowak | May 1989 | A |
4849054 | Klowak | Jul 1989 | A |
4906513 | Kebbell et al. | Mar 1990 | A |
4908097 | Box | Mar 1990 | A |
4931201 | Julemont | Jun 1990 | A |
4942077 | Wendt et al. | Jul 1990 | A |
4973512 | Stanley et al. | Nov 1990 | A |
4987632 | Rowe et al. | Jan 1991 | A |
4998568 | Vöhringer | Mar 1991 | A |
5016678 | Borel et al. | May 1991 | A |
5023132 | Stanley et al. | Jun 1991 | A |
5039431 | Johnson et al. | Aug 1991 | A |
5048589 | Cook et al. | Sep 1991 | A |
5054525 | Vöhringer | Oct 1991 | A |
5066532 | Gaisser | Nov 1991 | A |
5087324 | Awofeso et al. | Feb 1992 | A |
5098519 | Ramasubramanian et al. | Mar 1992 | A |
5098522 | Smurkoski et al. | Mar 1992 | A |
5103874 | Lee | Apr 1992 | A |
5114777 | Gaisser | May 1992 | A |
5124197 | Bernardin et al. | Jun 1992 | A |
5129988 | Farrington, Jr. | Jul 1992 | A |
5137600 | Barnes et al. | Aug 1992 | A |
5167261 | Lee | Dec 1992 | A |
5182164 | Eklund et al. | Jan 1993 | A |
5199467 | Lee | Apr 1993 | A |
5211815 | Ramasubramanian et al. | May 1993 | A |
5219004 | Chiu | Jun 1993 | A |
5223096 | Phan et al. | Jun 1993 | A |
5225269 | Bohlin | Jul 1993 | A |
5227024 | Gomez | Jul 1993 | A |
5245025 | Trokhan et al. | Sep 1993 | A |
5269470 | Ishikawa et al. | Dec 1993 | A |
5277761 | Van Phan et al. | Jan 1994 | A |
5314584 | Grinnell et al. | May 1994 | A |
5320710 | Reeves et al. | Jun 1994 | A |
5328565 | Rasch et al. | Jul 1994 | A |
5336373 | Scattolino et al. | Aug 1994 | A |
5348620 | Hermans et al. | Sep 1994 | A |
5354524 | Sellars et al. | Oct 1994 | A |
5366785 | Sawdai | Nov 1994 | A |
5368696 | Cunnane, III et al. | Nov 1994 | A |
5372876 | Johnson et al. | Dec 1994 | A |
5379808 | Chiu | Jan 1995 | A |
5385640 | Weibel et al. | Jan 1995 | A |
5411636 | Hermans et al. | May 1995 | A |
5451353 | Rezai et al. | Sep 1995 | A |
5492598 | Hermans et al. | Feb 1996 | A |
5494554 | Edwards et al. | Feb 1996 | A |
5501768 | Hermans et al. | Mar 1996 | A |
5503715 | Trokhan et al. | Apr 1996 | A |
5505818 | Hermans et al. | Apr 1996 | A |
5510001 | Hermans et al. | Apr 1996 | A |
5510002 | Hermans et al. | Apr 1996 | A |
5549790 | Van Phan | Aug 1996 | A |
5556509 | Trokhan et al. | Sep 1996 | A |
5562739 | Urben | Oct 1996 | A |
5580356 | Taylor | Dec 1996 | A |
5582681 | Back et al. | Dec 1996 | A |
5593545 | Rugowski et al. | Jan 1997 | A |
5601871 | Krzysik et al. | Feb 1997 | A |
5607551 | Farrington, Jr. et al. | Mar 1997 | A |
5609725 | Van Phan | Mar 1997 | A |
5614293 | Krzysik et al. | Mar 1997 | A |
5618612 | Gstrein | Apr 1997 | A |
H1672 | Hermans et al. | Aug 1997 | H |
5656132 | Farrington, Jr. et al. | Aug 1997 | A |
5657797 | Townley et al. | Aug 1997 | A |
5667636 | Engel et al. | Sep 1997 | A |
5672248 | Wendt et al. | Sep 1997 | A |
5674590 | Anderson et al. | Oct 1997 | A |
5688468 | Lu | Nov 1997 | A |
5690149 | Lee | Nov 1997 | A |
