This disclosure relates generally to electrodes and, more specifically, to methods for preparing composition, sheet comprising the composition, and electrode comprising the sheet and used in electrochemical device such as supercapacitor, fuel cell and supercapacitor desalination.
Supercapacitors are energy storage devices having high capacitance per unit mass (of the order of several tens of farads per gram (F/g) of active material to about 100 F/g of active material) and high instantaneous specific power. Supercapacitor electrosorption deionization is proposed recently as a new desalination technology to lower water treatment cost and prevent environmental pollution.
A supercapacitor comprises two identical electrodes, an electrolyte, and a separator sandwiched by the electrodes and permeable to ions of the electrolyte. Supercapacitors are categorized into different types depending on the structure of the electrodes and the nature of the electrolytes. One type of supercapacitors has an organic electrolyte and activated carbon electrodes with a large specific surface area lying in the range 1000 m2/g to 3000 m2/g, and operates electrostatically.
The activated carbon electrodes of a supercapacitor are obtained by depositing a paste sheet on a current collector. The paste is a mixture of an active carbon, a solvent, and a binder. Polytetrafluoroethylene (PTFE) is commonly used as the electrode binder.
In preparing the paste sheet, PTFE, carbon and solvents are mixed under high shear and high temperature, biaxially calendered at high temperature, extruded into the final form at high temperature, and dried at high temperature to remove the solvents. High temperatures, especially those approaching the boiling point of water, cause water lost quickly. As water is lost, the viscosity of the material rises in an uncontrolled manner, the rate of fibrillation of PTFE increases quickly, and it is very difficult to fibrillate the PTFE to a consistent level. Drying also causes water that had been incorporated into the very small pores within and around the carbon particles to be removed as vapor. It usually takes an extremely long time to rewet the carbon PTFE material and some of the originally wet internal pores of the carbon PTFE material even cannot get rewetted again.
It has been proposed to run this operation at room temperature, low shear rate and without drying. However, this method mixes all materials in one step (one-step method) and induces non-uniform mixing of PTFE and poor fibrillation of PTFE, resulting in poor electrode sheet. Furthermore, this method usually takes a relatively long time.
A need therefore exists for improved methods for preparing composition, sheet comprising the composition and electrode comprising the sheet.
In one aspect, a method of preparing a composition comprises: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; and adding non-fibrillated POLY(TETRAFLUOROETHYLENE) to the dispersion to provide a resultant mixture and shearing the resultant mixture until at least a portion of the poly(tetrafluoroethylene) has been fibrillated.
In another aspect, a method for preparing a sheet comprises: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; adding non-fibrillated POLY(TETRAFLUOROETHYLENE) to the dispersion to provide a resultant mixture and shearing the resultant mixture until at least a portion of the poly(tetrafluoroethylene) has been fibrillated; and processing the resultant mixture into a sheet.
In yet another aspect, a method for preparing an electrode comprises: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; adding non-fibrillated POLY(TETRAFLUOROETHYLENE) to the dispersion to provide a resultant mixture and shearing the resultant mixture until at least a portion of the poly(tetrafluoroethylene) has been fibrillated; processing the resultant mixture into a sheet; and attaching the sheet onto a current collector.
Referring now to the Figures, which are exemplary embodiments, and wherein the like elements are numbered alike:
Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet are described herein. The electrode may be used in electrochemical device such as supercapacitor, fuel cell and supercapacitor desalination.
The composition is prepared by: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; and adding non-fibrillated POLY(TETRAFLUOROETHYLENE) to the dispersion to provide a resultant mixture and shearing the resultant mixture until at least a portion of the poly(tetrafluoroethylene) has been fibrillated (two-step method). After calendaring, printing, and/or extruding, the resultant mixture is processed into a sheet. Trimming the sheet into desired sizes and shapes and pressing it onto a current collector, an electrode is formed.
Dry the resultant mixture in an oven at 100° C., and press (5 MPa) it into a small piece. Cut the sheet into small pieces. The small pieces can be used for scanning electron micrograph characterization.