5695607 | Oriaran et al. | Dec 1997 | A |
5725734 | Herman et al. | Mar 1998 | A |
5725821 | Gannon et al. | Mar 1998 | A |
5746887 | Wendt et al. | May 1998 | A |
5759210 | Potter et al. | Jun 1998 | A |
5759926 | Pike et al. | Jun 1998 | A |
5772845 | Farrington, Jr. et al. | Jun 1998 | A |
5779737 | Potter et al. | Jul 1998 | A |
5814190 | Van Phan | Sep 1998 | A |
5830321 | Lindsay et al. | Nov 1998 | A |
5840403 | Trokhan et al. | Nov 1998 | A |
5840404 | Graff | Nov 1998 | A |
5851353 | Fiscus et al. | Dec 1998 | A |
5858021 | Sun et al. | Jan 1999 | A |
5863652 | Matsumura et al. | Jan 1999 | A |
5865955 | Ilvespääet al. | Feb 1999 | A |
5866407 | Foody et al. | Feb 1999 | A |
5888347 | Engel et al. | Mar 1999 | A |
5895710 | Sasse et al. | Apr 1999 | A |
5932068 | Farrington, Jr. et al. | Aug 1999 | A |
5935381 | Trokhan et al. | Aug 1999 | A |
5935681 | Paulett | Aug 1999 | A |
5935880 | Wang et al. | Aug 1999 | A |
5958187 | Bhat et al. | Sep 1999 | A |
5964983 | Dinand et al. | Oct 1999 | A |
5968590 | Ahonen et al. | Oct 1999 | A |
6001218 | Hsu et al. | Dec 1999 | A |
6001421 | Ahonen et al. | Dec 1999 | A |
6017417 | Wendt et al. | Jan 2000 | A |
6027611 | McFarland et al. | Feb 2000 | A |
6033523 | Dwiggins et al. | Mar 2000 | A |
6036820 | Schiel et al. | Mar 2000 | A |
6042769 | Gannon et al. | Mar 2000 | A |
6048641 | Ohmory et al. | Apr 2000 | A |
6059928 | Van Luu et al. | May 2000 | A |
6080279 | Hada et al. | Jun 2000 | A |
6083346 | Hermans et al. | Jul 2000 | A |
6093284 | Hada et al. | Jul 2000 | A |
6096169 | Hermans et al. | Aug 2000 | A |
6117525 | Trokhan et al. | Sep 2000 | A |
6117545 | Cavaille et al. | Sep 2000 | A |
6119362 | Sundqvist | Sep 2000 | A |
6136146 | Phan et al. | Oct 2000 | A |
6139686 | Trokhan et al. | Oct 2000 | A |
6143135 | Hada et al. | Nov 2000 | A |
6146499 | Lin et al. | Nov 2000 | A |
6149767 | Hermans et al. | Nov 2000 | A |
6153136 | Collier et al. | Nov 2000 | A |
6162327 | Batra et al. | Dec 2000 | A |
6171442 | Farrington, Jr. et al. | Jan 2001 | B1 |
6183596 | Matsuda et al. | Feb 2001 | B1 |
6187137 | Druecke et al. | Feb 2001 | B1 |
6197154 | Chen et al. | Mar 2001 | B1 |
6210528 | Wolkowicz | Apr 2001 | B1 |
6214163 | Matsuda et al. | Apr 2001 | B1 |
6221487 | Luo et al. | Apr 2001 | B1 |
6315864 | Anderson et al. | Nov 2001 | B2 |
6318727 | Hada | Nov 2001 | B1 |
6331230 | Hermans et al. | Dec 2001 | B1 |
6350349 | Hermans et al. | Feb 2002 | B1 |
6379496 | Edwards et al. | Apr 2002 | B2 |
6381868 | Grabscheid et al. | May 2002 | B1 |
6413368 | Dwiggins et al. | Jul 2002 | B1 |
6416631 | Beck | Jul 2002 | B1 |
6419793 | Beck | Jul 2002 | B1 |
6420013 | Vinson et al. | Jul 2002 | B1 |
6432267 | Watson | Aug 2002 | B1 |
6432270 | Liu et al. | Aug 2002 | B1 |
6436234 | Chen et al. | Aug 2002 | B1 |
6440547 | Luo et al. | Aug 2002 | B1 |
6444314 | Luo et al. | Sep 2002 | B1 |
6447640 | Watson et al. | Sep 2002 | B1 |
6447641 | Wolkowicz et al. | Sep 2002 | B1 |
6454904 | Hermans et al. | Sep 2002 | B1 |
6461474 | Lindsay et al. | Oct 2002 | B1 |
6464829 | Chen et al. | Oct 2002 | B1 |
6471727 | Luo et al. | Oct 2002 | B2 |
6478927 | Chen et al. | Nov 2002 | B1 |
6491788 | Sealey, II et al. | Dec 2002 | B2 |
6497789 | Hermans et al. | Dec 2002 | B1 |
6500302 | Dwiggins et al. | Dec 2002 | B2 |
6511746 | Collier et al. | Jan 2003 | B1 |
6514613 | Luo et al. | Feb 2003 | B2 |
6533898 | Gross | Mar 2003 | B2 |
6534151 | Merker | Mar 2003 | B2 |
6540879 | Marinack et al. | Apr 2003 | B2 |
6544912 | Tanio et al. | Apr 2003 | B1 |
6547924 | Klerelid et al. | Apr 2003 | B2 |
6551461 | Hermans et al. | Apr 2003 | B2 |
6558511 | Dwiggins et al. | May 2003 | B2 |
6565707 | Behnke et al. | May 2003 | B2 |
6573204 | Philipp et al. | Jun 2003 | B1 |
6585855 | Drew et al. | Jul 2003 | B2 |
6596033 | Luo et al. | Jul 2003 | B1 |
6602386 | Takeuchi et al. | Aug 2003 | B1 |
6607638 | Drew et al. | Aug 2003 | B2 |
6610173 | Lindsay et al. | Aug 2003 | B1 |
6624100 | Pike | Sep 2003 | B1 |
6645420 | Beck | Nov 2003 | B1 |
6645618 | Hobbs et al. | Nov 2003 | B2 |
6660362 | Lindsay et al. | Dec 2003 | B1 |
6669821 | Edwards et al. | Dec 2003 | B2 |
6692827 | Luo et al. | Feb 2004 | B2 |
6699806 | Takeuchi et al. | Mar 2004 | B1 |
6701637 | Lindsay et al. | Mar 2004 | B2 |
6706237 | Luo et al. | Mar 2004 | B2 |
6706876 | Luo et al. | Mar 2004 | B2 |
6709548 | Marinack et al. | Mar 2004 | B2 |
6746558 | Hoeft et al. | Jun 2004 | B2 |
6746976 | Urankar et al. | Jun 2004 | B1 |
6749718 | Takai et al. | Jun 2004 | B2 |
6752907 | Edwards et al. | Jun 2004 | B2 |
6767634 | Krishnaswamy | Jul 2004 | B2 |
6773648 | Luo et al. | Aug 2004 | B2 |
6797115 | Klerelid et al. | Sep 2004 | B2 |
6808557 | Holbrey et al. | Oct 2004 | B2 |
6824599 | Swatloski et al. | Nov 2004 | B2 |
6824648 | Edwards et al. | Nov 2004 | B2 |
6827819 | Dwiggins et al. | Dec 2004 | B2 |
6833187 | Luo et al. | Dec 2004 | B2 |
6835311 | Koslow | Dec 2004 | B2 |
6841038 | Horenziak et al. | Jan 2005 | B2 |
6849239 | Morris | Feb 2005 | B2 |
6861023 | Sealey, II et al. | Mar 2005 | B2 |
6872311 | Koslow | Mar 2005 | B2 |
6890649 | Hobbs et al. | May 2005 | B2 |
6899790 | Lee | May 2005 | B2 |
6951895 | Qin et al. | Oct 2005 | B1 |
6964117 | Parent | Nov 2005 | B2 |
6969443 | Kokko | Nov 2005 | B1 |
6986932 | Zink et al. | Jan 2006 | B2 |
6998017 | Lindsay et al. | Feb 2006 | B2 |
6998022 | Hultcrantz | Feb 2006 | B2 |
7037405 | Nguyen et al. | May 2006 | B2 |
7067444 | Luo et al. | Jun 2006 | B2 |
7070678 | Allen et al. | Jul 2006 | B2 |
7083704 | Sealey, II et al. | Aug 2006 | B2 |
7094317 | Lundberg et al. | Aug 2006 | B2 |
7097737 | Luo et al. | Aug 2006 | B2 |
7160418 | Edwards et al. | Jan 2007 | B2 |