The solvent may be water, ethanol, or any other suitable solvents. Conducting material may be included in the mixture so that the composition comprises: 2-10% by dry weight of POLY(TETRAFLUOROETHYLENE); 0-30% by dry weight of conducting material; and 60-98% by dry weight of carbon particles. The conducting material may be a strongly acidic cation ion exchange resin, a strongly basic anion ion exchange resin, carbon black, graphite powder, and so on. The non-fibrillated POLY(TETRAFLUOROETHYLENE) is added portionwise. It should be noted that ion exchange resin significantly improves the performance of the electrode by increasing the capacity, e.g., 37% and/or decreasing resistance, e.g., 21%. A ratio by weight between the water and total of the fibrillatable PTFE, conducting material and the carbon particles may be 3:2 to 4:1. The amount of solvent affects the ways in which the composition is processed into a sheet. Less solvent used, the composition should be calendered into sheet. More solvent used, the resultant mixture may be directly printed on the current collector.
The shearing is applied using a type of speedmixer (e.g. Speedmixer™ DAC (Dual Asymmetric Centrifuge) 150 FVZ, Siemens) based on double rotations of a mixing arm thereof and a basket thereof inside the mixing arm. The mixing arm of the DAC 150 FVZ rotates with a speed of up to 3500 rpm in a direction. The basket rotates in an opposite direction with a speed of approx. 900 rpm. The combination of the different centrifugal forces which act in different directions enables the fast mixing process. A rate of shearing used in this application is 400-3500 rpm (rotation of the mixing arm).
Viscosity analysis is a powerful tool to investigate physical properties of PTFE in the mixture. Viscosity analysis indicates that PTFE enhances the viscosity during the mixing process attributed to the fibrillation of PFTE and that the viscosity depends on the shear rate and the shear time, so does the fibrillation degree. The viscosity decreases with time because the longer time shearing will break the fiber, so does the too high shearing rate. Therefore, shorter shearing time is enough for fibrillation at high shearing rate. Thus, the preparing process is operated at room temperature in 0.5 to 10 minutes.
Tensile strength of sheets was tested by SANS CMT5105 electromechanical universal testing machine using dumbbell-shape sample with 4 mm width, 1 mm thickness.
As used herein, the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. Moreover, the endpoints of all ranges directed to the same component or property are inclusive of the endpoint and independently combinable (e.g., “up to about 25 wt. %, or, more specifically, about 5 wt. % to about 20 wt. %,” is inclusive of the endpoints and all intermediate values of the ranges of “about 5 wt. % to about 25 wt. %,” etc.). Reference throughout the specification to “one embodiment”, “another embodiment”, “an embodiment”, and so forth means that a particular element (e.g., feature, structure, and/or characteristic) described in connection with the embodiment is included in at least one embodiment described herein, and may or may not be present in other embodiments. In addition, it is to be understood that the described elements may be combined in any suitable manner in the various embodiments. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.
Next, the present invention is described specifically with reference to Examples and Comparative Examples.
Activated carbon (12 g, manufactured by Yuhuan activated carbon Co. Ltd., coconut shell type, average particle size of 15 microns, surface area of 2000 m2/g) and 38 g of water were added into a speedmixer. Mix at room temperature with 1000 rpm speed for 30 seconds.
Then 0.6 g PTFE (T-60 emulsion, Dupont) was dropped into the above mixture and mixed at 1000 rpm for 30 seconds. Another 0.6 g PTFE was dropped into the mixture and mixed at 1000 rpm for 30 seconds. Then the resultant mixture was formed as a paste with some water seeped out from the mixture. The paste can be used directly for calendering without any drying step.
For roll calendering, a two-roll calender was used. The calender nip was set to 0.8 mm width, the mixed paste was put through the nip, and then a thin sheet was formed. Folding the sheet in third, and reinserted it into the nip of the calender. This process was repeated for 5 times with 90° rolling direction changes every time. Finally the uniform carbon composite thin sheet was ready with ˜1 mm thickness.
Finally, the sheet was trimmed into 4 cm×10 cm rectangles for use in the electrode assembly. Put one rectangle on a Ti mesh current collector. After pressing (8 MPa), a capacitor electrode with 40 cm2 surface area was formed. Two electrodes each with 3 g activated carbon loading amount and 2 stacked spacers (1.0 mm thickness) were assembled together to form a cell used for supercapacitor desalination. Between the electrodes is a 1560 ppm NaCl solution. The cell resistance was 2.4+1-0.07 Ohm. The cell capacity was measured by scanning cyclic voltammetry in 1 mol/L NaCl solution as 75.6+/−0.7 F/g.