7195694 | Von Drach et al. | Mar 2007 | B2 |
7210205 | Takeuchi et al. | May 2007 | B2 |
7214633 | Sun et al. | May 2007 | B2 |
7229528 | Vinson et al. | Jun 2007 | B2 |
7241711 | Takai et al. | Jul 2007 | B2 |
7250382 | Takai et al. | Jul 2007 | B2 |
7258764 | Mauler | Aug 2007 | B2 |
7276166 | Koslow | Oct 2007 | B2 |
7276459 | Lang et al. | Oct 2007 | B1 |
7296691 | Koslow | Nov 2007 | B2 |
7300543 | Mullally et al. | Nov 2007 | B2 |
7320743 | Freidbauer et al. | Jan 2008 | B2 |
7381294 | Suzuki et al. | Jun 2008 | B2 |
7387706 | Herman et al. | Jun 2008 | B2 |
7399378 | Edwards et al. | Jul 2008 | B2 |
7416637 | Murray et al. | Aug 2008 | B2 |
7435312 | Lindsay et al. | Oct 2008 | B2 |
7442278 | Murray et al. | Oct 2008 | B2 |
7494563 | Edwards et al. | Feb 2009 | B2 |
7503998 | Murray et al. | Mar 2009 | B2 |
7563344 | Beuther et al. | Jul 2009 | B2 |
7566014 | Koslow et al. | Jul 2009 | B2 |
7585388 | Yeh et al. | Sep 2009 | B2 |
7585389 | Yeh et al. | Sep 2009 | B2 |
7585392 | Kokko et al. | Sep 2009 | B2 |
7588660 | Edwards et al. | Sep 2009 | B2 |
7588661 | Edwards et al. | Sep 2009 | B2 |
7588831 | Akiyama et al. | Sep 2009 | B2 |
7605096 | Tomarchio et al. | Oct 2009 | B2 |
7608164 | Chou et al. | Oct 2009 | B2 |
7651589 | Murray et al. | Jan 2010 | B2 |
7655112 | Koslow | Feb 2010 | B2 |
7662255 | Murray et al. | Feb 2010 | B2 |
7662257 | Edwards et al. | Feb 2010 | B2 |
7670457 | Murray et al. | Mar 2010 | B2 |
7691228 | Edwards et al. | Apr 2010 | B2 |
7691760 | Bergsten et al. | Apr 2010 | B2 |
7700764 | Heijnesson-Hultén | Apr 2010 | B2 |
7704349 | Edwards et al. | Apr 2010 | B2 |
7718036 | Sumnicht et al. | May 2010 | B2 |
7726349 | Mullally et al. | Jun 2010 | B2 |
7744723 | Sheehan et al. | Jun 2010 | B2 |
7758723 | Vinson et al. | Jul 2010 | B2 |
7763715 | Hecht et al. | Jul 2010 | B2 |
7785443 | Hermans et al. | Aug 2010 | B2 |
7789995 | Super et al. | Sep 2010 | B2 |
7794566 | Edwards et al. | Sep 2010 | B2 |
7799968 | Chen et al. | Sep 2010 | B2 |
7811418 | Klerelid et al. | Oct 2010 | B2 |
7820008 | Edwards et al. | Oct 2010 | B2 |
7828931 | Edwards et al. | Nov 2010 | B2 |
7850823 | Chou et al. | Dec 2010 | B2 |
7871493 | Hermans et al. | Jan 2011 | B2 |
7884037 | Sirovatka et al. | Feb 2011 | B2 |
7888412 | Holbrey et al. | Feb 2011 | B2 |
7918964 | Edwards et al. | Apr 2011 | B2 |
7927456 | Murray et al. | Apr 2011 | B2 |
7935220 | Edwards et al. | May 2011 | B2 |
7951264 | Sumnicht | May 2011 | B2 |
7951266 | Kokko et al. | May 2011 | B2 |
7972474 | Underhill et al. | Jul 2011 | B2 |
7985321 | Sumnicht et al. | Jul 2011 | B2 |
7998313 | Kokko | Aug 2011 | B2 |
8012312 | Goto et al. | Sep 2011 | B2 |
8022267 | Hellström et al. | Sep 2011 | B2 |
8030231 | Lange et al. | Oct 2011 | B2 |
8066849 | Kokko et al. | Nov 2011 | B2 |
8105463 | Goulet et al. | Jan 2012 | B2 |
8142612 | Murray et al. | Mar 2012 | B2 |