Activated carbon (6 g, manufactured by Yuhuan activated carbon Co. Ltd., coconut shell type, average particle size of 15 microns, surface area of 2000 m2/g), 2.1 g anion ionic exchange resin (Tianjin Nankai Resin Factory, Strongly basic anion exchanger 201×7, milled into ˜50 μm particle size before use, water content 40%), and 20 g of water were added into a speedmixer. Mix at room temperature with 1000 rpm speed for 30 seconds.
To the upper mixture, total 0.8 g PTFE (T-60 emulsion, Dupont) was added. 0.2 g PTFE was dropped into the mixture by each time, with mixing at 3500 rpm for 20 seconds until complete. The paste is put directly on the roller for calendering.
For roll calendering, a two-roll calender was used. The calender nip was set to 0.8 mm width, the mixed paste is put through the nip, and then a thin sheet was formed, folded in third, and reinserted into the nip of the calender. This process was repeated for 5 times with 90° rolling direction changes every time. Finally the uniform carbon composite thin sheet was ready with ˜1 mm thickness.
Finally, the sheet was trimmed to form 4 cm×10 cm rectangle for use in the electrode assembly, and then put on the Ti mesh current collector. After pressing (8 MPa), the capacitor electrode was formed. The electrode with 3 g activated carbon loading was assembled as positive electrode used for supercapacitor desalination.
Activated carbon (6 g, manufactured by Yuhuan activated carbon Co. Ltd., coconut shell type, average particle size of 15 microns, surface area of 2000 m2/g), 2.1 g cation ionic exchange resin (Tianjin Nankai Resin Factory, Strongly acid cation exchanger 001×7, milled into ˜50 μm particle size before use, water content 40%), and 20 g of water were added into a speedmixer. Mix at room temperature with 1000 rpm speed for 30 seconds.
To the upper mixture, total 0.8 g PTFE (T-60 emulsion, Dupont) was added. By each time, 0.2 g PTFE was dropped with mixing at 3500 rpm for 20 seconds until finish. The paste is put directly on the roller for calendering.
For roll calendering, a two-roll calender was used. The calender nip was set to 0.8 mm width, the mixed paste is put through the nip, and then the thin sheet was formed, folded in third, and reinserted into the nip of the calender. This process was repeated for 5 times with 90° rolling direction changes every time. Finally the uniform carbon composite thin sheet was ready with ˜1 mm thickness.
Finally, the sheet was trimmed to form 4 cm×10 cm rectangle for use in the electrode assembly, then put on the Ti mesh current collector. After pressing (8 MPa), the capacitor electrode was formed. The electrode with 3 g activated carbon loading was assembled as negative electrode used for supercapacitor desalination.
The resulting negative electrode (40 cm2 surface area) of example 3 and the positive electrode (40 cm2 surface area) of example 2 were assembled together and 2 spacers (thickness: 1.5 mm) are put between the electrodes. The cell resistance was measured by calculating the voltage at the beginning of the charging state in 1560 ppm NaCl solution. And capacity was measured by scanning cyclic voltammetry in 1 mol/L NaCl solution. The cell resistance was 1.9+/−0.10 Ohm, 21% reduction comparing with that of example 1. And the specific capacity is 103+/−0.5 F/g, 37% increase comparing with that of example 1.
Activated carbon (12 g, manufactured by Yuhuan activated carbon Co. Ltd., coconut shell type, average particle size of 15 microns, surface area of 2000 m2/g) and 35 g of ethanol were added into a speedmixer. Mix at room temperature with 1000 rpm speed for 30 seconds.
Then 1.6 g PTFE (T-60 emulsion, Dupont) was dropped into the above mixture by three times. In detail, first 0.4 g PTFE was dropped into the mixture and mixed at 800 rpm for 1 minute; then 0.6 g PTFE was dropped into the mixture and mixed at 800 rpm for 1 minute; at last 0.6 g PTFE was dropped into the mixture and mixed at 800 rpm for 1 minute. The resulting paste is used for calendering.
For roll calendering, a two-roll calender was used. The calender nip was set to 0.8 mm width, the mixed paste is put through the nip, and then the thin sheet was formed, folded in third, and reinserted into the nip of the calender. This process was repeated for 5 times with 90° rolling direction changes every time. Finally the uniform carbon composite thin sheet was ready with ˜1 mm thickness.
Finally, the sheet was trimmed to form 4 cm×10 cm rectangle for use in the electrode assembly, then put on the Ti mesh current collector. After pressing (8 MPa), the capacitor electrode was formed. The formed cell was used for supercapacitor desalination.
Weigh 12 g of activated carbon (manufactured by Yuhuan activated carbon Co. Ltd., coconut shell type, average particle size of 15 microns, surface area of 2000 m2/g), 38 g of water and 1.2 g PTFE. Mix all these materials together in a speedmixer at room temperature at 1000 rpm speed for 60 seconds. The slurry is not easy for directly calendering on the roller due to much water in without water separating from the slurry. After standing 30 min, water can leach out to form a paste, which can be used for calendering. Or after filtering by filter paper to form a paste, the paste can be used for calendering on the roller.
For roll calendering, a two-roll calender was used. The calender nip was set to 0.8 mm width and the mixed paste is put through the nip. After three times rolling, the paste can be changed into sheet. The sheet was folded in third, and reinserted into the nip of the calender. This process was repeated for 8 times with 90° rolling direction changes every time. Finally the uniform carbon composite thin sheet was ready with ˜1 mm thickness.
The tensile strength of the resulting sheet by one step mixing method is 0.04 Mpa, much lower than that in example 1.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0161788 | Sep 2008 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/006723 | 8/10/2009 | WO | 00 | 3/28/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/035092 | 4/1/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4129470 | Homsy | Dec 1978 | A |
4153661 | Ree et al. | May 1979 | A |
4379772 | Solomon et al. | Apr 1983 | A |
6127474 | Andelman | Oct 2000 | A |
6183668 | Debe et al. | Feb 2001 | B1 |
6264707 | Ishikawa et al. | Jul 2001 | B1 |
6356432 | Daniel et al. | Mar 2002 | B1 |
6630081 | Furuya | Oct 2003 | B1 |
6818339 | Sugawara et al. | Nov 2004 | B1 |
7029785 | Hatoh et al. | Apr 2006 | B2 |
7175783 | Curran | Feb 2007 | B2 |
7285615 | Adachi et al. | Oct 2007 | B2 |
7329353 | Dillon et al. | Feb 2008 | B2 |
7491352 | Ito | Feb 2009 | B2 |
7544630 | Hatoh et al. | Jun 2009 | B2 |
20020061956 | Kobayashi et al. | May 2002 | A1 |
20030143454 | Hatoh et al. | Jul 2003 | A1 |
20040086774 | Munoz et al. | May 2004 | A1 |
20050288177 | Hatoh et al. | Dec 2005 | A1 |
20070075300 | Curran et al. | Apr 2007 | A1 |
20070201184 | Plec et al. | Aug 2007 | A1 |
20080028583 | Shimoyanna et al. | Feb 2008 | A1 |
20100119945 | Akagi et al. | May 2010 | A1 |
20110024287 | Zheng et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
1625792 | Jun 2005 | CN |
62223255 | Oct 1987 | JP |
07252365 | Oct 1995 | JP |
2001006699 | Jan 2001 | JP |
2001011679 | Jan 2001 | JP |
2003342436 | Dec 2003 | JP |
2006314388 | Nov 2006 | JP |
2002061956 | Aug 2002 | WO |
2005049700 | Jun 2005 | WO |
2007007530 | Jan 2007 | WO |
Entry |
---|
Desalination, Development of a carbon sheet electrode for electrosorption desalination, Park, Kwang-Kyu; Lee, Jae-Bong; Park, Pill-Yang; Yoon, Seok-Won; Moon, Jeon-Soo; Eum, Hee-Moon; Lee, Chi-Woo, v 206, No. 1-3, Feb 5, 2007, p. 86-91. ISSN: 0011-9164. |
Meeting Abstracts, Meeting Abstracts—205th Meeting of The Electrochemical Society, A study of screen-printing processing conditions in making membrane electrode assemblies for PEM fuel cells,,Zaffou, R.; Mittal, V.; Kunz, H.R.; Fenton, J.M. Zaffou, R.; Mittal, V.; Kunz, H.R.; Fenton, J.M.,ISSN: 1091-8213, Year, 2004, p. 310. |
International Search Report and Written Opinion from corresponding PCT International Application No. PCT/IB2009/006723, dated Jul. 12, 2009. |
Office Action Issued in JP Application 2011-528438 dated Mar. 19, 2013. |
Chinese office action issued in connection with CN Patent Application No. 200810161788.9 dated Feb. 24, 2011. |
Number | Date | Country | |
---|---|---|---|
20110175252 A1 | Jul 2011 | US |