8152957 | Edwards et al. | Apr 2012 | B2 |
8152958 | Super et al. | Apr 2012 | B2 |
8177938 | Sumnicht | May 2012 | B2 |
8187421 | Sumnicht et al. | May 2012 | B2 |
8187422 | Sumnicht et al. | May 2012 | B2 |
8216425 | Sumnicht et al. | Jul 2012 | B2 |
8226797 | Murray et al. | Jul 2012 | B2 |
8257552 | Edwards et al. | Sep 2012 | B2 |
8293072 | Super et al. | Oct 2012 | B2 |
8318859 | Amano et al. | Nov 2012 | B2 |
8361278 | Fike et al. | Jan 2013 | B2 |
8410005 | Brennan et al. | Apr 2013 | B2 |
8444808 | Koslow et al. | May 2013 | B2 |
8513147 | Gupta et al. | Aug 2013 | B2 |
8540846 | Miller et al. | Sep 2013 | B2 |
8591982 | Lundberg et al. | Nov 2013 | B2 |
8632658 | Miller et al. | Jan 2014 | B2 |
8652300 | Super et al. | Feb 2014 | B2 |
8673116 | Konishi et al. | Mar 2014 | B2 |
8778086 | Sumnicht et al. | Jul 2014 | B2 |
8852397 | Super et al. | Oct 2014 | B2 |
20020162635 | Hsu et al. | Nov 2002 | A1 |
20020168912 | Bond et al. | Nov 2002 | A1 |
20020187307 | Tanaka et al. | Dec 2002 | A1 |
20030099821 | Takai et al. | May 2003 | A1 |
20030100240 | Takai et al. | May 2003 | A1 |
20030111195 | Hu | Jun 2003 | A1 |
20030144640 | Nguyen | Jul 2003 | A1 |
20030157351 | Swatloski et al. | Aug 2003 | A1 |
20030168401 | Koslow | Sep 2003 | A1 |
20030177909 | Koslow | Sep 2003 | A1 |
20030178166 | Takeuchi et al. | Sep 2003 | A1 |
20030200991 | Keck et al. | Oct 2003 | A1 |
20030203695 | Polanco et al. | Oct 2003 | A1 |
20040038031 | Holbrey et al. | Feb 2004 | A1 |
20040103507 | Takeuchi et al. | Jun 2004 | A1 |
20040203306 | Grafe et al. | Oct 2004 | A1 |
20040207110 | Luo et al. | Oct 2004 | A1 |
20040238135 | Edwards et al. | Dec 2004 | A1 |
20040248494 | Hartgrove et al. | Dec 2004 | A1 |
20040256066 | Lindsay et al. | Dec 2004 | A1 |
20050074542 | Lundberg et al. | Apr 2005 | A1 |
20050136772 | Chen et al. | Jun 2005 | A1 |
20050148264 | Varona et al. | Jul 2005 | A1 |
20050176326 | Bond et al. | Aug 2005 | A1 |
20050268274 | Beuther et al. | Dec 2005 | A1 |
20050274469 | Lundberg et al. | Dec 2005 | A1 |
20050288484 | Holbrey et al. | Dec 2005 | A1 |
20060088696 | Manifold et al. | Apr 2006 | A1 |
20060090271 | Price et al. | May 2006 | A1 |
20060141881 | Bergsten et al. | Jun 2006 | A1 |
20060207722 | Amano et al. | Sep 2006 | A1 |
20060240727 | Price et al. | Oct 2006 | A1 |
20060240728 | Price et al. | Oct 2006 | A1 |
20060241287 | Hecht et al. | Oct 2006 | A1 |
20070062656 | Murray et al. | Mar 2007 | A1 |
20070137807 | Schulz et al. | Jun 2007 | A1 |
20070137814 | Gao | Jun 2007 | A1 |
20070224419 | Sumnicht et al. | Sep 2007 | A1 |
20070228064 | Brennan et al. | Oct 2007 | A1 |
20070232180 | Polat et al. | Oct 2007 | A1 |
20080008865 | Luu et al. | Jan 2008 | A1 |
20080029235 | Edwards et al. | Feb 2008 | A1 |
20080057307 | Koslow et al. | Mar 2008 | A1 |
20080076313 | Uitenbroek et al. | Mar 2008 | A1 |
20080145664 | Sirovatka et al. | Jun 2008 | A1 |
20080173418 | Sumnicht | Jul 2008 | A1 |
20080173419 | Sumnicht | Jul 2008 | A1 |
20080311815 | Gupta et al. | Dec 2008 | A1 |
20090020139 | Sumnicht et al. | Jan 2009 | A1 |
20090020248 | Sumnicht et al. | Jan 2009 | A1 |
20090120598 | Edwards et al. | May 2009 | A1 |
20090120599 | Nguyen | May 2009 | A1 |
20090126884 | Murray et al. | May 2009 | A1 |
20090151881 | Nguyen | Jun 2009 | A1 |
20090159224 | Chou et al. | Jun 2009 | A1 |
20090259208 | Hellstrom et al. | Oct 2009 | A1 |
20090308551 | Kokko et al. | Dec 2009 | A1 |
20100065235 | Fike et al. | Mar 2010 | A1 |
20100098919 | Hartgrove et al. | Apr 2010 | A1 |
20100136268 | Rasch | Jun 2010 | A1 |
20100186913 | Super et al. | Jul 2010 | A1 |
20100212850 | Sumnicht et al. | Aug 2010 | A1 |
20100236735 | Goulet et al. | Sep 2010 | A1 |
20100272938 | Mitchell et al. | Oct 2010 | A1 |
20100282423 | Super et al. | Nov 2010 | A1 |
20100288456 | Westland et al. | Nov 2010 | A1 |
20110011545 | Edwards et al. | Jan 2011 | A1 |
20110155337 | Murray et al. | Jun 2011 | A1 |
20110265965 | Sumnicht et al. | Nov 2011 | A1 |
20110272304 | Wahal et al. | Nov 2011 | A1 |
20120021178 | Miller et al. | Jan 2012 | A1 |
20120080155 | Konishi et al. | Apr 2012 | A1 |
20120180815 | Sumnicht et al. | Jul 2012 | A1 |
20120241113 | Super et al. | Sep 2012 | A1 |
20130029105 | Miller et al. | Jan 2013 | A1 |
20130029106 | Lee et al. | Jan 2013 | A1 |
20130153164 | Miller et al. | Jun 2013 | A1 |
20130299105 | Miller et al. | Nov 2013 | A1 |
20130299106 | Miller et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1002359 | Dec 1976 | CA |
2053505 | Apr 1992 | CA |
0 279 465 | Aug 1988 | EP |
0 399 522 | Nov 1990 | EP |
0 485 360 | May 1992 | EP |
1 036 880 | Sep 2000 | EP |
1 302 146 | Apr 2003 | EP |
978953 | Jan 1965 | GB |
2319537 | May 1998 | GB |
2412083 | Sep 2005 | GB |
8003890 | Jan 1996 | JP |
2127343 | Mar 1999 | RU |
2143508 | Dec 1999 | RU |
2144101 | Jan 2000 | RU |
2183648 | Jun 2002 | RU |
2226231 | Mar 2004 | RU |
2328255 | Jul 2008 | RU |
9535399 | Dec 1995 | WO |
9606223 | Feb 1996 | WO |
9743484 | Nov 1997 | WO |
9803710 | Jan 1998 | WO |
9807914 | Feb 1998 | WO |
0014330 | Mar 2000 | WO |
0036212 | Jun 2000 | WO |
0040405 | Jul 2000 | WO |
0202869 | Jan 2002 | WO |
0240769 | May 2002 | WO |
2004033793 | Apr 2004 | WO |
2005010273 | Feb 2005 | WO |
2005106117 | Nov 2005 | WO |
2006113025 | Oct 2006 | WO |
2006115817 | Nov 2006 | WO |
2007001837 | Jan 2007 | WO |
2007109259 | Sep 2007 | WO |
2007139726 | Dec 2007 | WO |
2008045770 | Apr 2008 | WO |
2008156454 | Dec 2008 | WO |
2009038730 | Mar 2009 | WO |
2009038735 | Mar 2009 | WO |
2010088359 | Aug 2010 | WO |
2011069532 | Jun 2011 | WO |
Entry |
---|
Cresson, Thierry M., et al. “Characterization of paper formation Part 1: sensing paper formation,” Tappi Journal, Jul. 1990, pp. 153-159. |
Dymrose-Peterson, Katherine. “Smart Materials for Liquid Control,” Nonwovens World, Oct.-Nov. 1999, pp. 95-99. |
Keller, D.S. and J.J. Pawlak, “B(Beta)-Radiographic Imaging of Paper Formation Using Storage Phosphor Screens,” Journal of Pulp and Paper Science, vol. 27, No. 4, Apr. 2001, pp. 117-123. |
Klerelid, Ingvar and Ola Thomasson, “Advantage (TM) NTT (TM): low energy, high quality,” Tissue World, Oct./Nov. 2008, pp. 49-52. |
Ötürk, Hale Bahar and Thomas Bechtold, “Splitting Tendency of Cellulosic Fibers,” Lenzinger Berichte, 84, 2005, pp. 123-129. |
Sung, Y.J., et al., “Applications of Thickness and Apparent Density Mapping by Laser Profilometry,” 13th Fundamental Research Symposium, Cambridge, Sep. 2005, pp. 961-1007. |
Waterhouse, J.F. “On-Line Formation Measurements and Paper Quality,” Institute of Paper Science and Technology, 1996, IPST Technical Paper Series 604. |
International Search Report and Written Opinion of the International Searching Authority mailed Jun. 4, 2008, issued in corresponding International Application No. PCT/US07/06892. |
International Search Report and Written Opinion of the International Searching Authority mailed Dec. 1, 2008, issued in corresponding International Application No. PCT/US08/10840. |
International Search Report and Written Opinion of the International Searching Authority mailed Dec. 12, 2008, issued in corresponding International Application No. PCT/US08/10833. |
International Search Report and Written Opinion of the International Searching Authority mailed Jul. 2, 2010, issued in corresponding International Application No. PCT/US2009/057078. |
International Search Report and Written Opinion of the International Searching Authority mailed Mar. 27, 2013, issued in corresponding International Application No. PCT/US2012/048046. |
Notification of and International Preliminary Report on Patentability mailed May 12, 2014, issued in corresponding International Application No. PCT/US12/48046. |
Miller, Bernard and Ilya Tyomkin. “Liquid Porosimetry: New Methodology and Applications,” Journal of Colloid and Interface Science, 1994, 162, pp. 163-170, TRI/Princeton. |
Gooding, R.W. and J.A. Olson. “Fractionation in a Bauer-McNett Classifier,” Journal of Pulp and Paper Science, Dec. 12, 2001, vol. 27, No. 12, pp. 423-428. |
Imperato, Giovanni, et al. “Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions,” Chemical Communications, 2005, Issue 9, pp. 1170-1172, RSC Publishing. |
Number | Date | Country | |
---|---|---|---|
20150000851 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61206146 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13942855 | Jul 2013 | US |
Child | 14475789 | US | |
Parent | 13137216 | Jul 2011 | US |
Child | 13942855 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12694650 | Jan 2010 | US |
Child | 13137216 | US |